
EISEVIER

Theoretical
Computer Science

Theoretical Computer Science 165 (1996) 171-200

Three-valued completion for abductive logic programs

Frank Teusink

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

In this paper, we propose a three-valued completion semantics for abductive logic programs,
which solves some problems associated with the Console et al. two-valued completion semantics.
The semantics is a generalization of Kunen’s completion semantics for general logic programs,
which is known to correspond very well to a class of effective proof procedures for general
logic programs. Secondly, we propose a proof procedure for abductive logic programs, which is
a generalization of a proof procedure for general logic programs based on constructive negation.

This proof procedure is sound and complete with respect to the proposed semantics. By gener-
alizing a number of results on general logic programs to the class of abductive logic programs,
we present farther evidence for the idea that limited forms of abduction can be added quite
naturally to general logic programs.

1. Introduction

Abduction is a form of inference where one, given some rules and an observation,

tries to find an explanation of that observation using these rules. For instance, given a

rule

shoes-are-wet + it-is-raining

the observation shoes-are-wet would be explained by it_is_raining. As such, abduction

is quite the reverse of deduction, where facts and rules are used to derive conclusions.

In the above example, from the fact shoes-are-wet one cannot derive anything. But from

the fact it-is-raining one can derive shoes-are-wet. One can find abduction in many

fields within the realm of artificial intelligence and knowledge engineering, including

diagnosis, planning, computer vision, natural language understanding default reasoning,

and knowledge assimilation.

Abductive logic programming (first proposed in [14]) is a crossover between logic

programming and abduction. The idea is to represent the rules as a logic program

and the observation as a query. Then, abduction is used to infer an explanation

* E-mail: !knkt@cwi.nl.

0304-3975/96/$15.00 @ 1996- Elsevier Science B.V. All rights reserved
SSDZO304-3975(96)00044-S

172 F Teusinkl Theoretical Computer Science 165 (1996) 171-200

using program and query. The best-known semantics for abductive logic programs

are those based upon (generalized) stable models [12,22, 181 and argumentation se-

mantics [12,19]. Proof procedures for these semantics were proposed by Eshghi and

Kowalski [14] and extended by Satoh and Iwayama [22] and Kakas and Mancar-

ella [18]. In [Sj, Console, Dupre and Torasso propose a different kind of semantics,

based on the two-valued completion of a program. The aim of their paper was to inves-

tigate the relation between abduction and deduction. In [7], Denecker and DeSchreye

propose a proof procedure for such a two-valued completion semantics, which is based

on SLDNF-resolution. For a thorough overview on abductive logic programming and

their semantics, we refer to the excellent survey by Kakas, Kowalski and Toni [171.

In logic programming, completion semantics was developed as a semantics for de-

scribing what can be computed using SLDNF-resolution. By giving a completion se-

mantics for abductive logic programming, Console et al. showed that abduction is

closely related to deduction. Denecker and DeSchreye added to this by proposing

SLDNFA-resolution, a proof procedure for abductive logic programming based on

SLDNF-resolution. However, a disadvantage of the two-valued completion approach

is, that it is not defined for arbitrary programs: for many interesting programs there do

not exist two-valued models of their completion. In general logic programming, it has

been shown that three-valued semantics are better suited to characterize proof proce-

dures based on SLD-resolution than two-valued semantics. In [16], Fitting proposes a

three-valued immediate consequence operator, on which he bases a semantics (Fitting
semantics). Basically, it states that a formula is true in a program iff it is true in all

three-valued Herbrand models of the completion of that program. In [20], Kunen pro-

poses an alternative to this semantics (Kunen semantics), in which a formula is true in

a program iff it is true in all three-valued models of the completion of that program.

In this paper, we generalize Fitting semantics and Kunen semantics to abductive

logic programs. In the process, we also propose a three-valued immediate consequence

operator, and truth- and falseness formulas as presented by Shepherdson in [23], for ab-

ductive logic programs. With this, we provide abduction with a semantics which gives

a good characterization of the answers that can be actually computed by effective proof

procedures. This in contrast with semantics based on well-founded semantics, whose

proof procedures involve expensive loop checking, and those based on stable model se-

mantics, which become intractable as soon as function symbols are used. Such complex

semantics are interesting from the point of view of knowledge representation, and are

definitely of use in specific problem domains, but are not viable candidate semantics

for general purpose (abductive) logic programming systems. This in contrast to Kunen

semantics, which is commonly used in the verification of general logic programs. By

providing a Kunen semantics for abductive logic programs, we present further evidence

for the idea that limited forms of abduction can be added quite naturally to general

logic programs.

The obtained results are also interesting within the context of modular logic program-
ming, where one reasons with predicates which are (partially) undefined, or defined

in other modules, and of constraint logic programming, where some of the predicates

F. Teusinkl Theoretical Computer Science 165 (1996) 171-200 173

represent constraints that are to be handled by a constraint solver. In each of these

cases there is a distinction between the ‘logic programming part’ of the program and

some other part, which is either abducible, handled by an other (unknown) logic pro-

gram, or handled by a constraint solver. In these contexts, it is interesting to see if we

can find a semantics of the logic programming part, which is parametric with respect

to the ‘abducible’, ‘open’ or ‘constraint’ part.

Moreover, we present an alternative proof procedure, based upon SLDFA-resolution:

a proof procedure proposed by Drabent [l 11. This proof procedure solves some prob-

lems associated with SLDNFA-resolution. First of all, by using constructive negation

instead of negation as failure, we remove the problem ofjloundering. Secondly, instead

of skolemizing non-ground queries, which introduces some technical problems, we use

equality in our language, which allows a natural treatment of non-ground queries.

The paper is organized in three more or less separate parts. In the first part, we

give an introduction to abductive logic programming (Section 3) and present two- and

three-valued completion semantics (Section 4). Then, in the second part, which starts

with Section 5, we present the immediate consequence operator (Section 6), and use

it to characterize Fitting semantics (Section 7) and Kunen semantics (Section 8) for

abductive logic programs. In the third part, we generalize SLDFA-resolution to the case

of abductive logic programs (Section 9), and present some soundness and completeness

results on SLDFA-resolution in Section 10.

2. Preliminaries and notation

In this paper, we use k, 1, m and n to denote natural numbers, f, g and h to denote

functions (constants are treated as 0-ary functions), x, y and z to denote variables, s, t

and u to denote terms, p, q and r to denote predicate symbols, A, B and C to denote

atoms, L, A4 and N to denote literals, G, H and I to denote goals, 0, 6, 0, r and p to

denote abducible formulas (they will be defined later) and 4 and II/ to denote formulas.

In general, we use underlining to denote finite sequences of objects. Thus, L denotes a

sequence L1, . . . , L, of literals and s denotes a sequence st , . . . , s, of terms. Moreover, in

formulas we identify the comma with conjunction. Thus, L_ (also) denotes a conjunction

LlA. . . AL,. Finally, for two sequences st , . . . ,sk and tt, . . . , tk of terms, we use (s = t)

to denote the formula (st = tt) A . . . A (Sk = tk).

In the remainder of this section, we introduce some basic notions concerning algebras

and models. For a more thorough treatment of these notions, we refer to [9]. To begin

with, an algebra (or pre-interpretation, as it is called in [21]), is the part of a model

that interprets the terms of the language.

Definition 1. Let _Y be a language and let % be the set of function symbols in 2. An

Y-algebra is a complex J = (0, f, . . .)~QT where D is a non-empty set, the domain
(or universe) of J, and for every n-ary function symbol f E %, f is an n-ary function

f : D” -+ D.

174 i? Teusinkl Theoretical Computer Science 165 (1996) 171-200

Note, that constant symbols are treated as 0-ary functions. Interpretation of terms of

2’ in a P-algebra J is defined as usual.

We now define the notion of two- and three-valued models.

Definition 2. Let 2 be a language. Let ,P’ be the set of function symbols in .Y and

let %’ be the set of predicate symbols in 2’. A two-valued _Y-model is a complex A4 =

(0, f,. . . r,. . .) fEF,rf9 where PXf,...j_i~ is an T-algebra, for every n-ary predicate

symbol Y E B, r is a subset of z)“, and equality (if present) is inte~reted as identity.

Definition 3. Let _!2 be a language. Let F be the set of function symbols in 3 and let

W be the set of predicate symbols in 2’. A three-valued S-model is a complex M =
(D,f ,... r ,...) fE~,rEg where (D,f,. . .ffE,~ is an F-algebra, for every n-ary predicate

symbol Y E W, r is an n-ary function r : P -+ {t: f, _L}, and equality (if present) is

interpreted as two-valued identity.

Following [9], we treat equality as a special predicate with a fixed (two-valued)

interpretation.

For two-valued models, the inte~retatio~ of (complex) formulas is defined as usual.

For three-valued models, the interpretation of (complex) formulas is defined by the

use of Kleene’s truth-tables for three-valued logic. We use k to denote ordinary two-

valued logical consequences, while ks is used for three-valued logical consequences

(T +s (b iff Q, is true in all three-valued models of T).

