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Erdős raised the question whether there exist infinite abelian
square-free words over a given alphabet, that is, words in which
no two adjacent subwords are permutations of each other. It can
easily be checked that no such word exists over a three-letter
alphabet. However, infinite abelian square-free words have been
constructed over alphabets of sizes as small as four. In this paper,
we investigate the problem of avoiding abelian squares in partial
words, or sequences that may contain some holes. In particular,
we give lower and upper bounds for the number of letters needed
to construct infinite abelian square-free partial words with finitely
or infinitely many holes. Several of our constructions are based on
iterating morphisms. In the case of one hole, we prove that the
minimal alphabet size is four, while in the case of more than one
hole, we prove that it is five. We also investigate the number of
partial words of length n with a fixed number of holes over a
five-letter alphabet that avoid abelian squares and show that this
number grows exponentially with n.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Words or strings belong to the very basic objects in theoretical computer science. The systematic
study of word structures (combinatorics on words) was started by Norwegian mathematician Axel
Thue [31,32,2] at the beginning of the last century. One of the discoveries made by Thue is that the
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consecutive repetitions of non-empty factors (squares) can be avoided in infinite words over a three-
letter alphabet. Recall that an infinite word w over an alphabet is said to be k-free if there exists no
word x such that xk is a factor of w . For simplicity, a word that is 2-free is said to be square-free.
After Thue’s time, repetition-free words have found applications in various research areas like commu-
tative semigroups [9,12,17], formal languages [23,24], unending games [28], symbolic dynamics [27,
28], computer-assisted music analysis [22], cryptography [1,30], and bioinformatics [26].

Erdős [13] raised the question whether abelian squares can be avoided in infinitely long words,
i.e., whether there exist infinite abelian square-free words over a given alphabet. An abelian square
is a non-empty word uv , where u and v are permutations of each other. For example, abcacb is
an abelian square. A word is called abelian square-free, if it does not contain any abelian square as
a factor. For example, the word abacaba is abelian square-free, while abcdadcada is not (it contains
the subword cdadca). It is easily seen that abelian squares cannot be avoided over a three-letter
alphabet. Indeed, each word of length eight over three letters contains an abelian square. A first
step in solving special cases of Erdős’ problem was taken in [14], where it was shown that the 25th
abelian powers were avoidable in the binary case. Later on, Pleasants [29] showed that there exists an
infinite abelian square-free word over five letters, using a uniform iterated morphism of size fifteen.
Justin [17] proved that over a binary alphabet there exists a word that is abelian 5-free, using a
uniform morphism of size five. This result was improved by Dekking [11] to abelian 4-free, using a
non-uniform morphism. Moreover, using Z7 instead of Z5, in the proof of this latter result, we get
that over a ternary alphabet an abelian 3-free infinite word is constructible. The problem of whether
abelian squares can be avoided over a four-letter alphabet was open for a long time. In [18], using
an interesting combination of computer checking and mathematical reasoning, Keränen proves that
abelian squares are avoidable on four letters. To do this, he presents an abelian square-free morphism
g : {a,b, c,d}∗ → {a,b, c,d}∗ whose size is |g(abcd)| = 4 × 85:

g(a) = abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacb

abdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

and the image of the letters b, c,d, that is, the words g(b), g(c), g(d), are obtained by cyclic permuta-
tion of letters in the preceding words. Moreover in [8], it is shown that no smaller uniform morphism
works here! In [19] a completely new morphism of length 4 × 98, possessing similar properties for
iterations, is given.

Now let us move to partial words. Being motivated by a practical problem on gene comparison,
Berstel and Boasson introduced the notion of partial words, which are sequences over a finite alphabet
that may have some undefined positions or holes (the � symbol represents a hole and matches every
letter of the alphabet) [3]. For instance, a�bca�b is a partial word with two holes over the three-letter
alphabet {a,b, c}. Several interesting combinatorial properties of partial words have been investigated,
and connections have been made, in particular, with problems concerning primitive sets of integers,
lattices, vertex connectivity in graphs, etc., [4].

In [25], the question was raised as to whether there exist cube-free infinite partial words, and an
optimal construction over a binary alphabet was given (a partial word w is called k-free, if for every
factor x0x1· · ·xk−1 of w there does not exist a word u, such that for each i, the defined positions
of xi match the corresponding positions of u). In [7], the authors settled the question of overlap-
freeness by showing that over a two-letter alphabet there exist overlap-free infinite partial words
with one hole and none exists with more than one hole, and that a three-letter alphabet is enough
for an infinity of holes. An overlap represents a word consisting of two overlapping occurrences of the
same factor. More precisely, an overlap is a factor of the form a0 w0a1 w1a2, where w0 and w1 are
compatible, w0, w1 ∈ A∗� , and ai and a j are compatible, ai,a j ∈ A� for 0 � i, j � 2 (for the definition
of compatibility, see the section on preliminaries), and a partial word is called overlap-free if it does
not contain any such factor. The problem of square-freeness in partial words is settled in [7] and [15]
where it is shown that a three-letter alphabet is enough for constructing such words. Quite naturally,
all the constructions of these words are done by iterating morphisms, most of them uniform, similarly
or directly implied by the original result of Thue. Moreover, in [25,7,6], the concept of repetitions is
also solved in more general terms. The authors show that, for given alphabets, replacing arbitrary
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positions of some infinite words by holes, does not change the repetition freeness (that is, if the
original word is k-free for some k, then the constructed partial word is also k-free). Furthermore
in [16], the authors show that there exist binary words that are 2-overlap-free.

This paper focuses on the problem of avoiding abelian squares in partial words. In Section 2,
we give some preliminaries on partial words. In Section 3, we explore the minimal alphabet size
needed for the construction of (two-sided) infinite abelian square-free partial words with a given
finite number of holes. In particular, we construct an abelian square-free infinite partial word with
one hole over the minimal four-letter alphabet. For more than one hole, the minimal number of
letters is at least five, when such words exist. We also construct an infinite word over a 12-letter
alphabet that remains abelian square-free even after an arbitrary position is replaced with a hole. In
Section 4, we prove by explicit construction the existence of abelian square-free partial words with
infinitely many holes. The minimal alphabet size turns out to be five for such words. In Section 5,
we investigate in particular the number of partial words of length n over a five-letter alphabet that
avoid abelian squares and show that this number grows exponentially with n. Finally in Section 6, we
discuss some constructions for the finite case.

