19,090 research outputs found

    Avoiding abelian squares in partial words

    Get PDF
    AbstractErdős raised the question whether there exist infinite abelian square-free words over a given alphabet, that is, words in which no two adjacent subwords are permutations of each other. It can easily be checked that no such word exists over a three-letter alphabet. However, infinite abelian square-free words have been constructed over alphabets of sizes as small as four. In this paper, we investigate the problem of avoiding abelian squares in partial words, or sequences that may contain some holes. In particular, we give lower and upper bounds for the number of letters needed to construct infinite abelian square-free partial words with finitely or infinitely many holes. Several of our constructions are based on iterating morphisms. In the case of one hole, we prove that the minimal alphabet size is four, while in the case of more than one hole, we prove that it is five. We also investigate the number of partial words of length n with a fixed number of holes over a five-letter alphabet that avoid abelian squares and show that this number grows exponentially with n

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    A Note on Efficient Computation of All Abelian Periods in a String

    Get PDF
    We derive a simple efficient algorithm for Abelian periods knowing all Abelian squares in a string. An efficient algorithm for the latter problem was given by Cummings and Smyth in 1997. By the way we show an alternative algorithm for Abelian squares. We also obtain a linear time algorithm finding all `long' Abelian periods. The aim of the paper is a (new) reduction of the problem of all Abelian periods to that of (already solved) all Abelian squares which provides new insight into both connected problems

    Avoidability of long kk-abelian repetitions

    Full text link
    We study the avoidability of long kk-abelian-squares and kk-abelian-cubes on binary and ternary alphabets. For k=1k=1, these are M\"akel\"a's questions. We show that one cannot avoid abelian-cubes of abelian period at least 22 in infinite binary words, and therefore answering negatively one question from M\"akel\"a. Then we show that one can avoid 33-abelian-squares of period at least 33 in infinite binary words and 22-abelian-squares of period at least 2 in infinite ternary words. Finally we study the minimum number of distinct kk-abelian-squares that must appear in an infinite binary word

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving
    corecore