In this paper, we always use equality in the context of Clark’s Equality Theory

(CET), which consists of the following Free ~~~a~~ty Axioms:

(i) f(x~,...,~) = f(yi ,...rYn)-+(Xl =Yl)A...A(x,=Y,)(~~),

(ii) J’(xl,. . . ,x,) # g(yl,. . . , y,) (‘v’ distinct f and g),

(iii) .X # t (for all x and t where x is a proper sub-term of t).

Note, that the fixed interpretation of equality replaces the usual equality axioms, which

are normally part of CET.
One important algebra is the Herbrund Algebra HA. It is the algebra that has the set

of all closed terms as domain, and maps each closed term on ‘itself. Given an algebra

J, a J-model is a model with algebra J. For instance, the set of all HA-models is the

set of all Herbrand models. A CET-algebra is an algebra that satisfies CET. Note that

every (XT-algebra extends HA.

For a formula 4, FreeVar (#) denotes the set of free variables in (p. A sentence is

a closed formula (i.e. Free Var (4) is empty). A ground formula is a quantifier-free

sentence. A ground instance of a formula 4 is a formula (p’ such that I$’ is the result

of substituting all variables in 4 (free and local ones) by ground terms. When working

with some language 2’ and models over some domain D, it will sometimes be useful

to work with the domain elements of D as if they were constants. This can be done

using the following definitions. Given a language 2 and a domain D, the D-language
.5?0 is obtained by extending 2 with a fresh constant for every domain element in D.
When working in some language 2 and referring to D-sentences or D-formulas, we

E Teusinkl Theoretical Computer Science 165 (1996) 171-200 175

intend sentences or formulas in the language 2~. We can extend an g-algebra J to

an Yo-algebra Jb by interpreting each new constant in _Yo ‘as itself, and extend a

J-model M to a Jo-model MO by replacing the algebra J by the algebra Jn. Given

a domain D, a language 9’ and a formula 4, a D-ground instance of C$ is a ground

instance of C$ in the language 9~. Given an algebra J with domain D, we sometimes

refer to D-ground formulas as J-ground formulas.

Lemma 4. Let J be an algebra with domain D and let M be a J-model. Let 4 be a
quantifier-free formula. Then, M k c$ trfor all J-ground instances 4’ of 4Mb b 4’.

In the following, given a model M with domain D and a D-ground formula 4, we

write M k 4 whenever we intend Mb k 4.
In the remainder of this paper, we will not always specify the language. When no

language is given, we assume a fixed ‘universal’ language 9*, which has a (count-

ably) infinite number of constant and function symbols of all arities. The advantage

of using such a universal language is, among others, that for that language CET is

complete.

3. Abductive logic programming

Abduction is the process of generating an explanation E, given a theory T and an

observation Y. More formally, E is an explanation for an abductive problem (T, Y),

if T U E is consistent, !P is a consequence of T U E, and E satisfies ‘some properties

that make it interesting’.

In this paper, we limit ourselves to the context of abductive logic programs, in which

T is an abductive logic program, Y is a formula and E is an abducible formula.
An abductive logic program P is a triple (XZ’P, BP, &), where

_ LZZ~ is a set of abducible predicates,
- 92~ is finite set of clauses A + g,L, where A is a non-abducible atom, 6’ is an

abducible formula and & is a sequence of non-abducible literals, and
- & is a finite set of first-order integrity constraints.

An abducible formula (w.r.t. to a program P) is a first-order formula build out of

the equality predicate ‘=’ and the abducible predicates. An abducible formula 6 is said

to be (in)consistent, if CET U (6) is (in)consistent.

Example 5. Here is an example abductive logic program ~~~~~~~~

- 4JTwrety = Cpenguin, ostrich}

flies(x) +- bird(x) A lab(x)

- 3PTW,Y =

1

ah(x) + penguin(x)
ah(x) c ostrich(x)
bird(tweety). I

- 9Pkiy = 0.

176 I? Teusinkl Theoretical Computer Science 165 (1996) 171-200

In the remainder of this paper, no integrity constraints are used, i.e. 9~ is always
empty. Integrity constraints are used to restrict the explanations for a given observation
to a smaller class of ‘legal’ explanations. As such, they can be seen completely separate
from the ‘program part’ of the abductive logic program, which specifies the explanations
for a given observation. In this paper, we want to concentrate on the ‘program part’
of abductive logic programs. That is, we want to give a semantics for it, and develop
a proof procedure for it. Also, on a more practical level, a reason is that the proof
procedure we propose has no way of dealing with integrity constraints in full generality.
One should note however, that there exist techniques that, under certain conditions,
can translate integrity constrains to some set 4Bp of program rules with head False
(a propositional variable). Instead of testing whether a candidate explanation 6 of a
problem (P,#) satisfies the integrity constraints, one can find an explanation of the
problem (P’, 5, A YFalse), where P’ is the program {J&P, $9~ U 998?~, S}.

If we compare our definition of abductive logic programs with the definitions given
in [17], the main difference is, that we add equality to our abducible formulas. Of
course, equality is not abducible, in the sense that one can assume two terms to be
equal, in order to explain an observation; we use equality in context of CET, which is
complete when a universal language is used. However, when one thinks of the class
of abducible formulas as the class of formulas that can be used to explain a given
observation, it makes perfect sense to include equality. Note that also Eshghi in [131
uses a kind of equality in its abducible formulas. However, it is a restricted notion of
equality, consisting of only the identity and transitivity axioms, and inequality between

distinct skolem constants.

4. Completion semantics for abductive logic programs

In [4], Clark introduces the notion of completion of a general logic program, and
proposes the (two-valued) completion semantics for general logic programs. The central
notion in the definition of the completion of a program, is the notion of the compieted
dejbzition of a predicate.

Definition 6. Let P be a program and let p be a predicate symbol in the language
of P. Let n be the arity of p and let xl,..., X, be a sequence of fresh variables.

Let p(st) + @I& . . . ~(2,) c &,A,, be the clauses in P with head p, and let,
for i E [l..m], yj = FreeVar(@j,Li) - FreeVur(p&)). The completed definition of p
(w.r.t. P) is the formula

P(X) z V gjJ ((X_ = Si)? Bi,Li).
iE[l..rn] -I

Intuitively, the completed definition of a predicate states that ‘p is true @ there
exists a rule for p whose body is true’.

The completion (camp(P)) of a general logic program consists of the completed
definitions of its predicates, plus CET to interpret equality correctly. In the (two-valued)

E Teusinkl Theoretical Computer Science 165 (1996) 171-200 117

completion semantics for general logic programs, a formula is true in a program iff it

is true in all (two-valued) models of the completion of that program.

In [5], Console et al. propose a two-valued completion semantics for abductive logic

programs. The idea is, that the completion of an abductive logic program only contains

completed definitions of non-abducible predicates. As a result, the theory camp(P)
contains no information on the abducible predicates (i.e. the abducible predicates can

be freely interpreted).

Definition 7. Let P be an abductive logic program. The completion of P (denoted by

camp(P)) is the theory that consists of CET and, for every non-abducible predicate p

in P, the completed definition of p.

Example 8. Given the program PT,,,~~~~ of Example 5, the completed program camp

(P Tweety) consists of the following formulas

pies(x) 25 bird(x) A wb(x)

ah(x) 2 penguin(x) V ostrich(x)

bird(tweety) 2 t.

plus CET.

Using this notion of completion for abductive logic programs, Console et al. give

an object level characterization of the explanation of an abductive problem (P, 4).
Intuitively, it is the formula (unique up to logical equivalence) that represents all

possible ways of explaining the observation in that abductive problem. Before we can

give its definition, we have to introduce the notion of most specijic abducible formula.

Dehition 9. For abducible formulas 8 and a, 8 is more specijic than a if CET k
8 -+ a. 8 is most specijk if there does not exist a a (different from 8, modulo logical

equivalence) such that a is more specific than 8.

We now give the definition of explanation, as proposed by Console et al. (i.e. the

object level characterization of Definition 2 in [5]). As we want to reserve the term

‘explanation’ for an alternative notion of explanation we define later on, we use the

term ‘full explanation’ here.

Definition 10. Let (P, 4) be an abductive problem. Let 6 be an abducible formula.

Then, 6 is the full explanation of (P, $), if 6 is the most specific abducible formula

such that camp(P) U (4) k 6, and camp(P) U (6) is consistent.

Note, that in this definition 4 and 6 switched positions with respect to the ordinary

characterization of abduction, The advantage of this definition is, that for a given

abductive problem, the full explanation is unique (up to logical equivalence).

178 F. Teusinkl Theoretical Computer Science 165 (1996) 171-200

Example 11. Consider the program PT++,~~?~ and observation $ies(tweety). The full
explanation for this observation is ~e~g~~~(~~ee~y) V o.~~~~c~(~~ee~~). With this sim-
ple program, this can be easily checked by using the equivalence formulas in

co~J@%KJeety):

-$ies(tweety) Z -l(bird(tweety) A -ab(tweety))

2+ -ibird(t~eety) V ab(tweety))

N -4 Vpenguin(tweety) V ostrich(tweety)

2 penguin(tweety) V ostrich(tweety).

