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Abstract 13 

Flashing lights are next-generation tools to mitigate light attenuation and increase the 14 

photosynthetic efficiency of microalgal cultivation systems illuminated by light emitting diodes 15 

(LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the 16 

linear electron transfer chain, energy dissipation and storage mechanisms of a phototroph. In 17 

particular, extreme short and intense light flashes potentially mitigate light attenuation in 18 

photobioreactors without impairing photosynthesis. Intelligently controlling flashing light units 19 

and selecting electronic components can maximise light emission and energy efficiency. We 20 

discuss the biological, physical and technical properties of flashing luminaries for algal 21 

production. We combine recent findings about photosynthetic pathways, self-shading in 22 

photobioreactors and developments in solid-state technology towards the biotechnological 23 

application of LEDs to microalgal production.  24 



1. Artificial light in microalgal production 25 

Microalgae are a promising biological resource for the mass production of lipids, sugars, 26 

polymers or proteins for the food, feed and chemical industries [1]. The co-production of high- 27 

value biomolecules such as polyunsaturated fatty acids, carotenoids, beta-glucans and 28 

phycobiliproteins for nutraceutical, pharmaceutical and biomedical applications increases the 29 

value of microalgal biomass and the economic feasibility of microalgae-based biorefineries [2]. 30 

Presently, high production costs of 5-25 € Kg-1 hinders the economic feasibility of microalgal-31 

based commodities [3, 4]. The European Commission supports research and development of 32 

microalgal biotechnology by allocating between 2007 and 2017 ca. 40 million € annually to 33 

microalgae-based ventures. For photo- and mixotrophic (see Glossary Box for definitions) 34 

microalgal cultivation, light is one of the most important growth parameters; it can come from 35 

natural (sun) or artificial (lamps) sources [4, 5]. Although artificial light costs more than 36 

sunlight, it allows tight control of microalgal biochemistry and growth, increasing the reliability 37 

of industrial processes for the production of high value biomolecules [4, 5]. 38 

However, the competitiveness of any artificial light-driven microalgal production hinges 39 

on energy consumption. A decrease of energy costs requires improvements in photon harvesting 40 

by microalgae and the photon conversion efficiency of light sources. Better light energy usage 41 

by phototrophs can be achieved by tailoring species-specific emission spectra of artificial light 42 

sources [5, 6]. Another strategy concerns not the light quality, but rather light delivery. Instead 43 

of using continuous illumination, recent studies propose using flashing lights (Fig. 1). Flashing 44 

light is intermittent light that can provide highly intense light flashes with a short duration 45 

(hereafter called light flash period or tl) alternating with extended dark periods (td). One flash 46 

period followed by a dark period can be defined as a flashing cycle (tc, in which tc = tl + td). The 47 

use of high light flash intensities (Il) enables light to penetrate deeper into the culture and 48 

mitigate light attenuation [7-9] in photobioreactors, maintaining a high photosynthetic 49 

efficiency of concentrated cultures [10, 11]. To prevent photo-damage and inhibition of the 50 

phototroph under cultivation by too intense light flashes, the repetition rate of the light-dark 51 

transition (i.e., flashing light frequency, f) and the relative proportion of the light flash period 52 

(i.e., the duty cycle, ø) within the flashing cycle should be adjusted to the biological reaction 53 

kinetics of photosynthetic processes and energy dissipation mechanisms (also often referred to 54 

as non-photochemical quenching or simply NPQ). Nonetheless, well-engineered luminaries are 55 

essential to emit efficiently flashing light regimes that are advantageous for phototrophic 56 

cultivation [4, 12]. Balancing these factors, flashing light can result into higher growth 57 

performance per input energy as if the same light energy is supplied in a continuous way [4, 58 



12]. We discuss the techno-biological threshold for an efficient flashing light system in terms 59 

of (i) biological, (ii) physical and (iii) technical factors that are crucial for applying this 60 

promising tool to microalgal cultivation.  61 

 62 

 63 

Figure 1 – Simplified diagram of a microalgal production unit using flashing (upper panel) 64 

and continuous light (bottom panel) emitted by light emitting diodes (LEDs). Flashing or pulsed 65 

light can increase light penetration depth and decrease excitation dissipation mechanisms, 66 

improving biomass productivity. A flashing light emitting system can transmit tailored 67 

wavebands that increase further photon penetration depth (e.g. green light for chlorophytes and 68 