Several times in the paper, we mention properties to be checked with a computer. A World Wide
Web server interface at

www.uncg.edu/cmp/research/abelianrepetitions

has been established for automated use of an abelian square-free checker, as well as an abelian
square-free word generator. Our applets will help readers verify these properties.

2. Preliminaries

Let A be a non-empty finite set of symbols called an alphabet. Each element a ∈ A is called a letter.
A full word over A is a sequence of letters from A. A partial word over A is a sequence of symbols
from A� = A ∪{�}, the alphabet A being augmented with the “hole” symbol � (a full word is a partial
word that does not contain the � symbol).

The length of a partial word w is denoted by |w| and represents the number of symbols in w ,
while w(i) represents the symbol at position i of w , where 0 � i < |w|. The empty word is the se-
quence of length zero and is denoted by ε. The set of distinct letters in w , or the alphabet of w , is
denoted by α(w). For instance, the partial word w = ab�bba�, where a,b are distinct letters of the
alphabet A, satisfies α(w) = {a,b}. The set of all words over A is denoted by A∗ , while the set of all
partial words over A is denoted by A∗� . Similarly, the set of all non-empty words over A is denoted
by A+ , while the set of all non-empty partial words over A is denoted by A+� . A (right) (respectively,
two-sided) infinite partial word is a function w : N → A� (respectively, w : Z → A�).

Let u and v be partial words of equal length. Then u is said to be contained in v , denoted u ⊂ v ,
if u(i) = v(i), for all i such that u(i) ∈ A. Partial words u and v are compatible, denoted u ↑ v , if there
exists a partial word w such that u ⊂ w and v ⊂ w . If u and v are non-empty, then uv is called a
square. Whenever we refer to a square uv , it implies that u ↑ v .

A partial word u is a factor or subword of a partial word v if there exist x, y such that v = xuy. We
say that u is a prefix of v if x = ε and a suffix of v if y = ε. The prefix u of v is called proper if u 	= v .
If w = a0a1 · · ·an−1, then w[i.. j) = ai · · ·a j−1 and w[i.. j] = ai · · ·a j . The reversal of a partial word w =
a0a1 · · ·an−1, where each ai ∈ A� , is simply the word written backwards an−1 · · ·a1a0, and is denoted
rev(w). For partial words u and v , |u|v denotes the number of occurrences of v found in u. The Parikh
vector of a word w ∈ A∗ , denoted by P (w), is defined as P (w) = 〈|w|a0 , |w|a1 , . . . , |w|a‖A‖−1 〉, where
A = {a0,a1, . . . ,a‖A‖−1} (here ‖A‖ denotes the cardinality of A).

A word uv ∈ A+ is called an abelian square if P (u) = P (v). A word w is abelian square-free if no
factor of w is an abelian square.

Definition 2.1. A partial word w ∈ A+� is an abelian square if it is possible to substitute letters from
A for each hole in such a way that w becomes an abelian square full word. The partial word w is
abelian square-free if it does not have any full or partial abelian square, except those of the form �a
or a�, where a ∈ A (which we call trivial abelian squares).
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A morphism φ : A∗ → B∗ is a mapping from the free monoid A∗ to the free monoid B∗ that satisfies
φ(w w ′) = φ(w)φ(w ′) for all w, w ′ ∈ A∗; in particular φ(ε) = ε. The reversal of φ is the morphism
rev(φ) : A∗ → B∗ that maps each a ∈ A to rev(φ(a)). A substitution σ : A∗ → B∗ is a morphism from
A∗ into a monoid of B∗ . A morphism φ is called abelian square-free if φ(w) is abelian square-free
whenever w is abelian square-free (a similar definition holds for a substitution σ ).

Throughout the paper, we will reserve letters like x, y, z to denote factors and letters like a,b, c to
denote elements of the alphabet.

3. The infinite case with a finite number of holes

It is not hard to check that every abelian square-free full word over a three-letter alphabet has
length less than eight. It is quite straightforward to check that the maximum length of an abelian
square-free partial word with at least one hole, over such an alphabet, is six. So to construct infinite
abelian square-free partial words with a finite number of holes, we need at least four letters. Let us
first state some remarks.

Remark 3.1. Let w ∈ A∗ be an abelian square-free word. Inserting a new letter a, a /∈ A, between
arbitrary positions of w (so that aa does not occur) yields a word w ′ ∈ (A ∪ {a})∗ that is abelian
square-free.

Consider abacba which is abelian square-free. Inserting letter d after positions 0, 3 and 4, yields
adbacdbda which is abelian square-free.

Remark 3.2. Let uv ∈ A∗ with |u| = |v|, a ∈ A and b /∈ A. Replace a number of a’s in u and the same
number of a’s in v with b’s, yielding a new word u′v ′ . If uv is an abelian square, then u′v ′ is an
abelian square. Similarly, if uv is abelian square-free, then u′v ′ is abelian square-free.

The question whether there exist infinite abelian square-free full words over a given alphabet was
originally raised by Erdős in [13]. As mentioned above, no such word exists over a three-letter alpha-
bet. However, infinite abelian square-free full words are readily available over a four-letter [18–20],
five-letter [29], and larger alphabets [14]. These infinite words are created using repeated application
of morphisms, where most of these morphisms are abelian square-free. We now investigate the min-
imum alphabet size needed to construct infinite abelian square-free partial words with a given finite
number of holes.

Remark 3.3. Let u, v be partial words of equal length. If uv is an abelian square, then so is any
concatenation of permutations of u and v .

In the paper, we will be using an abelian square-free morphism φ : A∗ → A∗ , where A = {a,b, c,d},
that is provided by Keränen [20] and that is defined by

φ(a) = abcacdcbcdcadbdcadabacadcdbcbabcbdbadbdcbabcbdcdacd

cbcacbcdbcbabdbabcabadcbcdcbadbabcbabdbcdbdadbdcbca

φ(b) = bcdbdadcdadbacadbabcbdbadacdcbcdcacbacadcbcdcadabda

dcdbdcdacdcbcacbcdbcbadcdadcbacbcdcbcacdacabacadcdb

φ(c) = cdacabadabacbdbacbcdcacbabdadcdadbdcbdbadcdadbabcab

adacadabdadcdbdcdacdcbadabadcbdcdadcdbdabdbcbdbadac

φ(d) = dabdbcbabcbdcacbdcdadbdcbcabadabacadcacbadabacbcdbc

babdbabcabadacadabdadcbabcbadcadabadacabcacdcacbabd
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The length of each image is 102 and the Parikh vector of each is a permutation of P (φ(a)) =
〈21,31,27,23〉 (P (φ(b)) = 〈23,21,31,27〉, P (φ(c)) = 〈27,23,21,31〉, and P (φ(d)) = 〈31,27,23,21〉).
We refer to the factors created by the images of φ as blocks.

