170,056 research outputs found

    The Drosophila Caspase DRONC Cleaves following Glutamate or Aspartate and Is Regulated by DIAP1, HID, and GRIM

    Get PDF
    The caspase family of cysteine proteases plays important roles in bringing about apoptotic cell death. All caspases studied to date cleave substrates COOH-terminal to an aspartate. Here we show that the Drosophila caspase DRONC cleaves COOH-terminal to glutamate as well as aspartate. DRONC autoprocesses itself following a glutamate residue, but processes a second caspase, drICE, following an aspartate. DRONC prefers tetrapeptide substrates in which aliphatic amino acids are present at the P2 position, and the P1 residue can be either aspartate or glutamate. Expression of a dominant negative form of DRONC blocks cell death induced by the Drosophila cell death activators reaper, hid, and grim, and DRONC overexpression in flies promotes cell death. Furthermore, the Drosophila cell death inhibitor DIAP1 inhibits DRONC activity in yeast, and DIAP1's ability to inhibit DRONC-dependent yeast cell death is suppressed by HID and GRIM. These observations suggest that DRONC acts to promote cell death. However, DRONC activity is not suppressed by the caspase inhibitor and cell death suppressor baculovirus p35. We discuss possible models for DRONC function as a cell death inhibitor

    A route to anionic hydrophilic films of copolymers of l-leucine, l-aspartic acid and l-aspartic acid esters

    Get PDF
    A series of copolymers of l-leucine and β-benzyl-l-aspartate [Leu/Asp(OBz)] covering the range 30–70 mol % of l-leucine, was synthesized by the N-carboxyanhydride (NCA) method. The copolymers were characterized by elemental analysis, infra-red spectroscopy and viscometry. For all compositions high molecular weight copolymers were prepared with excellent film-forming properties. Tercopolymers of l-leucine, β-benzyl-l-aspartate and β-methyl-l-aspartate [Leu/Asp(OBz)/Asp(OMe)] were obtained after an ester interchange reaction (conversion 85–95%) with the original copolymer systems. These tercopolymers were characterized by elemental analysis and i.r. spectroscopy. Films of the tercopolymers, cast from organic solvents, could be converted into hydrophilic films by saponification of the methyl ester groups using alkaline water/organic solvent media. The hydrophilic films, which will be further investigated for their use as haemodialysis membranes were characterized by potentiometric titration and i.r. spectroscopy

    Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate

    Get PDF
    Complex 3'-5'-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, (213)Lys-Lys-Glu(215), in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown

    Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks

    Get PDF
    Aims: L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. Main methods: Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. Key findings: Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. Significance: These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks

    Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid, and L-aspartic acid esters

    Get PDF
    A series of copoly(α-amino acids) with varying percentages of hydrophilic (l-aspartic acid) and hydrophobic monomers (l-leucine, ß-methyl-l-aspartate, and ß-benzyl-l-aspartate) were implanted subcutaneously in rats and the macroscopic degradation behavior was studied. Three groups of materials (A, B, C) with different ranges of hydrophilicity were distinguished: A) hydrophobic materials showed no degradation after 12 weeks; B) more hydrophilic materials revealed a gradual reduction in size of the samples, but were still present after 12 weeks; and C) hydrophilic copolymers disappeared within 24 hr. \ud The tissue reactions caused by the materials of group A resembled that of silicone rubber, whereas those of group B showed a more cellular reaction

    Stability of Glutamate-Aspartate Cardioplegia Additive Solution in Polyolefin IV Bags

    Get PDF
    Objective: Glutamate-aspartate cardioplegia additive solution (GACAS) is used to enhance myocardial preservation and left ventricular function during some cardiac surgeries. This study was designed to evaluate the stability of compounded GACAS stored in sterile polyolefin intravenous (IV) bags. The goal is to extend the default USP beyond-use date (BUD) and reduce unnecessary inventory waste. Methods: GACAS was compounded and packaged in sterile polyolefin 250 mL IV bags. The concentration was 232 mM for each amino acid. The samples were stored under refrigeration (2°C-8°C) and analyzed at 0, 1, and 2 months. At each time point, the samples were evaluated by pH measurement and visual inspection for color, clarity, and particulates. The samples were also analyzed by high-performance liquid chromatography (HPLC) for potency and degradation products. Due to the lack of ultraviolet (UV) chromophores of glutamate and aspartate, the samples were derivatized by ortho-phthalaldehyde prior to HPLC analysis. Results: The time zero samples of GACAS passed the physical, chemical, and microbiological tests. Over 2 months of storage, there was no significant change in pH or visual appearance for any of the stability samples. The HPLC results also indicated that the samples retained 101% to 103% of the label claim strengths for both amino acids. Conclusion: The physical and chemical stability of extemporaneously prepared GACAS has been confirmed for up to 2 months in polyolefin IV bags stored under refrigeration. With proper sterile compounding practice and microbiology testing, the BUD of this product can be extended to 2 months
    corecore