Stramenopiles–Alveolata–Rhizaria species) or stimulate metabolic pathways and biochemical 69 

composition (e.g. blue and red light). The wall-plug efficiency (ƞWPE) is the product of the 70 

efficiency factors of all devices between power source and light output, including efficiencies 71 

of ballast (ƞBallast), pulse-width modulator (ƞPWM) and LED (ƞLED). Flashing light devices emit 72 

light flash (tl) and dark periods (td) in an approximately rectangular waveform. This waveform 73 

is commonly described by the flashing light frequency (f) and duty cycle (). The frequency (in 74 

Hertz, Hz) is the number of light-dark intervals (flashing cycles, tc) that occur per second (s-1). 75 

The duty cycle is the ratio between the flash period and the whole flashing cycle. The light 76 

intensity (in µmol photons m-2 s-1) during tl is defined as flash intensity (Il), while during td no 77 



light is emitted (e.g., Id = 0 µmol photons m-2 s-1). Under this condition, the time-averaged light 78 

intensity (Ia) during one flashing cycle can be expressed as 𝐼𝑎 = ø × 𝐼𝑙 and is used to compare 79 

flashing with continuous light treatments. Moreover, the flash intensity and the duty cycle are 80 

inversely proportional at a given averaged light intensity. 81 

  82 



2. Biological boundaries 83 

Microalgal cultures can display similar or higher photosynthetic rates under flashing light than 84 

under continuous light at the same averaged light intensity. This is referred to as “flashing light 85 

effect” [13, 14] or “light integration effect” [15] and occurs if the photosynthetic apparatus is 86 

working close to its full capacity (biological factor). However, in cultures with light attenuation, 87 

the flashing light effect can additionally be achieved by enhanced light delivery into the culture 88 

(physical factor), even though the photosynthetic apparatus is working at rates that are far lower 89 

than its full capacity. In this section, we define the flashing light conditions (e.g. frequency or 90 

duty cycle) at which the photosynthetic apparatus perceives a flashing light effect as a biological 91 

boundary. Generally, the flashing light effect refers to the response of a phototroph to time-92 

averaged light intensity (Ia) during the flashing cycle, and not to the instantaneous light intensity 93 

of the light (Il) or dark (Id) periods (Fig. 1). When exposed to too low frequencies (e.g. f = 1-94 

10 Hz) with too low duty cycles (e.g., ø > 0.5), no flashing light effect takes place and 95 

phototrophs quench excess energy during the light period, and might experience enhanced 96 

respiration during the dark period (e.g., post-illumination respiration; [13, 15, 16]). This results 97 

in less growth and biomass losses. Moreover, molecular responses to stress in the phototroph 98 

under cultivation can also be activated. 99 

The biological boundary depends on reaction kinetics of energy dissipation mechanisms, 100 

energy storage and the linear electron transfer chain (see Box 1). Flashing light studies on single 101 

leaves of land plants or microalgal cultures with low light attenuation potential can identify the 102 

biological boundary, and may be described as a function of frequency (f) and duty cycle (ø), 103 

i.e. f(ø,f) [17, 18]. For example, Jishi et al. [17] identified such function of the flashing light 104 

effect for lettuce (Lactuca sativa). Interestingly, their model also fits the photosynthetic 105 

performances of microalgal cultures with low biomass concentrations (< 0.1 g L-1) or short light 106 

path lengths (<1-2 cm) and for land plants (e.g. tomato) under various flashing light conditions 107 