Theorem 3.4. There exists an infinite abelian square-free partial word with one hole over a four-letter alphabet.

Proof. We show that the word �φn(a) is abelian square-free, for all integers n � 0. Since φ is abelian
square-free, it is sufficient to check if we have abelian squares uv that start with the hole, for |u| = |v|.

Now, assume that some prefix uv of w = �φn(a) is an abelian square. We can write uv =
�φ(w0)φ(e)φ(w1)x, where e ∈ A, w0, w1, x ∈ A∗ are such that �φ(w0) is a prefix of u, u is a proper
prefix of �φ(w0e), and x is a proper prefix of the image by φ of some letter. More specifically, we
can write φ(e) = y0 y1, where y0 ∈ A∗ , y1 ∈ A+ , u = �φ(w0)y0 and v = y1φ(w1)x. Then |u| = |v|,
|�y0| ≡ |y1x| mod 102, |�y0| � 102, and |y1x| < 204. This implies 0 � |w0| − |w1| < 2.

Denoting by u′ the word obtained from u after replacing the hole by a letter in A so that P (u′) =
P (v), we can build a system of equations for each letter in A. If we denote Na = |w0|a − |w1|a ,
Nb = |w0|b − |w1|b , Nc = |w0|c − |w1|c , and Nd = |w0|d − |w1|d , then the system for letter a is
determined by

21Na + 23Nb + 27Nc + 31Nd = λa

Note that the image φ(a) does not overlap any φ( f f ′) for f , f ′ in A.
The number of occurrences of a (respectively, b, c, d) in u′ and v must be equal, so we construct

the system of equations:

21Na + 23Nb + 27Nc + 31Nd = λa

31Na + 21Nb + 23Nc + 27Nd = λb

27Na + 31Nb + 21Nc + 23Nd = λc

23Na + 27Nb + 31Nc + 21Nd = λd

Each λi is related to the number of occurrences of letter i created by �, φ(e) and x. Then λi =
|y1|i + |x|i − |y0|i − �i , where �i = 1 if � is replaced by i, and �i = 0 otherwise.

We can, without loss of generality, delete the same number of occurrences of any given block
present in both φ(w0) and φ(w1). It can be checked by computer that the only scenarios that lead to
non-negative integer solutions for �i, |y0|i, |y1|i, |x|i , i ∈ {a,b, c,d}, are when w1 = ε, and w0 = ε or
w0 ∈ A (note that because of the hole at the beginning, there is one �i that must be 1 while all others
must be 0). Thus, either w0 = w1 = ε, or w0 = f ∈ A and w1 = ε. For the first case, uv = �φ(e)x,
while for the second case, uv = �φ( f )φ(e)x. It is easy to verify by computer that no such partial
word is an abelian square. �
Corollary 3.5. There exists a two-sided infinite abelian square-free partial word with one hole over a five-letter
alphabet.

Proof. For a word w , let φ′(w) = rev(φ(w)) with φ : A∗ → A∗ , where A = {a,b, c,d}. Hence, φ′(w)

is abelian square-free for all abelian square-free words w and φ′n(a)� is abelian square-free, for all
integers n � 0. Also, let χ : B∗ → B∗ , where B = {b, c,d, e}, be the morphism that is constructed by
replacing each a in the definition of φ with a new letter e. By construction, χ is an abelian square-free
morphism and �χn(e) is abelian square-free, for all n � 0.

We show that φ′n(a) � χn(e) ∈ {a,b, c,d, e}∗ is abelian square-free, for all n ∈ N. Suppose to the
contrary that there exists an abelian square w , which is a subword of φ′n(a) � χn(e), for some n.
Then, the word w must contain parts of both φ′(a) and χ(e). Therefore, at least one half, called u, is
a subword of either φ′n(a) or χn(e) meaning it contains either a or e but not both and it does not
contain the hole. Whereas the other half of w , called v , necessarily contains the other letter and the
hole. Since v contains a letter that u does not, and u has no holes, w is not an abelian square. �
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Corollary 3.6. For all integers n � 0,(
rev(φ)

)n
(a) � ef g � φn(a) ∈ {a,b, c,d.e, f , g}∗�

is an abelian square-free partial word with two holes over a seven-letter alphabet.

Proof. The word (rev(φ))n(a) � ef g � φn(a) is abelian square-free, for all integers n � 0. If not, then
there exists a factor w that is an abelian square and it must contain e or g . By the same logic as
in the proof of Corollary 3.5, w must be centered between the holes. Obviously, no such word is an
abelian square. �

Using a computer program, we have checked that over a four-letter alphabet all words of the form
u � v , where |u| = |v| = 12, contain an abelian square. Clearly, this implies that all partial words with
a factor of this form also contain an abelian square. It follows that, over a four-letter alphabet, an
infinite abelian square-free partial word containing more than one hole, must have all holes within
the first 12 positions. We have also checked that all partial words �u�v with |u| � 10 and |v| � 10,
or with |u| = 11 and |v| = 5 contain abelian squares (and consequently so do the words with |u| = 11
and |v| � 5).

Proposition 3.7. Over a four-letter alphabet, there exists no two-sided infinite abelian square-free partial word
with one hole, and all right infinite abelian square-free partial words contain at most one hole.

In addition, over a four-letter alphabet, for all words u and v , |u|, |v| � 12, the partial word �u�v�
contains an abelian square. So if a finite partial word over a four-letter alphabet contains at least
three holes, then it has an abelian square.

To end this section, we prove the following proposition that constructs an infinite word that re-
mains abelian square-free even after replacing an arbitrary position with a hole.

Proposition 3.8. There exists an infinite word over a 12-letter alphabet so that, if we replace any position in
the word with a hole, the resulting partial word contains no abelian squares.

Proof. We know that there exist infinite words w0 over A0 = {a0,b0, c0,d0}, w1 over A1 = {a1,b1,

c1,d1}, and w2 over A2 = {a2,b2, c2,d2} that avoid abelian squares (see [18]). Then we can let

v = w0(0)w1(0)w2(0)w0(1)w1(1)w2(1)w0(2)w1(2)w2(2) · · ·
where v is an infinite word over A0 ∪ A1 ∪ A2. We claim that, no matter where you put the hole
into v , the resulting word contains no abelian squares.