In their paper, Console et al. restrict their abductive logic programs to the class of
hierarchical programs. As a reason for this, they argue that ‘it is useless to explain
a fact in terms of itself. Practical reasons for this restriction seem to be twofold: it
ensures consistency of camp(P), and soundness and completeness of their ‘abstract’
proof procedure ADDUCE. Although we agree that, as is the case with general logic
programs, a large class of naturally arising programs will turn out to be hier~chi~al,
we do not want to restrict ourselves to hierarchical programs. Moreover, the problem
of checking whether a given program is hierarchical is not always easy (see [l] for
some techniques). Thus, instead of restricting ourselves to hierarchical programs, in
the definition of full explanation, we added the condition that corn&P) U (6) has to
be consistent.

We now define an alternative notion of ‘explanation’. This second definition is more
in line with the normal characterization of abduction. However, it is also weaker, in
the sense that there can exist more than one explanation for a given abductive problem.

Definition 12. Let {P,4) b e an abductive problem. An abducible formula 6 is an

expZanatju~ for (P, 4), if comp{P) U {S} b # and camp(P) U (6) is consistent.

Example 13. Consider again program Prweery and observation 1 jIies(tweety). Then,
penguin(tweety) is an explanation, and so is ostrich(tweety).

Note, that in both 6 and &, the free variables are implicitly ~iversally quantized.
Thus, there is no ‘communication’ between free variables in 6 and (6. As a result, the
observation pies(x) does not stand for the generic ‘given a hypothetical individual x,
what can you tell me (about x) when I observe that n flies’. Instead, it just states that
you observe that ‘all n fly’.

The following lemma shows that the full explanation of a given abductive problem
is less specific than any explanation for that abductive problem.

Lemma 14. Let (P,+) b e an abductive problem such that 4 is ground, let 6 be the fill

explanation of (P,(p), and let 19 be an explanation for (P,4). Then, CET + @ -+ 6.

F. Teusink I Theoretical Computer Science 165 (1996) 171-200 179

Proof. 6 is the full explanation of (P, c#J), and therefore camp(P) U (4) /= 6, which

implies camp(P) + 4 + 6. Moreover, 0 is an explanation for (P, 4), and therefore

camp(P) U (0) + 4, which implies camp(P) /= 0 ---$ 4. But then, it follows that

camp(P) /= 0 + 6. But tI -+ 6 is an abducible formula and therefore CET + 0 + 6.

Thus, the difference between the two kinds of explanations is, that the full ex-

planation incorporates all possible ways of explaining a given observation, while an

(ordinary) explanation is a formula that is just sufficient to explain that given obser-

vation.

In the above, we used two-valued completion as a semantics. In general logic pro-

gramming, there also exists a three-valued completion semantics. In this semantics,

the third truth-value models the fact that effective proof procedures cannot determine

truth or falsity for all formulas. Thus, the third truth-value (I) stands for ‘truth-value

undetermined’. In the following example, we show how this third truth-value can be

useful.

Example 15. Let us construct the program ~~~~~~~~ by adding to ~~~~~~~ the seemingly

irrelevant clause

P + ‘P.

The completion cOmp(PTWe&) has no two-valued models. As a result, the observa-
tion +ies(tweety) has no (two-valued) explanations. This problem can be solved by

assigning to p the third truth-value I, i.e. by switching to a three-valued logic.

In Section 5, we will characterize Fitting semantics and Kunen semantics for ab-

ductive logic programs, using a three-valued immediate consequence operator. In the

remainder of this section, we present them semantics using a model-theoretic ap-

proach.

Fitting semantics and Kunen semantics are based the same notion of completion as

used in the two-valued case, but use it in the setting of three-valued models. In this

three-valued setting, special care must be taken to interpret the equivalence operator,

used in the completed definition of a predicate, correctly. Intuitively, this equivalence

should enforce that the left-hand side and the right-hand side of the completed definition

have the same truth-value. However, Kleene’s three-valued equivalence (-) stands for

something like ‘the truth-values of left- and right-hand sides are equal and neither

one is unknown’. Therefore, instead of H, another notion of equivalence (S) is used,

which has the required truth-table (see Fig. 1). The operator E cannot be constructed

using Kleene’s operators, and therefore has to be introduced separately. Its use is be

restricted: it will only be used in the completed definition of a predicate. Note, that c)

and g are equivalent when restricted to the truth-values t and f.
Using a model-theoretic approach, Fitting semantics and Kunen semantics can be

stated very succinctly.

180 F. Teusinkl Theoretical Computer Science 165 (1996) 171-200

zt f_L

t t f f

:t

fftf

.L f f t

Fig. 1. Kleene equivalence and strong equivalence

Definition 16. Let (P, 4) b e an abductive problem. A consistent abducible formula 6

is a three-valued explanation for (P, 4) (in Fitting semantics), if 4 is true in all

three-valued Herbrand models of camp(P) U (6).

Definition 17. Let (P, 4) b e an abductive problem. A consistent abducible formula 6

is a three-valued explanation for (P, 4) (in K unen semantics), if comp(P)U (6) +j 4.

Note, that in these definitions only consistency of 6 (with respect to CET) is re-

quired. The reason is, that in three-valued completion the completed definitions of the

program-rules are always consistent. In the following, when we refer to a three-valued

explanation, we refer to an explanation in Kunen semantics.

From these definitions, it is easy to see that any Kunen explanation is also a Fitting

explanation. The converse, however, does not hold. To get an idea of the difference,

consider the following example, involving the universal query problem in (abductive)

logic programming.

Example 18. Let P be the program:

(p(a) +- 4,{41,0).

Let 4 be the formula VXp(x). Now, consider the abductive problem (P, 4). In Fitting

semantics (over the language _Yp), q is an explanation for this problem. The reason

is, that in Herbrand models, domain elements are isomorphic to terms of the language.

On the other hand, if we allow arbitrary (three-valued) models, we can choose richer

models. For instance, consider the model M with domain {a, b}, in which a is mapped

onto itself, in which q and p(a) are true, but p(b) is false. Clearly, M is a model of

camp(P) U {q}. However, 4 is not true in M, and therefore q is not an explanation

for I$.

There is a large difference in the handling of inconsistencies between two- and three-

valued completion. In the following example, we show how inconsistencies ‘disappear’

in three-valued completion semantics.

Example 19. Consider the abductive logic program P, with a single abducible predicate

a, and the following two clauses:

p+Tp,a

q + a.

F Teusinkl Theoretical Computer Science 165 (1996) 171-200 181

Then, comp(P)U {u} is obviously inconsistent in two-valued completion, because when

a is true, the completed definition of p reduces to p E up. Thus, among others, a

is not an explanation for (P,q). However, by assigning I to p, we can construct

three-valued models of camp(P), and therefore a is a three-valued explanation for

P?4.

Thus, the choice between two-valued and three-valued logic. With a three-valued

logic, explanations can be inconsistent with respect to some parts of the program. In

our opinion, the choice of semantics depends on your view on abductive logic pro-

grams, and the relation between abducible and non-abducible predicates. If one assumes

that a program, i.e. the definition of the non-abducible predicates, can contain implicit

information on the abducible predicates, in the form of potential inconsistencies, one

should use two-valued completion. On the other hand, if one thinks of abducible pred-

icates as completely undefined (apart from integrity constraints), or thinks that only

integrity constraints should be used for constraining the abducible predicates, one can

use three-valued completion, because then inconsistencies are the result of flaws in

the program. But even if one thinks that the two-valued semantics is the proper one,

Kunen’s three-valued semantics remains interesting, because it describes the explana-

tions that can actually be computed using a SLD-like proof procedure. One would,

however, have to prune those explanations that are inconsistent with respect to the

program.

5. Three-valued completion semantics

In Definition 17 of the previous section, we generalized Kunen semantics to abductive

logic programs. The definition as given there is, however, very succinct. For one thing,

it does not express the intention behind both Fitting and Kunen semantics. That is, that

the third truth-value stands for something like ‘truth-value not determined’.

In [16], Fitting proposes the use of three-valued semantics for general logic pro-

grams, using the third truth-value (I) to represent the fact that for some formulas, the

truth-value cannot be determined. For this purpose, Fitting introduced a three-valued

immediate consequence operator Qip, to characterize the meaning of a general logic pro-

gram. He proves that the fixpoints of this operator are three-valued Herbrand models of

the completed program. He takes the least fixpoint of this operator as the meaning of

a general logic program (Fitting semantics). However, as Fitting points out, in general

this semantics is highly non-constructive: the closure ordinal for the least fixpoint can

be as high as WI, the first non-recursive ordinal.

In [20], Kunen proposes a semantics in which the iteration of Fitting’s immediate

consequence operator is cut-off at ordinal w. Moreover, he proves that a sentence 4 is

true in his semantics iff C$ is true in all three-valued models of camp(P).

In the following sections, we define an immediate consequence operator for abductive

logic programs, and use it to characterize Fitting semantics and Kunen semantics for

182 F Teusinkl Theoretical Computer Science 165 (1996) 171-200

abductive logic programs. In the process, we also generalize Shepherdson’s truth- and

falseness formulas (see [23]).