[19-27].  108 

2.1. Excitation dissipation and energy storage efficiencies 109 

Absorbed light energy is able to bring chlorophyll from its ground state (Chl) to a singlet 110 

excited state (1Chl*). 1Chl* can pass its excitation energy via resonance or excitation energy 111 

transfer to adjacent chlorophyll molecules in the light harvesting complexes or the reaction 112 

centres of photosystem I or II (PSI or PSII). In the reaction centres, charge separation takes 113 

place and excitons can be photochemically quenched by provoking the transfer of electrons to 114 

the photosynthetic linear or cyclic electron transfer chains [28]. These photosynthetic pathways 115 



are essential for the production of adenosine triphosphate (ATP) and reducing equivalents such 116 

as plastoquinol and nicotinamide adenine dinucleotide phosphate (NADPH; [28]). If the 117 

reaction centres are “closed”, i.e. if they are not able to process photon excess under high light 118 

conditions, 1Chl* can dissipate absorbed energy as heat through excitation dissipation 119 

mechanisms or re-emit a photon (fluorescence) when falling back to its ground state (Chl). Both 120 

processes prevent the formation of triplet Chl (3Chl*), which causes reactive oxygen species 121 

(ROS) evolution [28]. If, for example, the storage capacity for reducing equivalents cannot cope 122 

with the excess electrons under high light, the likelihood of ROS accumulation increases. Such 123 

high ROS levels suppress protein synthesis, which is essential for repairing PSII upon 124 

photodamage [29]. To avoid excess ROS evolution during high light (flash) periods and 125 

maintain their metabolism during prolonged dark periods, phototrophs employ different energy 126 

quenching and storage strategies under flashing light with a low duty cycle (e.g., ø < 0.1; Fig. 2; 127 

[14, 16, 30, 31]). Usually, alternation between light and dark periods longer than seconds, 128 

minutes or hours (implying frequencies < 1 Hz) are referred to light that is supplied 129 

intermittently, discontinuously or through light/dark cycles or photoperiods. For the sake of 130 

convenience, however, the term “flashing light” and associated parameters will be used in all 131 

time scales. 132 

In this context, mechanisms of short-term energy storage (fs-ps time scale) follow the laws 133 

of quantum dynamics and energy transport takes place via quantum coherence. The excitation 134 

energy delivered by fs-ps lasting high light flashes can be stored in pigment cofactors (e.g. 135 

chlorophylls, carotenoids or phylloquinones) as excitons or through inter-protein hopping 136 

within the light harvesting complexes [32]. If reaction time permits, energy may be stored in 137 

reaction centre II. In this time scale, excess energy may be dissipated through ultrafast reacting 138 

quenchers (e.g. chlorophyll a; [32, 33]), resulting in pigment internal thermal decay or 139 

fluorescence.  140 



 141 

Figure 2 - Response time scales of phototrophs exposed to different flash period durations 142 

(tl) with a high intense flash intensity (Il) that arise if flashing light composed of a short constant 143 

duty cycle (e.g., ø < 0.1) and a saturating averaged light intensity (Ia) is used. A given flash 144 

period duration is inversed proportional to the flashing light frequency (f). Time scales of events 145 

were obtained from results summarised in Tables 1 and S1 and elsewhere [33, 34, 37]. Bar 146 

length represents the approximate time scale of the initiation of a given event. Abbreviations: 147 

CET, Cyclic Electron Transfer; Chl, Chlorophyll; Dd-Dt, diadinoxanthin-diatoxanthin; FDPs, 148 

flavodiiron proteins; LET, linear electron transfer chain; LHC, light harvesting complex; LHP, 149 

light harvesting pigment; Lx-L, lutein epoxide; PGR5, proton gradient regulator 5; PGRL1, a 150 

ferredoxin-plastoquinone reductase that is apparently involved in CET in chlorophytes; PQ, 151 

plastoquinone; PQH2, plastoquinol; PS, photosystem; Q1/2, quenching sites 1 and 2; qE, energy 152 

state quenching; qI, photoinactivation of photosystem II; RC, reaction centre; RuBisCO, 153 

ribulose-1,5-bisphosphate-carboxylase/oxygenase; STN7, Serine/threonine-protein kinase 154 

involved in the adaptation to changing light conditions; VAZ, violaxanthin-astaxanthin-155 

zeaxanthin. 156 

 157 

A medium-term energy storage (ns-µs time scale) may take place via components and 158 

products of the non-cyclic photosynthetic electron transfer chain. Examples are the 159 

plastoquinone bound to PSII (Qa
-), plastoquinol (PQH2) in the plastoquinone (PQ) pool [34], 160 



protons in the stroma coming from the water-splitting reaction catalysed by the water oxidising 161 

complex and ATP produced by the ATP synthase in the thylakoid [35]. However, if the previous 162 

storage mechanisms are unable to handle excess energy, other non-photochemically quenching 163 

reactions and biomolecules seem to play a protective role: e.g. Mehler-like reactions, the 164 

proton gradient regulator PGR5, the ferredoxin-plastoquinone reductase PGRL1, the 165 

serine/threonine-protein kinase STN7, and several flavodiiron proteins [8, 36-38]. 166 