To see this, replace a position in v with a hole to produce v ′ . For the sake of contradiction, assume
that u′

0u′
1 = v ′[i + 1..i + l]v ′[i + l + 1..i + 2l] is a non-trivial abelian square in v ′ . Let u0 = v[i + 1..i + l]

and u1 = v[i + l + 1..i + 2l] be the corresponding words in v . Without loss of generality, we can
assume that the � in v ′ replaced a letter from the alphabet A0. Since u′

0u′
1 is an abelian square,

by definition we can replace the � with some letter to get a full word v0 v1, where v0 v1 is an
abelian square. Assume we replace it with a letter in A1, the other cases being similar. Note that the
construction of v0 v1 from u0u1 did not affect those letters in u0u1 that had been taken from the
alphabet A2. Let ψ : (A0 ∪ A1 ∪ A2)

∗ → A2
∗ be the morphism defined as follows: if a ∈ A0 ∪ A1 ∪ A2

then

ψ(a) =
{

a if a ∈ A2

ε otherwise

Then it is clear that ψ(v0 v1) is either an abelian square, or else it is empty. Since every subword
of v of length 3 or greater contains a letter in A2, if ψ(v0 v1) is empty then we must have that
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|v0| = |v1| = 1, which implies that u′
0u′

1 is trivial. Therefore assume it is not empty. By construc-
tion we find that ψ(v0 v1) = ψ(u0u1) is a subword of w2. This contradicts the fact w2 is abelian
square-free. Since ‖A0 ∪ A1 ∪ A2‖ = 12 the theorem follows. �

Whether or not the alphabet size of twelve in Proposition 3.8 is optimal remains an open problem.

4. The case with infinitely many holes

The next question is how large should the alphabet be so that an abelian square-free partial word
with infinitely many holes can be constructed. In this section, we construct such words over a minimal
alphabet size of five.

First let us state three lemmas that help us achieve our goal.

Lemma 4.1. Let z be a word which is not an abelian square, x (respectively, y) be a suffix (respectively, prefix)
of φ( f ), where f ∈ {b, c,d}. Then the following hold:

1. No word of the form �φ(z)y, φ(z)y�, �aφ(z)y or aφ(z)y� is an abelian square, unless zf is an abelian
square.

2. No word of the form �xφ(z), xφ(z)� or �xφ(z)a is an abelian square, unless f z is an abelian square.

Proof. Let us assume that we can get an abelian square uv of one of the mentioned forms in state-
ment 1 (the proof for statement 2 is similar). Then there exists a factorization φ(z0)x0x1φ(z1) of φ(z),
for some words x0, x1, z0, z1 such that z = z0φ

−1(x0x1)z1 and |x0x1| = 102, so that φ(z0)x0 is in the u-
part and x1φ(z1) is in the v-part. After cancelling letters from both z0 and z1, we see that it is enough
to consider the cases where α(z0)∩α(z1) = ∅, and |z0| = |z1| or |z0| = |z1|+1 or |z1| = |z0|+1. Since,
having several occurrences of the same letter in either z0 or z1 increases the number of occurrences
of one letter too fast after the application of φ, it is enough to consider the cases where |z0|+|z1| � 4,
that is, |z| � 5. All words of the form �φ(z)y, φ(z)y�, �aφ(z)y or aφ(z)y�, with z of length at most
5 and z not an abelian square, where y is a prefix of φ( f ) for some f ∈ {b, c,d}, can be checked by
computer. None of these is an abelian square unless zf is an abelian square. �
Lemma 4.2. Let z be a word which is not an abelian square, x (respectively, y) be a suffix (respectively, prefix)
of φ(a). Then, no word of the form �xφ(z)y or xφ(z)y� is an abelian square, unless az or za is an abelian
square.

Proof. Following the proof of Lemma 4.1, here we need to check by computer all words �xφ(z)y or
xφ(z)y�, with z of length at most 5 and z not an abelian square, where x is a suffix and y is a prefix
of φ(a). None of these is an abelian square unless az or za is an abelian square. �
Lemma 4.3.

1. Let z be a word which is not an abelian square, x be the suffix of length 101 of φ(a), y be a prefix of φ( f ),
where f ∈ {a,b, c,d}. Then, no word of the form �xφ(z)y is an abelian square, unless az, zf or azf is an
abelian square.

2. Let z be a word which is not an abelian square, y be the prefix of length 101 of φ(a), x be a suffix of φ( f ),
where f ∈ {a,b, c,d}. Then, no word of the form �xφ(z)y is an abelian square, unless za, f z or f za is an
abelian square.

Proof. The result follows similarly as for Lemmas 4.1 and 4.2 and an exhaustive check using a com-
puter. �
Theorem 4.4. There exists an abelian square-free partial word with infinitely many holes over a five-letter
alphabet.
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Proof. Let w = φω(a), which is an infinite abelian square-free full word over the four-letter alphabet
A = {a,b, c,d}. There exist infinitely many j’s such that w[ j − 101.. j] = φ(a). Let k0 be the smallest
integer so that w[k0 − 101..k0] = φ(a) (note that k0 = 101). Then define k j recursively, where k j is
the smallest integer satisfying k j > 5k j−1 and w[k j − 101..k j] = φ(a).

Note that in order to avoid abelian squares, the holes must be somehow sparse. Construct an
infinite partial word w ′ over A ∪ {e}, where e /∈ A, by introducing factors in w as follows. For all
integers j � 0, do the following. If i = k j and j ≡ 0 mod 5, then introduce �e between positions i
and i + 1 of w . If i = k j and j 	≡ 0 mod 5, then introduce four e’s in the image of φ(a) that ends
at position i, in the following way: setting w[k j − 101..k j] = φ(a) = ab Xca, where X ∈ A∗ , the word
ab Xca is replaced with X ′ = eaeb Xceae. Clearly, w ′ has infinitely many holes. The modulo 5 assures
that in every finite prefix of w ′ , there are much more e’s than �’s. Moreover, if the holes are not taken
into consideration, since no two e’s are next to each other, by Remark 3.1, the word is still abelian
square-free.