6. The immediate consequence operator

Let us now define an three-valued immediate consequence operator for abductive

logic programs. For general logic programs, the immediate consequence operator @p

operates on models, and @p(M) denotes the one-step consequences of M, given a

program P. If we would use this operator on an abductive logic program, this operator

would generate all observations that need no explanation (i.e. are explained by the

formula t). We however, want to build an operator that generates all observation 4 that

are explained by some observation 6. Therefore, we define an operator @p,6, such that

@~,a(&) denotes the one-step consequences of +4!, given an abductive logic program

P and an explanation 6. So, we compute immediate consequences in P, under the

assumption that 6 holds. One problem is, that for an arbitrary abducible formula 6, 6

cannot be characterized by a single model. For instance, if 6 is of the form p(a) V

p(b), it has two minimal models. Therefore, @p,s will operate on sets of models.

In [16,20], @p operates on Herbrand models. We however follow Doets [9], and

define the operators on arbitrary J-models, given an algebra J. If we add a ’ to the

operators, they operate on J-models. Without a ‘, they operate on Herbrand models

(i.e. HA is our ‘default’ algebra).

Thus, the operator @~,a operates on sets of models. To facilitate its definition and

various proofs, we define the operator @p,d in two steps. First, we define an operator

@p,d, which operates on models. Then, in the second step, we define @p,~ in terms of

@p,d. In @p,d, a model A models the abducible predicates of P. The idea is that, because

A is a model instead of an abducible formula, the set of immediate consequences of a

model A4 in P under assumption A can be characterized by a single model. Because we

want A to model the abducible predicates only, we first have to introduce the notion

of abducible models.

Definition 20. Let P be a program. A model M is an abducible model (w.r.t. P), if

all non-abducible atoms in P are mapped to -L in M.

Example 21. Given the program PT,+,~+ Let us define the Herbrand model MT,,,~~~~ as

follows:

- penguin(tweety) is t in MT,,,~~~~,
_ all other ground abducible atoms are f in MT,,,~~+,, and
- all ground non-abducible atoms are I in MT~~~~,,.

Then ~~~~~~~ is an abduclble model (w.r.t. PT,,,~~~~).

Now, the definition of @p,d is a straightforward generalization of the operator @p

for general logic programs. For non-abducible atoms, the definition stays the same.

F. Teusinkl Theoretical Computer Science 165 (1996) 171-200 183

However, for an abducible atom A, A is t (resp. f) in @P&V) iff it is t (resp. f)
in A.

Definition 22. Let P be a program. Let J be an algebra and let A be a abducible

J-model. The three-valued immediate consequence operator @$,A is defined as fol-

lows:
_ @&&WA)=tiff Ai=3AV

~tB,L_EJ-ground(P):A~=38AM~3L

_ <d,,(M)(A) = f iff A kj 1AV

IfA c e,L E J - ground(P) : A b3 4 V A4 br3 7L.

The powers of @P,A are defined as follows:

@,ATa= kA@An-1)

(

ifa=O

if u is a successor ordinal

u;<,&l r B if c1 is a limit ordinal.

Note that this definition is not standard for CI = 0. We could define tip,* t 0 to be

the empty set, but at the cost of having a special treatment of the base case in some

of the lemmas.

Example 23. Given the program PT,,,~~~~ and abducible model kfTwe&y, we can observe

that:
_ penguin(tweety) is t in #!:wee,y,MTwee,y t 0, therefore
_ ab(tweefy) becomes t in @:weary,MTwee,v t 1, and therefore

- jCes(tweety) becomes f in ~~~~~~~~~~~~~~~ 7 2.

Now, we can define @~,s. We will not define @p,s(A) for arbitrary sets of models

A. Instead, we only define @~,a 7 a, for arbitrary ordinals CI.

Definition 24. Let P be a program and let 6 be a consistent abducible formula. Let J

be an algebra and let A’ be the set of abducible J-models of (6). Then,

Q/P,J~={@iJ+-V.

In [23], Shepherdson defines the notion of truth- and falseness formulas. These for-

mulas give an elegant alternative characterization of what is computed by the im-

mediate consequence operator. We generalize these formulas to abductive logic

programs.

Definition 25. Let P be a program. For a natural number n and a formula 4, we define

the formulas T,(4) and F,(4) as follows:
_ If 4 is an abducible formula, then for all n

T,(4) 5 f#I, F,(4) z -4.

184 I? Teusink! Theoretical Computer Science 165 (1996) 171-200

_ If 4 is an atom of the form p(s), where p is a non-abducible predicate, then

camp(P) contains a definition p(g) 2 II/, where Free Ifurs = x_. We define

- If C$ is a complex formula, we define

Example 26. Given the program ~~~~~~~~ we have that

T2(-jZes(tweety)) = F2(Jlies(tweety))

= F1 (bird(tweety) A xb(tweety))

= Fl(bird(tweety)) A Fl(lab(tweety))

=Fl(t) A T,(ab(tweety))

= f A T~(penguin(tweety) V ostrich(tweety))

= penguin(tweety) v ostrich(tweety).

The following lemma is a generalization of Lemma 4.1 in [23] to abductive logic

programs.

Lemma 27. Let P be a program. Let J be an algebra with domain D, let A be an
abducible J-model and let 4 be a D-sentence. Then, for all natural numbers n,

0) @;,d ?‘ n k3 4 !f A k3 T,(4),

Proof. We prove the lemma by induction on n and formula induction on 4.

F. Teusinkl Theoretical Computer Science I65 (1996) 171-200 185

Suppose C$ is an abducible formula. Then T,(4) = 4 and F,(4) = -4. So, we

only have to prove that &P,d 1 n ks C$ iff A +3 4. This follows directly from the

construction of @P,p,d.

Suppose n = 0 and 4 is a non-abducible atom p(s). Then, by definition, p(s) is I

in HP d t 0 and Ta(p(s)) = &‘a(&)) = f. Therefore, the claims hold.

Assume that the lemma holds for all m < n. Suppose C$ is the atom p(s). Because

4 is a D-sentence, p(s) is J-ground. Because p is a non-abducible predicate, camp(P)

contains a definition p(x) ” $. Now,

A I=3 TnMs)) by definition of T&(s))

iffd k3 T,_l(&=~~$) by induction hypothesis

iff9/,,tn-1~3x_=~~$byconstructionof$

iff 3 p(s) +- L_ E J-ground(P) : &p,d t n - 1 k3 L_

by construction of@, d

The reasoning for F,(&))(a) is similar.

If 4 is of the form -$, Il/Aq, $Vv or $ + ye, the claim follows from the construction

of r,(4) and F,(4).
Suppose C$ is of the form 3x$. Then, cZ$~,~ 1 n k3 3x11/ iff, for some element a of the

domain of J, e,d t n b3 $(a). B ecause $(a) is a D-sentence, we have by induction

that @P,d 7 n k3 $(a) iff A +=3 T,,($(a)). Finally, we have that A +3 T,($(a)) iff

A k3 TnCW).

The other cases with quantifiers are similar. 0

Corollary 28. Let P be a program and let 6 be a consistent abducible formula. Let

J be an algebra with domain D and let C$ be a D-sentence. Then,

0) $,* T n k3 4 ifs J U (6) b==3 T,(4),
(ii> $,6 1 n i==3 -4 ifs J U (6) b=3 F,(4).

Proof. The proof follows immediately from the fact that J U (6) k3 4 iff 4 is true in

all abducible J-models of (6). 0

7. Fitting semantics for abductive logic programs

In this section, we use the three-valued consequence operator defined in the previous

section to generalize Fitting semantics to abductive logic programs.

Definition 29. Let (P, 4) b e an abductive problem. Let 6 be a consistent abducible

formula. Let &? be the least fixpoint of @P,s. HA Then, 6 is an explanation for (P, 4) in

the Fitting semantics, if &Z k3 4.

186 F Teusinkl Theoretical Computer Science 165 (1996) 171-200

With Fitting semantics for general logic programs, a formula is true in the Fitting
semantics iff it is true in all three-valued Herbrand models. The same holds for Fitting
semantics for abductive logic programs. In order to prove this, we first present two
lemmas. First of all, the following lemma shows that the fixpoints of a)~,,, are indeed
three-valued models of camp(P) U { 6).

Lemma 30. Let P be a program and let 6 be a consistent abducible formula. Let
J be an algebra, let A be an abducible J-model of (6) and let M be a J-model. rf
@i.d(M) = M then M +3 camp(P) U (6).

Proof. Suppose that @id(M) = M. The fact that M is a model of (6) follows trivially
from the definition of &jA. We have to prove that M k=;3 camp(P).

Let p(z) E $ be a formula in camp(P). Let p(a) be a J-ground atom. Then,

M I=3 t&z) by definition of $

iff 3 p(g) + L E J-ground(P) : M +j L_ by definition of @;,A

ifl @AM) I=3 Ad because @j,,(M) = A4

iff M i=3 ~(4

and

M i=3 -v&z> by definition of tj

iff ‘d p(a) + & E J-ground(P) : M j=s -4 by definition of @;,A

iff G&V /=3 ~~(a) because @i,A(M) = A4

iff M k==3 -p(a) 17

Corollary 31. Let P be a program and let 6 be a consistent abducible formula. Let
J be an algebra. If & is a fixpoint of CD;,&, then 4 ~~ camp(P) U (6).