For long-term energy storage (ms-s time scale), phototrophs produce reduced equivalents 167 

(e.g. NADPH) or “high energy” chemical bonds via ATP-dependent nitrogen and sulphur 168 

assimilation as well as carbon fixation. The last process yields Calvin-Benson cycle 169 

intermediates containing ATP-dependent high energy bonds, such as bisphosphoglycerate or 170 

triose-phosphate [30]. At this time scale, excess energy can be quenched via re-oxidation of the 171 

PQ pool through the quinol terminal oxidase, phosphorescence or through the initiation of 172 

diadinoxanthin-diatoxanthin, violaxanthin-astaxanthin-zeaxanthin or lutein epoxide cycles [39-173 

41]. 174 

Even longer-term energy storage is possible. Biochemical processes at time scales of 175 

minutes and hours, such as the accumulation of non-structural low molecular weight sugars, 176 

starch or amino acids (e.g. glutamine as the first amino acid resulting from nitrogen 177 

assimilation) can be used to store energy [42]. Under these conditions, excess energy can be 178 

quenched through the same photoprotective pigment cycles as under ms-s conditions, but also 179 

through high-energy-state (qE) quenching and photoinactivation of PSII (here referred to as qI; 180 

[33, 41, 43]). In order to decrease excess energy that phototrophs receive under long-lasting 181 

light periods, reversible phosphorylation of the light harvesting complex II and decrease in the 182 

light harvesting antenna size might occur [37, 39]. 183 

Generally, the ratio between non-photochemically and photochemically quenched energy, 184 

and the probability of damaging the photosystems by ROS evolution, due to a failure of the 185 

excitation dissipation mechanisms in place, increases with light flash period duration, causing 186 

a drop in photosynthetic efficiency. Under frequencies and duty cycles that are too low and too 187 

short, respectively, for obtaining a biological flashing light effect, phototrophs use more 188 

complex and energy demanding excitation dissipation mechanisms during the light period (e.g. 189 

photoprotective pigment synthesis or high-energy-state quenching [33]) and respiration rates 190 

exceed photosynthetic rates during the extended dark period [15, 44, 45]. Both situations will 191 

ultimately decrease or restrict net photosynthetic efficiency [27] and alter the biochemical 192 

profile and appearance of microalgal and cyanobacterial cells. Changes include cell size, 193 

pigment composition, intracellular ultrastructure, expression of protective proteins (e.g. PGR5 194 



or STN7), the ratio between PSI and PSII [8], light harvesting antenna size, ribulose-1,5-195 

bisphosphate-carboxylase/oxygenase (RuBisCO) activity, or sugar and starch contents [8, 11, 196 

30, 46-51]. These changes are typical for responses of microalgae to intense light [49, 50] and 197 

thus can be used as indicators if the frequency and duty cycle are inadequate for a phototroph 198 

to experience the biological flashing light effect. Conversely, if phototrophs are exposed to 199 

increasing frequencies (e.g. f > 10 Hz; ø ≈ 0.1-0.5), these changes become less obvious [46-48, 200 

52, 53], because a phototroph buffers and quenches photoenergy delivered during the light 201 

period with a similar efficiency to that under continuous light. Nevertheless, lower intracellular 202 

chlorophyll a and carotenoid contents are probably not good indicators for the flashing light 203 

effect, as lower amounts of these pigments occur in several species under a wide range of 204 

flashing light conditions (e.g. f = 0.1-100 Hz; Table 1; [44, 46-49]).  205 

  206 



Table 1 - Impacts of flashing light with different duty cycles and frequencies on microalgal composition. Refer to Table S1 (supplementary data) for a detailed 207 
overview of relevant flashing light studies on microalgae, cyanobacteria and plants. 208 

Microalga 
Frequencies 

(f) 

Duty cycles 

(ø) 
Outcome Ref. 