In order to prove that w ′ has no abelian squares, we assume that it has one and get a contradic-
tion. Let uv be an occurrence of an abelian square, where u = w ′[i..i+l] and v = w ′[i+l+1..i+2l+1]
for some i, l. Let k′

j , j � 0, be the sequence in w ′ corresponding to the sequence k j , j � 0, in w , that
is, if k j is the last position of an occurrence of ab Xca, then k′

j is the last position of the corresponding
occurrence of ab Xca�e or eaeb Xceae. Let J1 = { j | i � k′

j � i + l} and J2 = { j | i + l+1 � k′
j � i +2l+1}.

Then ‖ J1‖ � 3 and ‖ J2‖ � 1, which implies that ‖ J1 ∪ J2‖ � 4. To see that ‖ J2‖ � 1, assume ‖ J2‖ > 1,
then note that there exist some j, j + 1 ∈ J2. However, this implies that l = (i + 2l + 1) − (i + l + 1) �
k′

j+1 − k′
j > k′

j > i + l � l, a contradiction. Now assume that ‖ J1‖ > 3. Then there are at least ten
occurrences of the letter e in u, and for each occurrence of e there must also be an e or a � in v .
However, this implies ‖ J2‖ > 1, which violates the fact that ‖ J2‖ � 1.

Next, we want to show that no holes occur in the abelian square uv . Observe that v cannot contain
more than four e’s, since otherwise, there exists j > 0 such that k′

j−1 < i + l + 1 � k′
j � i + 2l + 1 <

k′
j+1 � i + 2l + 106. Thus, as k′

j+1 > 4k′
j and k′

j � 104, l + 1 � i + l + 1 < 2k′
j < k′

j+1 − k′
j − 104 �

(i + 2l + 106)− (i + l + 105) = l + 1, a contradiction. Observe also since ‖ J1 ∪ J2‖ � 4, by construction
of w ′ , word uv contains at most one hole.

Firstly, we prove that v contains no hole. Let us assume that the last position of v is a hole.
If v contains any e’s, then there exists j such that k′

j−1 < i + l + 1 � k′
j < i + 2l + 1 = k′

j+1 − 1, and
as k′

j+1 > 3k′
j , we get l + 1 � i + l + 1 < 2k′

j < (k′
j+1 − 1) − (k′

j − 1) � (i + 2l + 1) − (i + l) = l + 1,
a contradiction; note that here, the � is from the block corresponding to k′

j+1, while the e’s are from
the block corresponding to k′

j . Moreover, u does not contain any e’s, since otherwise the � and the e
in uv cancel each other and we get that the original word w is not abelian square-free. Hence, there
exist x, z ∈ A∗ , where x, |x| < 102, is a suffix of φ(a) or φ(b) or φ(c) or φ(d), such that uv = xφ(z)�
is an abelian square and z ends with the letter a by construction (and by definition of k′

j+1). Note
that z is abelian square-free as φ(z) is a factor of w . By Lemma 4.1 or Lemma 4.2, we get that the
original word w contains an abelian square, which is a contradiction.

Now, let us assume that v has a hole at any position other than the last one. Then v contains at
least one e. Note that v cannot contain more than one e, since otherwise, as ‖ J2‖ � 1, there exists
j such that k′

j−1 < i + l + 1 < k′
j � i + 2l + 1 < k′

j+1 � i + 2l + 106, and a contradiction is reached as
above. If the � in v corresponds to an e in u, then cancelling them as well as all other e’s in uv gives
us a factor of the original w , which is abelian square-free. So the � in v corresponds to a letter in u
that is not e, and we have |u|e = |v|e = 1. Here u = eu′ or u = aeu′ for some u′ ∈ A∗ , and v = v ′�ev ′′
for some v ′, v ′′ ∈ A∗ . So there exist z0, z1, y ∈ A∗ , with y a prefix of φ(a) or φ(b) or φ(c) or φ(d),
such that uv = eφ(z0)�eφ(z1)y or uv = aeφ(z0)�eφ(z1)y. Using Remark 3.3, we obtain an abelian
square of the form eφ(z)y�e or aeφ(z)y�e, where z = z0z1. After cancelling the two e’s, this is also
impossible by Lemmas 4.1 and 4.2 and our hypothesis that w is abelian square-free. Note that z0z1 f
is a factor of w with f the letter such that y is a prefix of φ( f ) and to get a contradiction with
Lemma 4.1 or 4.2, z0z1 f must be abelian square-free which can be deduced from the fact that w is
abelian square-free.
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Secondly, we prove that the last position of u cannot be a hole. Assume the last position of u
is a hole. Then the first position of v is an e. The partial word v cannot contain more than one e,
since otherwise, there exists j such that i + l + 1 = k′

j � i + 2l + 1 < k′
j+1 � i + 2l + 106 and again we

reach a contradiction. If no e occurs in u, then the � in u and the e in v cancel each other, giving
us a factor of the original word w , which is abelian square-free. So |u|e = |v|e = 1. This implies that
uv = eφ(z0)�eφ(z1)y or uv = aeφ(z0)�eφ(z1)y for some z0, z1, y ∈ A∗ , with y a prefix of φ(a) or
φ(b) or φ(c) or φ(d). After cancelling the e’s, setting z = z0z1, and using Remark 3.3, we get abelian
squares of the form �φ(z)y or �aφ(z)y. Thus, it is easy to connect previously presented arguments
with Lemmas 4.1 and 4.2, and again a contradiction is reached with the fact that the original word w
is abelian square-free.

Thirdly, we prove that u cannot have a hole. We only need to consider the case when a position
in u, other than the last one, is a hole. Let k′

j denote the position of the e in u immediately following
the �. Since u contains a � and an e, v contains at least one e. If |v|e = |u|e + 1, then the � and
the e’s in uv can be cancelled giving us a factor of w , which is abelian square-free. Thus |v|e = |u|e .
If k′

j+1 � i + l, then |u|e � 5 and we get a contradiction since both |uv|� � 1 and |v|e � 4 hold. Thus,
k′

j+1 > i + l.
First, assume that ‖ J1‖ = 3. In this case, |u|e � 6 and we reach a contradiction as before.
Now, assume that ‖ J1‖ = 2. Here, i � k′

j−1 < k′
j � i + l < k′

j+1. Since |v|e � 4, u contains one, two,
or three of the e’s from a suffix of the factor X ′ ending at position k′

j−1. Let us denote this suffix
by X ′

u .
Suppose that k′

j+1 > i + 2l + 1. Then v contains two or three of the e’s from a prefix of the
factor X ′ ending at position k′

j+1. Let us denote this prefix by X ′
v . So uv = X ′

uφ(z0)�eφ(z1)X ′
v , where

z0, z1 ∈ A∗ . After using Remark 3.3 and cancelling the e’s in uv , we are left with an abelian square
of the form �xφ(z)y, where z = z0z1 is abelian square-free, x is a suffix of φ(a), and y is a prefix of
φ(a). We reach a contradiction with Lemma 4.2. Next, suppose that k′

j+1 � i + 2l + 1.
First, assume that X ′

u contains one e, that is, X ′
u = ae or X ′

u = e. There are three possibilities:
|u|e = |v|e = 2 or |u|e = |v|e = 3 or |u|e = |v|e = 4. The first possibility contradicts the fact that k′

j+1,
being in v , gives rise to four e’s. For the second possibility, u has one of the e’s from the factor
X ′ ending at k′

j+1 while v contains the other three e’s. Here, i + l < k′
j+1 < i + l + 106. After using