In the second lemma, we prove the converse. For this, we need the following defi-
nition.

Definition 32. Let P be a program and let A4 be a model. The abducible projection
of A4 is the abducible model A such that
- A(A) = M(A), if A is an abducible atom, and
- A(A) = I, otherwise.

Lemma 33. Let P be a program and let 6 be an abducibb formula. Let J be an alge-
bra and let M be a J-model such that M +3 camp(P) U (6). Let A be the abducible
projection of M. Then, M is a jixpoint of @iSd.

Proof. Suppose that M b3 camp(P) U { 6).
We have to prove that cB$,~(M) = M.
_ If L is an abducible J-ground literal, A +s L iff M /=3 L, and therefore, by definition

of @&j, @;,&) I=3 L 8 M k3 L.

F. Teusinkl Theoretical Computer Science 165 (1996) 171-200 187

- If p(g) is a non-abducible J-ground atom, there exists a J-ground instance p(a) E rl/

of a formula in camp(P) such that

@&(W I=3 P(a) by definition of @i,d

iff 3 p(a) + L E J-ground(P) : A4 +3 L_ by definition of completion

iffM I=3 $ because M +=3 COW&P)

iff M F3 ~(a>

and

@!,d(W t=3 -Aa> by definition of @i,d

iff V p(g) + L E J-ground(P) : A4 k=3 T& by definition of completion

iff M +3 -$ because M k3 camp(P)

8 M k3 -p(a) q

Theorem 34. Let (P,4) b e an abductive problem. A consistent abducible formula 6
is an explanation for (P, 4) in the Fitting semantics 18 4 is true in all three-valued
Herbrand models of camp(P) U (6).

Proof. Let A be the least fixpoint of @g.

(+) This follows directly from Lemma 30: as a fixpoint of @$,d is a J-model, take

J to be HA, and we have that the fixpoints of @z are subsets of the set of Herbrand

models of camp(P) U (6).
(+) Let M’ be an arbitrary Herbrand model of camp(P) U {b}, and let A be its

abducible projection. By Lemma 33, M’ is a fixpoint of @E. Moreover, A is an

abducible HA-model of (6). As a result, for some fixpoint A’ of @$, M’ E A’.
Because & is the least fixpoint of @P,b, HA there exists a M E & such that Ml k.3 M.
But then, if 4 is true in ,kl/, it is true in M, and therefore in M’, which is what we

started with; an arbitrary Herbrand model of camp(P) U (6). 0

8. Kunen semantics for abductive logic programs

In this section, we propose a Kunen semantics for abductive logic programs. In [20],

Kunen proposes to cut off iteration of the immediate consequence operator at ordinal

o, instead of continuing until the least fixpoint is reached. Generalizing this idea to

abductive logic programming, we get the following semantics.

Definition 35. Let (P, 4) b e an abductive problem. Let 6 be a consistent abducible

formula. Then, 6 is an explanation for (P, 4) in the Kunen semantics if, for some

natural number n, @z T n b3 4.

Note, that this definition differs from Definition 17. The remainder of this sec-

tion is dedicated to proving that these two definitions give rise to the same se-

188 I? Teusinki Theoretical Computer Science 165 (1996) 171-200

mantics (Theorem 42). In his proof of Theorem 6.3 in [20], Kunen makes heavy

use of ultra-products. We base our proofs on an alternative proof given by Doets

in [9].

The larger part of the work is done in the proof of Theorem 36, which proves

one direction of the desired result for the operator @p,d. Basically, with this result

on @p,d, we have proven the result for @ p,b, for the case where 6 is a conjunction

of abducible literals (i.e. has a minimal model over any algebra). The remainder of

the proof of Theorem 42 is concerned with extending this result to the case where

6 is an arbitrary abducible sentence, and proving the other direction of the desired

result.

Theorem 36. Let P be a program and let 4 be a sentence. Let 6 be a consistent
abducible formula and let A be an abducible HA-model of {S}. Then, tf comp(P)U { 6)

~~ 4, for some natural number n, @p” r n +3 I#J.

The proof of this theorem closely resembles the proof of Corollary 8.37 in [9]. It is

organized as follows. In Lemma 37 we show that we can replace J with an elementary

extension of J. Then, in Lemma 39 we show that for certain elementary extensions J of

HA, cD~,~ is continuous. In Lemma 40 we show that for certain elementary extensions

J of HA, @J;,~ T w is a least fixpoint. From these lemmas, and from the fact that, by

properties 1 and 2 stated below (see [3]), we know these desired elementary extensions

of HA exist, we can prove Theorem 36.

Lemma 37. Let P be a program. Let J be an elementary extension of HA, let A
be an abducible HA-model and let A’ be an elementary J-extension of A. For every

sentence 4 and natural number It, @g r n ~~ 4 ifs @,d, T n +3 4.

Proof. By Lemma 27, @g r n k3 C#I iff A kj T,(4). Because A’ is an elementary

extension of A, and r,(4) is a sentence, A k3 T,(4) iff A’ /=3 T,,(4). Again, by

Lemma 27, A’ ~~ T,(4) iff @,4, T n kj 4. 0

For Lemmas 39 and 40, we need the following definitions and results from model

theory, concerning recursively saturated models.

Definition 38. Let Y = {II/’ 1 i E N} b e a sequence of formulas q in finitely many

free variables xi,. . . ,xk, yi,. . , y,,, and let A4 be a two-valued model. A4 is called Y-

saturated if, for every sequence al,. . . , a, of domain elements, either

- {$‘{yla] I i E N) is satisfiable in M, or

- there exist a natural number N such that {II/‘{x/a} 1 i < N} is not satis-

fiable in M. M is called saturated if it is Y-saturated for every sequence Y.

M is called recursively saturated if it is Y-saturated for every computable

sequence Y.

F. Teusinkl Theoretical Computer Science 165 (1996) 171-200 189

Property 1. Every countable model has a countable recursively saturated elementary

extension

Property 2. Let Y = {$i 1 i E N} be a sequence of sentences with free variable x. Let

M be a recursively saturated model and let A be the domain of M. Then,

Lemma 39. Let P be a program. Let J be a recursively saturated algebra with

domain D and let A be an abducible J-model. Let 4 be a D-sentence. If 4 is t (resp.

f) in @i,d T co, then, for some natural number n, 4 is t (resp. f) in @ipJd T n.

Proof. The proof is by induction on the complexity of 4. Only when I$ is of the form

Vylc/ or 3y$, the proof is non-trivial, and we can write 3y$ as 7Vy-$. Let A be the

domain of J.
Assume that ‘dyrj is t in @;.A t w. Then, for all a E A, $(a) is t in @;,A T o. By

induction hypothesis, for all a E A, there exists an n such that $(a) is t in @id T n.

But then, by Lemma 27, for all a E A, there exists an n such that Tn($)(a) is t in

A. Because J is recursively saturated, by Lemma 2 there exists an n such that for all

a E A T,($)(a) is t in A. But then, T,(Vy$) is t in A and therefore by Lemma 27,

Vy$ is t in @,d t 12.

Assume that Vy$ is f in cP,~ T w. Then, for some a E A, $(a) is f in @id t w. By

induction hypothesis, for some a E A, there exists an n such that $(a) is f in @;,A t n.

But then, Vylc/ is f in c#;,~ t n. 0

Lemma 40. Let P be a program. Let J be a recursively saturated CET-algebra and
let A be an abducible J-model. Then, Ifp(@$,,) = @i,,d T co.

Proof. We have to prove for an arbitrary J-ground atom A that, whenever
J @P,d T w + l(A) = t, then @;,A To(A)=t, and if @i,d To+l(A)=f, then

@& t w(A) = f.
For abducible atoms, the claims hold trivially, because then @$,A t a(A) = t (resp. f)

iff A k3 A (resp. A k~ 1A).

Suppose p(s) is a non-abducible J-ground atom.

- Suppose p(s) is t in @i,,d T w + 1. Then, there exists a J-ground instance p(s) t L_
of a clause in P such that @id

natural number n such that @L,

T o ks Ii. But then by Lemma 39, there exists a

, T n k~ L_, and therefore p(s) is t in @i,d T n + 1.

Thus, p(s) is t in @i,,d T w.

- Suppose p(s) is f in @$,d T o + 1. Let p(&) t L, . . . p&k) +- L& be the clauses in

P defining p. Then, for all i E [l..k], @i,d T o ks ~(2 = 4 A &). Because 1(x = ti

A L_i) is quantifier-free, it is equivalent to its universal closure. But for all i E [l..k],

V-Q = ii A Li) is a D-sentence (where D is the domain of J), and therefore by

Lemma 39 there exists an ni such that @id T n; bx V+ = & A &). Because k

190 F. Teusinkl Theoretical Computer Science 165 (1996) 171-200

is finite, there exists an n such that, for all i E [I..k], we have that $4 t n /=

-(g = ii A &). By construction of @id, we have that p(s) is f in @i,,d t i + 1 and

therefore, p(s) is f in @;,4 t w. 0

Before proving Theorem 36, we combine the preceding two lemmas in the following

corollary.

