72,969 research outputs found

    Artificial Photosynthesis

    Get PDF
    One-dimensional channel materials, such as zeolites and mesoporous silicas, are very attractive hosts for the preparation and investigation of hierarchically organized structures, presenting a successive ordering from the molecular up to macroscopic scale. The focus of this article is on artificial photonic antenna systems and on photocatalytically active layers that have been built by incorporating organic dyes, complexes, metal cations and clusters into 1-D nanochannel materials. We show that zeolite L as a host material allows for the design and preparation of a large variety of highly organized host-guest systems. The combination of a tuneable host morphology and the possibility of obtaining highly organized molecular patterns of guests leads to a variety of potential optical and photoelectronic applications. Strongly absorbing systems exhibiting efficient FRET along the c-axis of the zeolite crystals are accessible by sequential inclusion of multiple types of dyes. These new light-harvesting materials offer unique possibilities as building blocks for solar-energy conversion devices. A complementary approach consists in integrating photochemically active substances into zeolite monolayers coated on an electrode and taking advantage of intrazeolite processes for designing a reversible electrode for photocatalytic water oxidation. The photoelectrochemical water splitting capability of systems based on Ag+/AgCl/Agn-zeolite photoanodes are discusse

    Energy conversion in Purple Bacteria Photosynthesis

    Get PDF
    The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.Comment: Chapter, to appear in Photosynthesis 2011, INTEC

    Artificial Photosynthesis for Solar Fuels - an Evolving Research Field within AMPEA, a Joint Programme of the European Energy Research Alliance

    Get PDF
    On the path to an energy transition away from fossil fuels to sustainable sources, the European Union is for the moment keeping pace with the objectives of the Strategic Energy Technology-Plan. For this trend to continue after 2020, scientific breakthroughs must be achieved. One main objective is to produce solar fuels from solar energy and water in direct processes to accomplish the efficient storage of solar energy in a chemical form. This is a grand scientific challenge. One important approach to achieve this goal is Artificial Photosynthesis. The European Energy Research Alliance has launched the Joint Programme "Advanced Materials & Processes for Energy Applications” (AMPEA) to foster the role of basic science in Future Emerging Technologies. European researchers in artificial photosynthesis recently met at an AMPEA organized workshop to define common research strategies and milestones for the future. Through this work artificial photosynthesis became the first energy research sub-field to be organised into what is designated "an Application” within AMPEA. The ambition is to drive and accelerate solar fuels research into a powerful European field - in a shorter time and with a broader scope than possible for individual or national initiatives. Within AMPEA the Application Artificial Photosynthesis is inclusive and intended to bring together all European scientists in relevant fields. The goal is to set up a thorough and systematic programme of directed research, which by 2020 will have advanced to a point where commercially viable artificial photosynthetic devices will be under development in partnership with industr

    Artificial Photosynthesis Would Unify the Electricity-Carbohydrate-Hydrogen Cycle for Sustainability

    Get PDF
    Sustainable development requires balanced integration of four basic human needs – air (O2/CO2), water, food, and energy. To solve key challenges, such as CO2 fixation, electricity storage, food production, transportation fuel production, water conservation or maintaining an ecosystem for space travel, we wish to suggest the electricity-carbohydrate-hydrogen (ECHo) cycle, where electricity is a universal energy carrier, hydrogen is a clean electricity carrier, and carbohydrate is a high-energy density hydrogen (14.8 H2 mass% or 11-14 MJ electricity output/kg)carrier plus a food and feed source. Each element of this cycle can be converted to the other reversibly & efficiently depending on resource availability, needs, and costs. In order to implement such cycle, here we propose to fix carbon dioxide by electricity or hydrogen to carbohydrate (starch) plus ethanol by cell-free synthetic biology approaches. According to knowledge in the literature, the proposed artificial photosynthesis must be operative. Therefore, collaborations are urgently needed to solve several technological bottlenecks before large-scale implementation

    Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics

    Get PDF
    Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process

    Flashing LEDs for microalgal production

    Get PDF
    Flashing lights are next-generation tools to mitigate light attenuation and increase the photosynthetic efficiency of microalgal cultivation systems illuminated by light-emitting diodes (LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the linear electron transfer chain, energy dissipation, and storage mechanisms of a phototroph. In particular, extremely short and intense light flashes potentially mitigate light attenuation in photobioreactors without impairing photosynthesis. Intelligently controlling flashing light units and selecting electronic components can maximize light emission and energy efficiency. We discuss the biological, physical, and technical properties of flashing lights for algal production. We combine recent findings about photosynthetic pathways, self-shading in photobioreactors, and developments in solid-state technology towards the biotechnological application of LEDs to microalgal production.Foundation for Science and Technology (FCT, Portugal) [CCMAR/Multi/04326/2013]Nord UniversityNordland County Government (project Bioteknologi en framtidsrettet naering)INTERREG V-A Espana-Portugal project [0055 ALGARED + 5E]Portuguese Foundation for Science and Technology [SFRH/BD/105541/2014, SFRH/BD/115325/2016]info:eu-repo/semantics/publishedVersio

    Phenotypic landscape inference reveals multiple evolutionary paths to C4_4 photosynthesis

    Get PDF
    C4_4 photosynthesis has independently evolved from the ancestral C3_3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4_4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3_3, C4_4, or intermediate C3_3-C4_4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4_4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4_4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4_4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait
    corecore