Remark 3.3 and cancelling the e’s from u and v , we obtain an abelian square of the form �aφ(z)y
or �φ(z)y, where y is a prefix of φ(a) or φ(b) or φ(c) or φ(d), and z is abelian square-free. Using
Lemmas 4.1 and 4.2, we reach a contradiction. For the third possibility, u contains the first two e’s of
the factor X ′ ending at k′

j+1 while v contains the other two e’s. In addition, v contains the first two
e’s of the factor corresponding to k′

j+2 (note that k′
j+2 > i + 2l + 1). Here the abelian squares we get

are of the form �aφ(z)y or �φ(z)y, where y is a prefix of φ(a). Lemma 4.2 yields a contradiction.
Now, assume that X ′

u contains two e’s, that is, 3 � |X ′
u| � 103. So |u|e = |v|e = 3 or |u|e = |v|e = 4.

The first possibility is easily eliminated since the factor X ′ ending at k′
j+1 has four e’s. As to the

second possibility, u contains the first e of the factor X ′ ending at k′
j+1 while v contains the other

three e’s. In addition, v contains the first e of the factor X ′ ending at k′
j+2 (note that k′

j+2 > i +2l+1).
Again using Remark 3.3 and cancelling the e’s from uv , we obtain an abelian square of the form
�xφ(z) or �xφ(z)a, where x is a suffix of φ(a) with 1 � |x| � 101. A contradiction follows with the
help of Lemma 4.2.

Next, assume that X ′
u contains three e’s, that is, X ′

u = aeb Xceae or X ′
u = eb Xceae. It must be the

case that v contains four e’s. Thus, after the cancellation of the e’s in uv and suitable permutations,
we obtain an abelian square of the form �φ(z)y or �xφ(z)y, where x is the suffix of length 101 of
φ(a), y is a proper prefix of φ(a) or φ(b) or φ(c) or φ(d), and z is not an abelian square. For the first
form, a contradiction follows using Lemmas 4.1 and 4.2, while for the second form, a contradiction is
reached using Lemma 4.3.

Finally, assume that ‖ J1‖ = 1. Here, i < k′
j � i + l < k′

j+1. Let us first consider the case where
k′

j+1 > i + 2l + 1. The situations where |u|e = |v|e = 3 or |u|e = |v|e = 4 are clearly impossible. The
situation where |u|e = |v|e = 2 is also impossible as this would imply that v = aeb Xcea or v = aeb Xce
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or v = eb Xcea or v = eb Xce, while there must be at least two blocks of length 102 between k′
j , which

lies in u, and k′
j+1 ∈ {i + 2l + 2, i + 2l + 3}, which lies outside uv . The situation where |u|e = |v|e = 1

is possible in case the e in v is from the factor X ′ ending at k′
j+1. Here, uv = xφ(z0)�eφ(z1)e or

uv = xφ(z0)�eφ(z1)ea for some x, z0, z1 ∈ A∗ such that x is a suffix of φ(a) or φ(b) or φ(c) or φ(d).
Cancelling the e’s in uv , using Remark 3.3, and setting z = z0z1 lead to �xφ(z) or �xφ(z)a being an
abelian square. In either case we get a contradiction with Lemma 4.1 or Lemma 4.2.

Let us now consider the case where k′
j+1 � i +2l+1 < k′

j+2. The situations where |u|e = |v|e = 1 or
|u|e = |v|e = 2 are impossible since the factor X ′ ending at k′

j+1, call it X ′
uv , gives rise to four e’s. On

the other hand, the situation where |u|e = |v|e = 3 is possible in case the first two e’s from X ′
uv are in

u while the other two are in v , and an additional e comes from the factor X ′ ending at k′
j+2. In this

case, after cancelling the four e’s in X ′
uv , we obtain an abelian square of the form xφ(z0)�eφ(z1)e or

xφ(z0)�eφ(z1)ea for some x, z0, z1 ∈ A∗ such that x is a suffix of φ(a) or φ(b) or φ(c) or φ(d). Using
Remark 3.3 and setting z = z0z1, either �exφ(z)e or �exφ(z)ea is an abelian square. After cancelling
the e’s, in either case we get a contradiction with Lemma 4.1 or Lemma 4.2. The situation where
|u|e = |v|e = 4 is possible in case the first three e’s from X ′

uv are in u while the other one is in v , and
three additional e’s come from the factor X ′ ending at k′

j+2. In this case, after cancelling the e’s in uv
and using Remark 3.3, we get an abelian square of the form �xφ(z) or �xφ(z)y, where x is a suffix
of φ(a) or φ(b) or φ(c) or φ(d), y is a prefix of φ(a) of length 101, and z ∈ A∗ is abelian square-free.
This yields a contradiction with Lemmas 4.1, 4.2, or Lemma 4.3.

Hence all symbols in uv correspond to letters in A ∪ {e}. By Remark 3.1, since w ′ contains an
abelian square, w must also contain an abelian square, a contradiction. �
5. Number of avoiding partial words

In this section, we investigate the number of abelian square-free partial words. This number has
been studied in [8] and [20] for full words over an alphabet of size four.

Theorem 5.1. Let cn denote the number of partial words over a four-letter alphabet of length n with one
hole, of the form �w, that avoid abelian squares. Then there exist N > 0 and β > 1 such that for all n > N,
cn � β−51βn.