Corollary 41. Let P be a program and let 6 be a consistent abducible formula. Let
J be a recursively saturated CET-algebra and let A be an abducible J-model of (6).
Let 4 be a sentence. Zf camp(P) U (6) ~~ 4, then for some n @i,d 1 n k~ 4.

Proof. By Lemmas 30 and 40, @;,4 t o is a three-valued model of camp(P) u {6},
and therefore @id t o +a 4. Therefore, by Lemma 39 there exists a finite n such that

@$,4 t n t=3 4. ‘0

Proof of Theorem 36. Suppose that camp(P) U (6) +3 qb. By property 8, there exists

a recursively saturated elementary extension J of HA. Because J is an extension of

HA, it is a CET-algebra. Again, by property 8, there exists an elementary J-extension

d’ of A. By Corollary 14, there exists a finite n such that @,d, t n +3 4. Finally, by

Lemma 37, @gj t n +3 4. 0

Thus, for @p,d, we have proven the one direction of the desired result. In the fol-

lowing theorem, we prove that the desired correspondence holds for @p,g.

Theorem 42. Let P be a program and let 6 be a consistent abducible sentence. Let
4 be a sentence. Then, camp(P) U (6) +3 q5 ifs, for some finite n, @z 1 n +=3 4.

Before proving the theorem, we first need to prove two lemmas. The first one states

that, in some sense, the operator @~,a behaves ‘monotonically’ with respect to the

assumption 6.

Lemma 43. Let P be a program and let 6 and o be consistent abducible formulas. Let
J be an algebra. If J +3 6 4 o then, for all natural numbers n, @ig T n +3 @,= t n.

Proof. It suffices to prove that, for all natural numbers n, M E @iJg t n implies

M E @i,b t n.
Suppose that M E @i,,s 7 n. Then, for some abducible J-model A of {6},

M = @i,,d t n. But because J /=3 6 -+ o, A is also an abducible J-model of {g}. There-

fore, M E @{., r n. 0

Lemma 44. Let P be a program and let 6 be a consistent abducible formula. Let 4 be
a sentence and let J be a recursively saturated CET-algebra. Then, comp(P)U{G} +3
4 implies that, for some finite n, @,s t n +3 4.

E Teusinkl Theoretical Computer Science 165 (1996) 171-200 191

Proof. camp(P) U (6) k3 4 implies that camp(P) ~~ 6 + 4. Let c be an abducible

formula which is a tautology, and let A be the least abducible J-model of (T. By Corol-

lary 41, there exists a finite n such that @p” A t n be 6 -+ 4. Because A is the least

abducible J-model of {a}, we have that @s,c 1 n k3 6 + 4 iff @,d t n +=3 6 -+ 4.

Moreover, because J k~ 6 + 0, it follows by Lemma 43 that @j,s r n k.3 6 -+ 4. Fi-

nally, because we know that @$,g r n +3 6, it follows that @$,a t n +J 4. 0

Proof of Theorem 42. (G-) Suppose that camp(P) U (6) k.3 4. By property 8, there

exists a recursively saturated elementary extension J of HA. Because J is an extension

of HA, it is a (XT-algebra. By Lemma 44 there exists an n such that @i,a r n b=3 4.

Let A be an arbitrary abducible HA-model of (6). By property 8, there exists an

elementary J-extension A’ of A. Because A’ is an elementary extension of A, 6 is a

sentence and A +3 6, it follows that A’ +j 6. Therefore, it follows from @jj,6 t n k3 4

that @i,,, T n k=3 4. But then, by Lemma 37, @g r n +=3 4. Thus, for arbitrary Her-

brand models A of 6, we have that @g T n ~~ 4. But then, also @p” t n ~~ 4.

(+) The proof is by induction on n. For n = 0, we have that @E i 0 b=3 4 implies

that 4 is an abducible formula and that HA U (6) +=3 C#I. Because 6 and 4 are sentences

and every model of CET is an extension of a Herbrand model, CET U (6) ks 4 and

therefore camp(P) U (6) (=3 4.

Assume that the claim holds for all m < n. If p(s) is a non-abducible J-ground

atom, there exists a J-ground instance p(a) 2 $ of a formula in camp(P) such that

@i,,6 t n I=3 P(S) 8 c~w-VJ)U (6) k3 P(S).

@& T n I=3 As)

by definition of @i,s

iff 3 p(s) + L_ E J-ground(P) : cS~,~ t n - 1 k3 L

by induction hypothesis

then 3 p(g) + L_ E J-ground(P) : camp(P) U (6) b3 I,

by definition of completion

iff cog U (61 /=3 14s)

and

@,6 Tn I=3 -P(s)

by definition of @ig

iff V p(s) +- L_ E J-ground(P) : cIJ,~ r n - 1 k3 -,1,

induction hypothesis

then V p(s) + & E J-ground(P) : camp(P) U (6) b3 TL

definition of completion

ifl cog U (6) I=3 ~24s)

For complex sentences, the proof is by structural induction. 0

Thus, we have proven that Definitions 17 and 35 give rise to the same semantics.

In the following section, we present a proof procedure for this semantics.

192 F Teusinki Theoretical Computer Science I65 (1996) 171-200

9. Generalizing SLDFA-resolution

In [7], Denecker and DeSchreye propose a proof procedure which is sound with

respect to the two-valued completion semantics of [5]: SLDNFA-resolution (a proof

procedure for abductive logic programs based on SLDNF-resolution). The semantics

they use, is the two-valued completion semantics for abductive logic programs, pro-

posed by Console et al. in [5]. In this paper, we propose an alternative proof procedure,

which is based upon SLDFA-resolution; a proof procedure for general logic programs

proposed by Drabent [1 I]. This proof procedure solves some problems associated with

SLDNFA-resolution. First of all, by using constructive negation instead of negation

as failure, we remove the problem of Joundering. Secondly, instead of skolemizing

non-ground queries, which introduces some technical problems, we use equality in our

language, which allows a natural treatment of non-ground queries.

In the last few years, various forms of constructive negation have been proposed (see

for instance [2,24, 11, 10, 15]), to deal with the problem of Jounder@ in SLDNF-

resolution. [111, Drabent introduces SLDFA-resolution, a proof procedure for general

logic programs based on SLD-resolution and constructive negation, proves that it is

sound and complete with respect to Kunen’s three-valued completion semantics, and

sound with respect to two-valued completion semantics.

In this section we generalize SLDFA-resolution to abductive logic programs. The

main difference with the definition given in [l l] is that the answers we compute are

abducible formulas instead of constraints. As a result, most definitions in this section

are direct copies of definitions in [111. Only the definition of goal is slightly different.

The basic idea of using constructive negation in proof procedures for general logic

programming is, that computed answers to general goals are equality constraints, i.e.

first-order formulas build out of the equality predicate ‘=‘. This notion of computed

answer generalizes the notion of computed answer substitutions, because a substitu-

tion can be written as a conjunction of primitive equalities. Instead of using equality

constraints as computed answers, we use abducible formulas. If we only look at their

definition, we see that abducible formulas are a generalization of equality formulas.

However, there is a difference in the meaning of an abducible formula when it is used

as a computed answer. When using an equality constraint 6 as computed answers, one

requires it to be satisfiable in CET, i.e. CET + 38. However, when the computed

answer is an abducible formula, there is no theory with respect to whom one can re-

quire it to be satisfiable. The only requirement for such a computed answer is, that

it is consistent. Therefore, we require consistency instead of satisfiability. As our ab-

ducible formulas can contain equality predicates, we require our computed answers to

be consistent with respect to CET. This consistency requirement for abducible formulas

generalizes the satisfiability requirement for equality constraints, whenever a universal

language is used.

Lemma 45. Let 6 be an equality constraint. Then, 0 is satisJiable in CETy, lfl

CETzp, u (0) is consistent.

F. Teusinkl Theoretical Computer

Proof. The lemma follows directly from the

Science 165 (1996) 171-200 193

fact that CETyP, is a complete theory.

0

We will not concern ourselves with reducing abducible formulas to normal forms.

We simply assume the existence of normalization procedures that transform a given

abducible formula into a format that is intelligible to humans.

SLDFA-resolution is defined by two basic notions: SLDFA-refutations and (finitely
failed) SLDFA-trees. An SLDFA-refutation is a sequence of goals, ending in a goal

without non-abducible atoms, such that each goal in the sequence is obtained from the

previous goal by a positive or negative derivation step. A positive derivation step is

the usual one used in SLD-resolution, with the difference that the resolved atom has to

be a non-abducible atom. A negative derivation step is the replacement of a negative

non-abducible literal 1A in the goal by an abducible formula c such that + o,A is

guaranteed to fail finitely. A finitely failed SLDFA-tree for a goal G is a proof for

the fact that G fails finitely; it is an approximation that is ‘save’ with respect to finite

failure; if a finitely failed SLDFA-tree for G exists, it is guaranteed that G fails finitely,

but the fact that that there exists an SLDFA-tree for G that is not finitely failed, does

not imply that G is not finitely failed.

Before we can define SLDFA-resolution, we have to define the notion of a goal.

Definition 46. Let P be a program. A goal (w.r.t. P) is a formula of the form

-7(O A L1 A . . . A Lk), usually written as c 8, L1 , . . . , Lk, such that

- 0 is a consistent abducible formula, and
- Li (for i E [l..k]) is a non-abducible literal.

