1,120 research outputs found

    Internal Model Hop-by-hop Congestion Control for High-Speed Networks

    Get PDF
    This paper presents a hop-by-hop congestion control for highspeed networks. The control policy relies on the data exchange between adjacent nodes of the network (nearest-neighbour interaction). The novelty of this paper consists in the extensive use of Internal Model Control (IMC) to set the rates of the traffic flows. As a result, the proposed congestion control provides upper-bounds of the queue lengths in all the network buffers (overflow avoidance), avoids wasting the assigned capacity (full link utilisation) and guarantees the congestion recovery. Numerical simulations prove the effectiveness of the scheme

    Flow control in connection-oriented networks: a time-varying sampling period system case study

    Get PDF
    summary:In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of the control units arrival, the period between the transfer speed modifications depends on the flow rate RTT earlier, and consequently varies with time. A new, nonlinear algorithm combining the Smith principle with the proportional controller with saturation is proposed. Conditions for data loss elimination and full resource utilisation are formulated and strictly proved with explicit consideration of irregularities in the feedback information availability. Subsequently, the algorithm robustness with respect to imprecise propagation time estimation is demonstrated. Finally, a modified strategy implementing the feed-forward compensation is proposed. The strategy not only eliminates packet loss and guarantees the maximum resource utilisation, but also decreases the influence of the available bandwidth on the queue length. In this way the data transfer delay jitter is reduced, which helps to obtain the desirable Quality of Service (QoS) in the network

    Bounded control of multiple-delay systems with applications to ATM networks

    Get PDF
    Congestion control in the available bit rate (ABR) class of asynchronous transfer mode (ATM) networks poses interesting challenges due to the presence of multiple-delays, magnitude and rate constraints on the inputs and additive disturbances. We consider a fixed-structure controller for an ATM/ABR network, and solve a robust tracking control problem in which the target is a threshold on the queue level

    Application of Finite-Time Stability Concepts to the Control of ATM Networks

    Get PDF
    When dealing with the stability of a system, a distinction should be made between classical Lyapunov Stability and Finite-Time Stability (FTS) (or Short-Time Stability). The concept of Lyapunov Asymptotic Stability is largely known to the control community; on the other hand a system is said to be finite-time stable if, once we fix a time-interval, its state does not exceeds some bounds during this time-interval. Often asymptotic stability is enough for practical applications, but there are some cases where large values of the state are not acceptable, for instance in the presence of saturations. In these cases, we need to check that these unacceptable values are not attained by the state; for these purposes FTS could be used. Some early results on FTS can be found in [9], [12] and [8]; more recently the concept of FTS has been revisited in the light of recent results coming from Linear Matrix Inequalities (LMIs) theory, which has allowed to find less conservative conditions guaranteeing FTS and finite time stabilization of uncertain, linear continuous-time systems (see [3]). In this note we consider the problem of applying some sufficient conditions for finite time stabilization to design the control algorithm of an ATM network described via a discrete-time system. The extended abstract is organized as follows: in Section 2 we provide a sufficient condition for finite time stabilization of a discrete time system; in Section 3 we detail the model of an ATM network; finally in Section 4 some concluding remarks and plans for the final version of the paper are given

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Evaluation of Coordinated Ramp Metering (CRM) Implemented By Caltrans

    Get PDF
    Coordinated ramp metering (CRM) is a critical component of smart freeway corridors that rely on real-time traffic data from ramps and freeway mainline to improve decision-making by the motorists and Traffic Management Center (TMC) personnel. CRM uses an algorithm that considers real-time traffic volumes on freeway mainline and ramps and then adjusts the metering rates on the ramps accordingly for optimal flow along the entire corridor. Improving capacity through smart corridors is less costly and easier to deploy than freeway widening due to high costs associated with right-of-way acquisition and construction. Nevertheless, conversion to smart corridors still represents a sizable investment for public agencies. However, in the U.S. there have been limited evaluations of smart corridors in general, and CRM in particular, based on real operational data. This project examined the recent Smart Corridor implementation on Interstate 80 (I-80) in the Bay Area and State Route 99 (SR-99, SR99) in Sacramento based on travel time reliability measures, efficiency measures, and before-and-after safety evaluation using the Empirical Bayes (EB) approach. As such, this evaluation represents the most complete before-and-after evaluation of such systems. The reliability measures include buffer index, planning time, and measures from the literature that account for both the skew and width of the travel time distribution. For efficiency, the study estimates the ratio of vehicle miles traveled vs. vehicle hour traveled. The research contextualizes before-and-after comparisons for efficiency and reliability measures through similar measures from another corridor (i.e., the control corridor of I-280 in District 4 and I-5 in District 3) from the same region, which did not have CRM implemented. The results show there has been an improvement in freeway operation based on efficiency data. Post-CRM implementation, travel time reliability measures do not show a similar improvement. The report also provides a counterfactual estimate of expected crashes in the post-implementation period, which can be compared with the actual number of crashes in the “after” period to evaluate effectiveness

    Design and analysis of flow control algorithms for data networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 110-112).by Paolo L. Naváez Guarnieri.M.S

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Predicting the Operational Acceptability of Route Advisories

    Get PDF
    NASA envisions a future Air Traffic Management system that allows safe, efficient growth in global operations, enabled by increasing levels of automation and autonomy. In a safety-critical system, the introduction of increasing automation and autonomy has to be done in stages, making human-system integrated concepts critical in the foreseeable future. One example where this is relevant is for tools that generate more efficient flight routings or reroute advisories. If these routes are not operationally acceptable, they will be rejected by human operators, and the associated benefits will not be realized. Operational acceptance is therefore required to enable the increased efficiency and reduced workload benefits associated with these tools. In this paper, the authors develop a predictor of operational acceptability for reroute advisories. Such a capability has applications in tools that identify more efficient routings around weather and congestion and that better meet airline preferences. The capability is based on applying data mining techniques to flight plan amendment data reported by the Federal Aviation Administration and data on requested reroutes collected from a field trial of the NASA developed Dynamic Weather Routes tool, which advised efficient route changes to American Airlines dispatchers in 2014. 10-Fold cross validation was used for feature, model and parameter selection, while nested cross validation was used to validate the model. The model performed well in predicting controller acceptance or rejection of a route change as indicated by chosen performance metrics. Features identified as relevant to controller acceptance included the historical usage of the advised route, the location of the maneuver start point relative to the boundaries of the airspace sector containing the maneuver start (the maneuver start sector), the reroute deviation from the original flight plan, and the demand level in the maneuver start sector. A random forest with forty trees was the best performing of the five models evaluated in this paper
    • …
    corecore