Proof. Keränen in [20] provides an abelian square-free substitution σ109: A∗ → A∗ , where A =
{a,b, c,d} as follows (for convenience, we just denote σ109 by σ ). The 12 image words of σ(a) have
the form v16 v4 v27 v3 v59 or

abcacdcbcdcadcdbv4badacdadbdcdbdabdbcbabcbdcbv3

bdcdadcdbcbabcbdcbcacdcacbadabcbdcbcadbabcbabdbcdbdadbdcbca

with 12 distinct pairs (v4, v3) from {abcd,abdc,adbc,dabc} × {acd,adc, cad}. The subscripts of the
factors v16, v4, v27, v3 and v59 indicate their lengths. Here, σ(b) = p(σ (a)), σ(c) = p(σ (b)), and
σ(d) = p(σ (c)), where p(a) = b, p(b) = c, p(c) = d, and p(d) = a. The Parikh vectors are P (x1) =
〈21,31,29,28〉, P (x2) = 〈28,21,31,29〉, P (x3) = 〈29,28,21,31〉, and P (x4) = 〈31,29,28,21〉, where
x1 ∈ σ(a), x2 ∈ σ(b), x3 ∈ σ(c), and x4 ∈ σ(d).

Let w be a prefix of length n − 1 of some word in σω(a). We show that �w is an abelian square-
free partial word. Suppose �w contains an abelian square, so the square has to contain the hole. Using
the same method as in Theorem 3.4, let it be uv = �σ(w0)σ (e)σ (w1)x, where e ∈ A, w0, w1, x ∈ A∗ ,
�σ(w0) is a prefix of u, u is a proper prefix of �σ(w0e), and |x| < 109. Recall that |u| = |v|. Reduce
w0 and w1 so that they do not share any common letter. Since |w1| � |w0| for the equality |u| = |v|
to hold, we only need to check the case when 0 � |w0| − |w1| < 2. Building the system of equations
for the number of occurrences of each letter as we did before, we only need to check partial words
of the form �σ(e)x and �σ( f )σ (e)x, where f 	= e ∈ A. Using a computer program, we have checked
both types and they are not abelian squares.
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Keränen in [20] establishes the number of abelian square-free words of sufficiently long length n
over a four-letter alphabet as being greater than β−50βn with β = (12)1/m ≈ 1.02306, where m = 109,
so the growth rate of the number of abelian square-free partial words with one hole of the form �w
of length n over a four-letter alphabet can be derived. Let n − 51 = qm + r, 0 � r < m. Note that
|v16 v4 v27 v3| = 50, and we do not count �. There are at least

(12)q+1 = (
βm)q+1 = βqm+m = βn−51−r+m = βn−51β−r+m > β−51βn

abelian square-free partial words of the desired form. �
Theorem 5.2. Consider h > 0. Let cn,h denote the number of partial words over a five-letter alphabet of length
n with h holes that avoid abelian squares. Then there exist N > 0, r > 1 and β > 0 such that for all n > N,
cn,h � βrn.

Proof. Let w = φω(a), which is an infinite abelian square-free full word over A = {a,b, c,d}. Re-
ferring to the construction in the proof of Theorem 4.4, we can introduce �’s and e’s into w in
such a way that the resulting partial word is abelian square-free. Here, we use the construction of
Theorem 4.4, except that we limit the number of holes. More specifically, let k0 be the smallest in-
teger so that w[k0 − 101..k0] = φ(a), and in general k j the smallest integer so that k j > 5k j−1 and
w[k j − 101..k j] = φ(a). Then we construct w ′ as follows. If 0 � j < 5h, j ≡ 0 mod 5, then intro-
duce �e between positions k j and k j + 1 of w . If 0 � j < 5h, j 	≡ 0 mod 5, then replace the block
w[k j − 101..k j] = φ(a) = ab Xca with eaeb Xceae. Repeating the proof of Theorem 4.4, it follows that
w ′ avoids abelian squares, and moreover, w ′ has h holes (note that referring to the proof of Theo-
rem 4.4, the assumed abelian square uv will still have only one hole in this new slightly modified
construction, and so the arguments will not be affected).

Let δ be the largest integer so that w ′(δ) = �, and let M be the largest integer so that w ′(M) = e.
Then consider N = 2M , and n > N . It is easy to see that if f (m) = �m

N � + m, then f (m + 1) − f (m) ∈
{1,2} for all m. Consequently, there exists an integer m so that either �m

N �+m = n or �m
N �+m−1 = n.

Note that in either case nN
N+1 � m � (n+2)N

N+1 .
Consider the case �m

N � + m = n, the other case being similar. Then let v be the prefix of w ′ of
length m (in the other case, v would be of length m − 1). We can construct a partial word v ′ from
v by introducing an e right before v(iN) or right after v(iN), for each i where 1 � i � �m

N �. Note

that since we have two choices for each i, there are 2� m
N � = 2n−m � 2n− (n+2)N

N+1 possible v ′ that can be
constructed. Furthermore, |v ′| = �m

N � + m = n.
We want to show that v ′ avoids abelian squares. In order to see this, begin by assuming that

u0u1 = v ′[l..l + l′)v ′[l + l′..l + 2l′) is an abelian square in v ′ . Then note that l + 2l′ � N , since otherwise
u0u1 is a subword of v , which is impossible since v avoids abelian squares. This implies that l + l′ �
l+2l′

2 � N
2 = M . However, we know that if v ′(i) = � then i � δ < M , so u1 does not contain any holes.

On the other hand, since φω(a) is abelian square-free, it follows that u0u1 contains at least one hole,
and, thus, u0 contains at least one hole.

Since l + l′ � M and M is the largest integer so that w ′(M) = e, u1 = v ′[l + l′..l + 2l′) does not
contain any e’s other than those inserted before or after v(iN) for each i, 1 � i � �m

N �, to construct v ′
from v = w ′[0..m), except possibly the e at position M in case l + l′ = M (when l = 0). As mentioned
before, every hole that occurs in v ′ has index less than or equal to δ. Since u0 contains a hole, this
implies that l � δ < M � l + l′ . It follows that u0 contains the partial word v ′[δ..M) as a factor, so
u0 contains the e’s of that factor (at least 16 e’s). Moreover, u0 contains at most one e less than u1
coming from the e’s inserted before or after the v(iN)’s (half of these are in the first part and half
are in the second part, or there is a difference of one e when l = 0). Hence, |u0|e � |u1|e + 14. On the
other hand, |u0|e � |u1|e since u1 does not contain any holes and u0u1 is an abelian square. This is a
contradiction, so v ′ is abelian square-free.