An s-goal is a goal in which one of the literals is marked as selected.

We begin the definition of SLDFA-resolution with the definition of positively derived

goals.

Definition 47. Let P be a program, let G be the s-goal t O,N_, p(t),M_ (with p(z)
selected) and let p(s) +-- o,L be a variant of a clause in P. A goal G’ is positively
derived from G using p(s) c o,L if
_ FreeVarG n FreeVarp(s) c a,L_ = 0 and
_ G’ is of the form +- 8, (t = s), o,N_,L,M_.

If G’ is positively derived from G using a variant of a clause R, we call R applicable

to G.

Note that the abducible formula in G’ is (by definition) consistent because G’ is

(by definition) a goal, and by definition the abducible formula in a goal is consis-

tent.

We now give the definitions of negatively derived goals, finitely failed goals, (jinitely
failed) SLDFA-trees, and SLDFA-refutations. These definitions are mutually recur-

sive. Therefore, we define them inductively, using the notion of rank.

194 F. Teusinkl Theoretical Computer Science 165 (1996) 171-200

Definition 48. Let P be a program and let G be the s-goal t 13,& vI,M_ (with 4

selected). Let the notion of rank k finitely failed goals be defined. A goal G’ is rank k
negatively derived from G if
_ G’isofthefotmtO,aNM ~_~-~
- c 8, o,A is a rank k finitely failed goal, and

- Free Var(a) C Free Var(A).
We call 8, o a (rank k) fair answer for +- &A.

Definition 49. Let P be a program and let G be a goal. Let the notion of rankk
finitely failed SLDFA-tree be defined. G is a rank k finitely failed goal if there exists

a rank k finitely failed SLDFA-tree for G.

Definition 50. Let P be a program and let G be a goal. Let the notion of rankk
SLDFA-refutation be defined. A rankk SLDFA-tree for G is a tree such that

(i) each node of the tree is an s-goal and the goal part of the root node is G,

(ii) the tree is finite,

(iii) if H : c 8,L,, A,& (with A selected) is a node in the tree then, for every

clause R in P applicable to H, there exists exactly one son of H that is positively

derived from H using a variant of R, and

(iv) if H : + e,&, -A,& (with -A selected) is a node in the tree, then it has sons

+ 01,L_,,L-_2 9 ... 2 + %?&,L2

provided there exist 61,. . . , 6, that are SLDFA-computed answers obtained by rank k
SLDFA-refutations of t &A, such that

CET k 8 + 6, v . . . v 6, v o1 v . . . v a,,,

If no node in an SLDFA-tree is of the form +- 8, then that tree is called finitely failed.

Definition 51. Let P be a program and let G be a goal. Let the notion of rank k - 1

negatively derived s-goal be defined. A rank k SLDFA-refutation of G is a sequence

of s-goals GO, Gi, . . . , G,, such that G is the goal part of Go, G, is of the form +- 8

and, for i E [l..n],
_ Gi is positively derived from Gi_i using a variant C of a clause in P such that

Free Var(C) n Free Var(Go,. . . , Gi_ i) = 0, or
_ Gi is rank k - 1 negatively derived from Gi_i .
The abducible formula 3yl3, where y = FreeVar(B) - FreeVar(G), is a SLDFA-
computed answer for G. -

To get some insight in the construction of SLDFA-refutations, let us conclude with

an example

Example 52. Consider program ~~~~~~~ and the observation -jIies(tweety). In Fig. 2

we show the SLDFA-refutation for this query in RI. Let us see how this refutation is

E Teusinkl Theoretical Computer Science 165 (1996) 171-200 195

Tl :

penguin(tweety)Jliea(tweety)

penguin\tweety) penguin(tweety),bitd(tweety),~eb(tweety)

l-
penguin(tweety),~ab(tweety)

penguin(iweety) A

l(penguin(tweely) V ostrich(tweety))

+enguin(tweety) V ostrich(tweety)),

&b(tweety)

. ..- ._.’ ._..
.

.I ‘....._

+enguin(tweety) G’oatrich(tweety)) A
-.._.

y(penguin(tweety) V oatrich(tweety)) A

penguin(tweety) oatfich(tweety)

Fig. 2. An SLDFA-refutation for $ies(tweety)

constructed. First of all, consider Tz which is a finitely failed SLDFA-tree for

c 7@enguin(tweefy) V ostrich(tweety)), ab(tweety)

The two dotted lines in the tree lead to two ‘goals’ which are not valid resolvents,

because their constraint part is inconsistent. Thus, the root of T2 is a finitely failed

goal. Secondly, we have T, is a finitely failed SLDFA-tree for

c penguin(tweety),JEies(tweety)

This tree is finitely failed, because applying the finite fail answer obtained by T2 in

a (negative) resolution step with lab(tweety) results in a ‘goal’ with an inconsistent

constraint (see the dotted line). Because, the finitely failed goal in T2 is most general,

it follows that the third goal in Tl has no resolvents. Thus, the root of Tl is a finitely

failed goal. This fact is used in the construction of the SLDFA-refutation RI.

10. Soundness and completeness of generalized SLDFA-resolution

In this section we present some soundness and completeness results on SLDFA-

resolution for abductive logic programs. We start by proving soundness with respect

to three-valued completion semantics for abductive logic programs.

196 F. Teusinki Theoretical Computer Science I65 (1996) 171-200

Theorem 53. Let P be a program and let G be the goal c i3,L,
(i) If 6 is an SLDFA-computed answer for G then camp(P) k3 6 --+ 0 n L.

(ii) If G ~n~teZy fails then camp(P) /==3 0 -+ -L,

The proof of this theorem closely resembles the proof of Theorem 4.2 in [l 11. The
differences between the two proofs are, that here we prove soundness with respect
to three-valued completion semantics, while Drabent’s proof proves soundness with
respect to two-valued completion, and that we work with abductive formulas instead
of constraints. We omitted the proof, because it is rather lengthy and technical. It can
be found in [25].

The following corollary proves soundness of SLDFA-resolution with respect to the
three-valued completion semantics for abductive logic programs, as stated in Defini-
tion 17.

Corollary 54 (Three-valued soundness). Let P be a program and let G be the goal
c 6,L. If 6 is an SLDFA-computed answer for G, then 6 is a three-valued explanation

for (P,t? A &).

Proof. Because 6 is an SLDFA-computed answer for G, by Theorem 53, camp(P) /=j
6 4 6 A L. Moreover, 6 has a 3-valued model, which implies that camp(P) U (6) is
consistent. But then, camp(P) U (6) k~ 0 A 4,. Thus, S is a three-valued explanation

for(P,O AL_). q

Now that we have proven soundness with respect to tree-valued completion seman-
tics, the following result is straightforward.

Theorem 55. Let P be a program and let G : + O,L_ be a goal.
(i) If’6 is an SLDFA-computed answer for G then camp(P) k S --+ 0 A L.

(ii) If G ~nitely fails then camp(P) /= 8 -+ -&.

Proof.
(i) Suppose that 6 is an SLDFA-computed answer for G. Then, by Theorem 53,

camp(P) +s 6 + 8 A L. But we know that every two-valued model for camp(P) is
also a three-valued model for camp(P), and therefore camp(P) k 6 -+ 8 A &

(ii) Suppose that G finitely fails. Then, by Theorem 53, camp(P) +s 8 -+ -&. But
every two-valued model for camp(P) is also a three-valued model for camp(P), and
therefore camp(P) + 0 --+ 4. 0

Using this theorem, we can prove the following soundness result with respect to
two-valued completion semantics.

Corollary 56 (Two-valued soundness). Let P be a program and let G be the goal
+- e,L_. If 6 is an SLDFA-computed answer for G and camp(P) U (6) is consistent,
then 6 is an explanation for (P,e A L.).

F. Teusinki Theoretical Computer Science 165 (1996) 171-200 197

Proof. Because 6 is an SLDFA-computed answer for G, by Theorem 55 camp(P) k

6 + 8 A L_. But then, because camp(P) U (6) IS consistent, we have that comp(P)U{~?}

+ 8 A L_. Thus, 6 is an explanation for (P, 8 A L). •i

We now turn prove completeness of the generalized SLDFA-resolution with respect to

three-valued completion semantics.

Theorem 57. Let P be a program and let G : t tl,L_ be a goal. Let 6 be an abducible

sentence. Then, for an arbitrary fair selection rule,
(i) if camp(P) U (6) ~~ 8 A L, then there exist computed answers 61,. , . ,6, for

G such that CET +J 6 -+ 61 V . . ’ V 6,, and

(ii) if camp(P) k3 8 + TL_ then G fails finitely.

As was the case with Theorem 53, the proof of this theorem is (almost) identical

to the proof of the corresponding theorem in [1 l] (Theorem 5.1). The only difference

is, that we use results from Section 5, where Drabent used results from [20]. We omit

the proof here, because it is rather lengthy and technical. It can be found in [25].

