291 research outputs found

    Secure Grouping Protocol Using a Deck of Cards

    Full text link
    We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    Mixed Integer Programming Models for Finite Automaton and Its Application to Additive Differential Patterns of Exclusive-Or

    Get PDF
    Inspired by Fu et al. work on modeling the exclusive-or differential property of the modulo addition as an mixed-integer programming problem, we propose a method with which any finite automaton can be formulated as an mixed-integer programming model. Using this method, we show how to construct a mixed integer programming model whose feasible region is the set of all differential patterns (α,β,γ)(\alpha, \beta, \gamma)\u27s, such that adp⊕(α,β→γ)=Prx,y[((x+α)⊕(y+β))−(x⊕y)=γ]>0{\rm adp}^\oplus(\alpha, \beta \rightarrow \gamma) = {\rm Pr}_{x,y}[((x + \alpha) \oplus (y + \beta))-(x \oplus y) = \gamma] > 0. We expect that this may be useful in automatic differential analysis with additive difference

    Improvement of algebraic attacks for solving superdetermined MinRank instances

    Full text link
    The MinRank (MR) problem is a computational problem that arises in many cryptographic applications. In Verbel et al. (PQCrypto 2019), the authors introduced a new way to solve superdetermined instances of the MinRank problem, starting from the bilinear Kipnis-Shamir (KS) modeling. They use linear algebra on specific Macaulay matrices, considering only multiples of the initial equations by one block of variables, the so called ''kernel'' variables. Later, Bardet et al. (Asiacrypt 2020) introduced a new Support Minors modeling (SM), that consider the Pl{\"u}cker coordinates associated to the kernel variables, i.e. the maximal minors of the Kernel matrix in the KS modeling. In this paper, we give a complete algebraic explanation of the link between the (KS) and (SM) modelings (for any instance). We then show that superdetermined MinRank instances can be seen as easy instances of the SM modeling. In particular, we show that performing computation at the smallest possible degree (the ''first degree fall'') and the smallest possible number of variables is not always the best strategy. We give complexity estimates of the attack for generic random instances.We apply those results to the DAGS cryptosystem, that was submitted to the first round of the NIST standardization process. We show that the algebraic attack from Barelli and Couvreur (Asiacrypt 2018), improved in Bardet et al. (CBC 2019), is a particular superdetermined MinRank instance.Here, the instances are not generic, but we show that it is possible to analyse the particular instances from DAGS and provide a way toselect the optimal parameters (number of shortened positions) to solve a particular instance

    Critical systems librarianship

    Get PDF
    In this chapter we perform a meta-analysis and synthesize existing critical library and information studies work into a cohesive approach to critical systems librarianship, informed by diverse perspectives and ethical lenses. We seek to enable and facilitate a critically-informed, reflective, and reflexive approach to systems work with specific focus on how information technologies are applied in library work. Critical systems librarianship centrally involves critical reflection which allows systems workers to question the underlying values, assumptions, and power relations ingrained in their daily practices and the institutions within which they work: this is essential to both theoretical questioning and developing strategies to contest power imbalances

    A Note on Adversarial Online Complexity in Security Proofs of Duplex-Based Authenticated Encryption Modes

    Get PDF
    This note examines a nuance in the methods employed for counting the adversarial online complexity in the security proofs of duplex-based modes, with a focus on authenticated encryption. A recent study by Gilbert et al., reveals an attack on a broad class of duplex-based authenticated encryption modes. In particular, their approach to quantifying the adversarial online complexity, which capture realistic attack scenarios, includes certain queries in the count which are not in the security proofs. This note analyzes these differences and concludes that the attack of Gilbert et al, for certain parameter choices, matches the security bound

    Critical systems librarianship

    Get PDF
    In this chapter we perform a meta-analysis and synthesize existing critical library and information studies work into a cohesive approach to critical systems librarianship, informed by diverse perspectives and ethical lenses. We seek to enable and facilitate a critically-informed, reflective, and reflexive approach to systems work with specific focus on how information technologies are applied in library work. Critical systems librarianship centrally involves critical reflection which allows systems workers to question the underlying values, assumptions, and power relations ingrained in their daily practices and the institutions within which they work: this is essential to both theoretical questioning and developing strategies to contest power imbalances

    PROPYLA: Privacy Preserving Long-Term Secure Storage

    Full text link
    An increasing amount of sensitive information today is stored electronically and a substantial part of this information (e.g., health records, tax data, legal documents) must be retained over long time periods (e.g., several decades or even centuries). When sensitive data is stored, then integrity and confidentiality must be protected to ensure reliability and privacy. Commonly used cryptographic schemes, however, are not designed for protecting data over such long time periods. Recently, the first storage architecture combining long-term integrity with long-term confidentiality protection was proposed (AsiaCCS'17). However, the architecture only deals with a simplified storage scenario where parts of the stored data cannot be accessed and verified individually. If this is allowed, however, not only the data content itself, but also the access pattern to the data (i.e., the information which data items are accessed at which times) may be sensitive information. Here we present the first long-term secure storage architecture that provides long-term access pattern hiding security in addition to long-term integrity and long-term confidentiality protection. To achieve this, we combine information-theoretic secret sharing, renewable timestamps, and renewable commitments with an information-theoretic oblivious random access machine. Our performance analysis of the proposed architecture shows that achieving long-term integrity, confidentiality, and access pattern hiding security is feasible.Comment: Few changes have been made compared to proceedings versio
    • …
    corecore