Therefore, each v ′ has length n, avoids abelian squares, and contains h holes. Moreover there are at

least 2n− (n+2)N
N+1 such v ′ . So setting β = 2− 2N

N+1 and r = 2
1

N+1 , it follows that cn,h � βrn , which concludes
the proof. �
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6. The finite case

Finite abelian square-free words are difficult to characterize and to build without the aid of a
computer. This is due to the fact that they have very little structure. However, there are a few special
constructions, such as Zimin words, that have been investigated. In this section, we show that the
replacement of letters with holes in these words result in partial words that are not abelian square-
free.

Zimin words were introduced in [33] in the context of blocking sets. Due to their construction,
Zimin words are not only abelian square-free, but also maximal abelian square-free in the sense that
any addition of letters, from the alphabet they are defined on, to their left or right introduces an
abelian square.

Definition 6.1. (See [33].) Let {a0, . . . ,ak−1} be a k-letter alphabet. The Zimin words zi are defined by
z0 = a0, and zi = zi−1ai zi−1 for 1 � i < k.

Note that |zi | = 2i+1 − 1 and P (zi) = 〈2i,2i−1, . . . ,2,1〉 for all i = 0, . . . ,k − 1.

Proposition 6.2. Let {a0, . . . ,ak−1} be a k-letter alphabet. For i with 1 < i < k, the replacement of any letter
in zi with a hole yields a word with an abelian square.

Proof. The replacement of any letter in an odd position yields an abelian square factor com-
patible with abab for some letters a,b. For an even position, the factor is of one of the forms
�bacab,ab�cab,bac�ba,bacab�. �

In [10], Cummings and Mays introduced a modified construction, which they named a one-sided
Zimin construction. The resulting words are much shorter than Zimin words.

Definition 6.3. (See [10].) Let {a0, . . . ,ak−1} be a k-letter alphabet. Left Zimin words yi are defined
recursively as follows: y0 = a0 and, for 1 � i � k − 1, yi = yi−1ai z� i−1

2 � , where z� i−1
2 � is a Zimin word

over {a0,a2, . . . ,ai−1} whenever i is odd and {a1,a3, . . . ,ai−1} whenever i is even. Right Zimin words
can be defined similarly.

For example, y4 = abacbdacaebdb and y5 = abacbdacaebdbf acaeaca.
Note that left and right Zimin words are symmetric, and both one-sided constructions have Parikh

vector P (yi) = 〈2� i+1
2 �,2� i

2 �, . . . ,4,2,2,1〉. Furthermore, yi is a left maximal abelian square-free word
over the alphabet {a0,a1, . . . ,ai}, for each i = 0, . . . ,k − 1 [10].

Proposition 6.4. Let {a0, . . . ,ak−1} be a k-letter alphabet. For each i with 6 � i < k, the replacement of any
letter in yi with a hole results in a word containing an abelian square.

Proof. We prove the result by induction on k. For k = 7, we find by exhaustive search that no hole
can replace any letter of y6 without creating an abelian square. Assuming that the result is true for
y6, . . . , yk−1, consider yk = yk−1akz� k−1

2 � , where z� k−1
2 � is a Zimin word. By Proposition 6.2, it is not

possible to place holes in z� k−1
2 � while remaining abelian square-free. Replacing ak with a hole yields

�z� k−1
2 � , which is an abelian square since z� k−1

2 � is a maximal abelian square-free word. And by the

inductive hypothesis, no hole can replace a letter in yk−1 without the resulting word having abelian
square factors. �

In [21], Korn gives a construction that provides shorter maximal abelian square-free words. The
words’ construction is very different from the variations on Zimin words.
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Definition 6.5. (See [21].) Let {a0, . . . ,ak−1} be a k-letter alphabet, where k � 4. The words vi
are defined recursively by v0 = a2a1, and vi = vi−1ai+2ai+1 for 1 � i � k − 3. Then wk−1 =
a0ua1ua0 vk−3a0uak−1ua0, where u = a2 · · ·ak−2.

For example, w4 = acdbcdacbdcedacdecda, where u = cd and vk−3 = v2 = cbdced. Consider the
prefix aubua = acdbcda of w4 as well as the factor aubuav2[0..4] = acdbcdacbdce. We have that
aubu(0) = acdbc has an extra occurrence of c compared to u(1)av2[0..2] = dacbd, while the latter
has an extra occurrence of d compared to the former. If for instance the d from the first u is replaced
by �, this yields an abelian square, with the � corresponding to e in the suffix of v2[0..4] = cbdce.
The same statement holds when considering the second u. These observations lead to the following
proposition.

Proposition 6.6. Let A = {a0, . . . ,ak−1} be a k-letter alphabet, where k � 4, and wk−1 ∈ A∗ be constructed
according to Definition 6.5. The replacement of any letter in wk−1 with a hole results in a word containing an
abelian square.

Proof. Note that every letter in vk−3, with the exception of a1 and ak−1, occurs exactly twice. More-
over, if a hole replaces any letter in vk−3, at a position other than the first or the last one, then we
get a factor of either the form alal−1�al or al�al+1al for some l. Note that both these partial words
represent abelian squares. Thus it is impossible to replace letters with holes in vk−3[1..|vk−3| − 1) of
wk−1 while keeping abelian square-freeness. Replacing the first (last) letter of vk−3 with a hole yields
the abelian square a0ua1ua0� (�a0uak−1ua0).

Consider now the subword a0ua1ua0 of wk−1 (the proof is similar for the subword a0uak−1ua0).
Clearly, replacing a0 or a1 with a hole yields an abelian square. Note that the equality 2|u| + 2 =
|vk−3| holds. When a hole replaces the letter at position j in any of the u’s, consider the factor
a0ua1ua0 vk−3[0..2 j + 2] = a0ua1ua0 vk−3[0..2 j]a j+1a j+3. Since u[0.. j) = a2 · · ·a j+1 and vk−3[0..2 j] =
a2a1a3a2 · · ·a j−2a ja j−1a j+1a ja j+2, we have that a0u[0.. j)u[ j..|u|)a1u[0.. j) has an extra occurrence of
a j+1 compared to u[ j..|u|)a0 vk−3[0..2 j], while the latter has an extra occurrence of a j+2 compared
to the former. If u( j) = a j+2 from the first u is replaced by a �, this yields an abelian square, with
the � corresponding to a j+3 in the suffix of vk−3[0..2 j + 2] (same statement holds when considering
the second u). �
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