Corollary 58 (Three-valued completeness). Let P be a program, let G be the goal
c g,& and let 6 be an abducible sentence. If 6 is a three-valued explanation for

(P, 8 A L), then there exist SLDFA-computed answers 61,. . . ,& for G such that

CET t=3 6 + 6, V . ‘. V &.

Proof. By definition, 6 is a three-valued explanation for (P, 8 A L), iff comp(P)U{G}

k3 8 A L. But then, by Theorem 57, there exist SLDFA-computed answers 61,. . . , &

for + I$& such that CET ks 6 + 6, V . . . V 8k. c]

11. Conclusions

In this paper we generalize Kunen semantics and Fitting semantics to the setting of

abductive logic programming. This is, we think, the main contribution of this paper.

We think that, as is the case with logic programming, also with abductive logic pro-

gramming these semantics are of interest, especially when considering SLD-like proof

procedures, as an alternative to the more informative but also computationally more

expensive semantics like the argumentation semantics. Also, by providing these seman-

tics, we underline the fact that deduction and (limited forms of) abduction are closely

related.

Also, we show that it is not necessary to restrict explanations to ground formulas,

as is often done when presenting semantics or proof procedures for abductive logic

programs. However, by allowing variables in explanations, we have to take care with

free variables in observations and explanations. In our definition of explanation, we

chose to implicitly universally quantify the free variables in both observation and ex-

planation. By doing so, we do not allow any ‘communication’ between observation

198 E Teusinkl Theoretical Computer Science 165 (1996) 171-200

and explanation. As a result, we cannot handle situations where the observation and

explanation both are to be seen as ‘generic’ in some set of free variables, i.e. where,

given observation 4 and explanation 6, both with free variables x_, and a substitution

8 with domain {z}, it is understood that 68 is an explanation for 46. We could define

the notion of explanation differently, by having camp(P) + 6 + C$ in its definition,

instead of camp(P) b 6 4 4. With such a definition, there would be ‘communica-

tion’ between free variables in 6 and 4. Our reasons for not doing so are mostly of

a technical nature, concerning the definition of the immediate consequence operator.

We think that for this alternative notion of explanation, also a Kunen semantics can

be established, and that the proof procedure would also be sound with respect to this

alternative notion of explanation.

In the second part of this paper we present a generalization of Drabent’s SLDFA-

resolution, and use it as a proof procedure for abductive logic programming. We show

that the proof procedure is sound with respect to two-valued completion semantics

- provided the union of completed program and answer is consistent - and that it is

sound and complete with respect to three-valued completion semantics. There is quite a

difference between SLDFA-resolution for abductive logic programming, and Denecker

and De Schreye’s SLDNFA-resolution. For one thing, Denecker and De Schreye want

the explanations to be ground conjunctions of atoms. For this, they skolemize non-

ground goals, and use ‘skolemizing substitutions’ in the resolution steps. Instead, we

allow our explanations to be arbitrary non-ground abducible formulas. These differences

would make a close comparison between the two proof procedures a rather technical

exercise. However, we are quite confident that, for any answer given by SLDNFA-

resolution, there is an ‘equivalent’ SLDFA-computed answer. We expect this not to

hold the other way around, simply because our proof procedure is based on constructive

negation, while SLDNFA-resolution is based on negation as failure.

The great similarity between SLDFA-resolution and SLDNFA-resolution is that they

both use deduction, and both do not concern themselves with the consistency of the

obtained answers with respect to the completed program. As a result, they cannot

be compared with ordinary proof procedures for abductive logic programming, whose

main concern is consistency of the obtained answers. In this context, choice between

two- and three-valued completion semantics is an important one; if we use two-valued

completion semantics, in addition to SLDFA-resolution we do need a procedure to

check whether the obtained SLDFA-computed answer is consistent with respect to the

completed program. We think that this will mean a considerable increase in computation

costs. On the other hand, if we use three-valued completion semantics, the need for this

consistency check disappears. However, one can argue that this is a ‘fake’ solution;

in some sense we just disregard inconsistencies, by weakening the notion of a model.

In our opinion, the choice of semantics depends on your view on abductive logic

programs, and the relation between abducible and non-abducible predicates. A second

reason why it is interesting to look at proof procedures for abductive logic programming

that do not check for consistency, is the case where you can guarantee that the union

of computed answer and completed program is consistent. An example of this is the

F. Teusinkl Theoretical Computer Science 16.5 (1996) 171-200 199

translation proposed by Denecker and De Schreye in [8]. The abductive logic programs
resulting from this translation are acyclic (Proposition 3.1), which implies that the union
of their completion with a consistent abducible formula is consistent (a corollary of
Proposition C.2 in [6]). There might be more of these examples, and it might be
interesting to define classes of programs for which this property holds (among others,
the above conjecture on acyclic programs should be proven).

Acknowledgements

This paper was supported by a grant from SION, a department of NWO, the Nether-
lands Organization for Scientific Research. I would like to thank Krzysztof Apt for his
support, and Kees Doets for his help on three-valued completion semantics. Also, I am
grateful to the referees, for some valuable comments. I especially would like to thank
the referee who persisted in his opinion that his version of Example 18 was better than
mine, until I saw his point.

References

[I] K.R. Apt and M. Bezem, Acyclic programs, New Generation Comput. 9 (1991) 335-363.
[2] D. Chan, Constructive negation based on the completed database, in: Proc. Znternat. Conf on Logic

Programming MIT Press, Cambridge, 1988). 11 l-125.
[3] C.C. Chang and H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics,

Vol. 73 (Noah-Holland, Amster~m, 3973).
[4f K.L. Clark, Negation as failure, in: H. Gallaire and G. Minker, eds., Logic and Dafa Ruses (Plenum

Press, Oxford, 1978). 293-322.
[5] L. Console, D.T. Dupre and P. Torasso, On the relationship between abduction and deduction, J. Logic

Comput. l(l991) 661690.
[6] M. Denecker, Knowledge representation and reasoning in incomplete logic programming, Ph.D Thesis,

Katholieke Universiteit Leuven, Leuven, Belgium, September 1993.
[7] M. Denecker and D. De S&eye, SLDNFA: an abductive procedure for normal abdtmtive programs,

in: Prac. Joint Znternat. Conf: and Symp. on Logic Programming (1992) 686700.
[8] M. Denecker and D. De S&eye, Representing incomplete knowledge in abductive logic programming,

in: Prac. Znternat. Logic Programming Symp. (1993).
[9] K. Doets, From Logic to Logic Programming, The MIT Press series in Foundations of Computing

(MIT Press, 1993).
[lo] W. Drabent, SLS-resolution without floundering, in: Proc. Workshop an Logic Programming and Non-

~anatonic Rezoning (1993).
[I I] W. Drabent, What is failure? an approach to constructive negation. Updated version of a Tech. Report

LITH-IDA-R-91-23 at Linkoping University, 1993.
[12] P.M. Dung, Negation as hypotheses: an abductive foundation for logic programming, in: Proc. Znternat.

ConJ on Logic Programming (1991) 3-17.
[13] K. Eshghi, Abductive planning with the event calculus, in: K.A. Bowen and R.A. Kowalski, eds.,

Prac. Znternat. Co& on Logic Programing (1988) 562-579.
1141 K. Eshghi and R.A. Kowalski, A~uction compares with negation by failure, in: G. Levi and

M. Marteili, eds., Proc. Znternat. CunfI on Lagic Programming (1989) 234-254.
[15] F. Fages, Constructive negation by pruning, Working Paper, May 1994.
[16] M. Fitting, A KripkeKleene semantics for logic programs, J. Logic Programming 2 (1985) 295-312.
[17] A.C. Kakas, R.A. Kowalski and F. Toni, Abductive logic programming. J. Logic Comput. 2 (1993)

719-770.

200 F. Teusinkl Theoretical Computer Science 165 (1996) 171-200

[18] AC. Kakas and P. Mancarella, Generalized stable models: a semantics for abduction, in: Proc. 9th
European Conf: on Artijicial Intelligence, Stockholm (1990) 385-391.

[19] AC. Kakas and P. Mancarella, Negation as stable hypotheses, in: Nerode, Marek and Subrahmanian,

eds., Proc. Ist Workshop on Logic Programming and Nonmonotonic Reasoning, Washington, DC

(1991).

[20] K. Kunen, Negation in logic programming, J. Logic Programming 4 (1987) 289-308.
[21] J.W. Lloyd, Foundations of Logic Programming, Symbolic Computation - Artificial Intelligence

(Springer, Berlin, 2nd extended edn., 1987).

[22] K. Satoh and N. Iwayama, A query evaluation method for abductive logic programming, in: K.R. Apt,

ed., Proc. J. Internat. ConJ: and Symp. on Logic Programming (1992) 671-685.
[23] J.C. Shepherdson, Language and equality theory in logic programming. Tech. Report PM-88-08, School

of Mathematics, University Walk, Bristol, BS8 1 TW, England, 1988.

[24] P.J. Stuckey, Constructive negation for constraint logic programming, in: Proc. IEEE Symp. on Logic
in Computer Science (IEEE Computer Society Press, New York, July 1991) 328-339.

[25] F.J.M. Teusink, Three-valued completion for abductive logic programs. Tech. Report CSR9474, Center

for Mathematics and Computer Science, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands,

December 1994.

