54 research outputs found

    Abduction and Dialogical Proof in Argumentation and Logic Programming

    Full text link
    We develop a model of abduction in abstract argumentation, where changes to an argumentation framework act as hypotheses to explain the support of an observation. We present dialogical proof theories for the main decision problems (i.e., finding hypothe- ses that explain skeptical/credulous support) and we show that our model can be instantiated on the basis of abductive logic programs.Comment: Appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    The stable-abducible argumentation semantics

    Get PDF
    We look at a general way of inducing semantics in argumentation theory by means of a mapping defined on the family of 2-valued models of a normal program, which is constructed in terms of the argumentation framework. In this way we define a new argumentation semantics called stable abducible which lies in between the stable and the preferred semantics. The relevance of this new semantics is that it is nonempty for any argumentation framework, and coincides with the stable argumentation semantics whenever this is non-empty. We study some of the properties of this semant.Peer ReviewedPostprint (published version

    Every normal logic program has a 2-valued semantics: theory, extensions, applications, implementations

    Get PDF
    Trabalho apresentado no âmbito do Doutoramento em Informática, como requisito parcial para obtenção do grau de Doutor em InformáticaAfter a very brief introduction to the general subject of Knowledge Representation and Reasoning with Logic Programs we analyse the syntactic structure of a logic program and how it can influence the semantics. We outline the important properties of a 2-valued semantics for Normal Logic Programs, proceed to define the new Minimal Hypotheses semantics with those properties and explore how it can be used to benefit some knowledge representation and reasoning mechanisms. The main original contributions of this work, whose connections will be detailed in the sequel, are: • The Layering for generic graphs which we then apply to NLPs yielding the Rule Layering and Atom Layering — a generalization of the stratification notion; • The Full shifting transformation of Disjunctive Logic Programs into (highly nonstratified)NLPs; • The Layer Support — a generalization of the classical notion of support; • The Brave Relevance and Brave Cautious Monotony properties of a 2-valued semantics; • The notions of Relevant Partial Knowledge Answer to a Query and Locally Consistent Relevant Partial Knowledge Answer to a Query; • The Layer-Decomposable Semantics family — the family of semantics that reflect the above mentioned Layerings; • The Approved Models argumentation approach to semantics; • The Minimal Hypotheses 2-valued semantics for NLP — a member of the Layer-Decomposable Semantics family rooted on a minimization of positive hypotheses assumption approach; • The definition and implementation of the Answer Completion mechanism in XSB Prolog — an essential component to ensure XSB’s WAM full compliance with the Well-Founded Semantics; • The definition of the Inspection Points mechanism for Abductive Logic Programs;• An implementation of the Inspection Points workings within the Abdual system [21] We recommend reading the chapters in this thesis in the sequence they appear. However, if the reader is not interested in all the subjects, or is more keen on some topics rather than others, we provide alternative reading paths as shown below. 1-2-3-4-5-6-7-8-9-12 Definition of the Layer-Decomposable Semantics family and the Minimal Hypotheses semantics (1 and 2 are optional) 3-6-7-8-10-11-12 All main contributions – assumes the reader is familiarized with logic programming topics 3-4-5-10-11-12 Focus on abductive reasoning and applications.FCT-MCTES (Fundação para a Ciência e Tecnologia do Ministério da Ciência,Tecnologia e Ensino Superior)- (no. SFRH/BD/28761/2006

    Three-valued completion for abductive logic programs

    Get PDF

    Three-valued completion for abductive logic programs

    Get PDF
    AbstractIn this paper, we propose a three-valued completion semantics for abductive logic programs, which solves some problems associated with the Console et al. two-valued completion semantics. The semantics is a generalization of Kunen's completion semantics for general logic programs, which is known to correspond very well to a class of effective proof procedures for general logic programs. Secondly, we propose a proof procedure for abductive logic programs, which is a generalization of a proof procedure for general logic programs based on constructive negation. This proof procedure is sound and complete with respect to the proposed semantics. By generalizing a number of results on general logic programs to the class of abductive logic programs, we present further evidence for the idea that limited forms of abduction can be added quite naturally to general logic programs

    Machine ethics via logic programming

    Get PDF
    Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.Fundação para a Ciência e a Tecnologia (FCT)-grant SFRH/BD/72795/2010 ; CENTRIA and DI/FCT/UNL for the supplementary fundin

    An Argumentation-Based Reasoner to Assist Digital Investigation and Attribution of Cyber-Attacks

    Full text link
    We expect an increase in the frequency and severity of cyber-attacks that comes along with the need for efficient security countermeasures. The process of attributing a cyber-attack helps to construct efficient and targeted mitigating and preventive security measures. In this work, we propose an argumentation-based reasoner (ABR) as a proof-of-concept tool that can help a forensics analyst during the analysis of forensic evidence and the attribution process. Given the evidence collected from a cyber-attack, our reasoner can assist the analyst during the investigation process, by helping him/her to analyze the evidence and identify who performed the attack. Furthermore, it suggests to the analyst where to focus further analyses by giving hints of the missing evidence or new investigation paths to follow. ABR is the first automatic reasoner that can combine both technical and social evidence in the analysis of a cyber-attack, and that can also cope with incomplete and conflicting information. To illustrate how ABR can assist in the analysis and attribution of cyber-attacks we have used examples of cyber-attacks and their analyses as reported in publicly available reports and online literature. We do not mean to either agree or disagree with the analyses presented therein or reach attribution conclusions
    • …
    corecore