Chlamydomonas 

reinhardtii 
1-100 Hz 0.5 

Absorption spectra unaffected by flashing light, no obvious shift in carotenoid:chlorophyll 

ratio in absorption spectra. 
[20, 21] 

Chlamydomonas 

reinhardtii 
0.5-5 Hz 0.5 Fatty acid profile and total lipids were mostly unaffected by flashing light. [54] 

Chlorella kessleri 5Hz -37 KHz 0.5 
Higher intracellular chlorophyll concentrations under flashing light as compared to continuous 

light. 
[11] 

Chlorella pyrenoidosa 
2.5- 

25 KHz 
0.0125-0.125 

Immediate sugar accumulation when exposed to saturating light flashes for 18h. Dark periods 

lasting only 6h led in turn to an accumulation of nucleic acids and a complete consumption of 

accumulated sugars. Protein and chlorophyll levels unaffected. 

[24] 

Haematococcus 

pluvialis 
25-200 Hz 

0.17, 0.33, 

0.67 

Final astaxanthin and biomass concentration in the medium was higher under flashing light as 

compared to continuous light. With increasing duty cycle but same frequency, the final 

volumetric astaxanthin concentration rose. The use of flashing light lowered the energy 

consumption for astaxanthin production by up to 70%. 

[55] 

Isochrysis galbana 10 KHz 0.5 
No effects on total lipid content in I. galbana or cell weight. Fatty acid profile was similar 

under flashing and continuous light. 
[52] 

Nannochloropsis 

oceanica CY2 
7,8,9 Hz 0.5 No significant differences in EPA content between cells under flashing and continuous light. [53] 

Nannochloropsis 

salina 
1-30 Hz 0.1, 0.33 

Flashing light had no effect on total lipid content and caused usually lower accumulation of 

chlorophyll a and carotenoid:chlorophyll ratios (Except f = 10 Hz, ø = 0.33).  
[48] 

 209 



Porphyridium 

purpureum 
0.17- 100 Hz 0.17, 0.5 

The frequency of 0.17 Hz increased the intracellular phycoerythrin and chlorophyll a content 

as compared to continuous light and 25 Hz and ø = 0.33. Bound and free polysaccharides were 

affected marginally. Production rates of phycoerythrin and free polysaccharides were highest 

under f = 100 Hz, ø= 0.5 (Il = 540 µmol photons m-2 s-1). 

[56] 

Scenedesmus 

bicellularis 
~100 Hz 0.5 

The long-term exposure to flashing light did not affect total lipids, proteins, carbohydrates, 

fatty acids and amino acids. However, flashing light lowered slightly chlorophyll a and b 

levels, increased chlorophyll a/b ratios, decreased carotenoid contents and increased 

carotenoid/chlorophyll a ratio. RuBisCO initial activity (not activated) and RuBisCO total 

activity (activated) were significant higher only under flashing light at a moderate irradiance 

of Ia = 175 µmol photons m-2 s-1, whereas low (Ia = 87.5 µmol photons m-2 s-1) and high 

(Ia = 350 µmol photons m-2 s-1) averaged light intensities had no effect.  

[47] 

Scenedesmus obliquus 5, 10, 15 Hz 0.5 
Carotenoid:chlorophyll ratio and chlorophyll a content in cells were lower under flashing light. 

Carbohydrate, lipid, and protein contents were unaffected. 
[46] 

Chlamydomonas 

reinhardtii 
0.00138-1 Hz 0.5 

Decreasing chlorophyll a content with increasing frequency (Ia = 220 µmol photons m-2 s-1). 

Lowest amount of chlorophyll a, b and carotenoids under f = 1 Hz.  
[44] 

Dunaliella salina 0.017-5 Hz 0.4-0.66 

Usually lower chlorophyll a content under flashing light (Ia = 400 µmol photons m-2 s-1) as 

compared to continuous light. A f = 5 Hz showed similar results as compared to continuous 

light. D. salina exposed to flashing light conditions showed always lower total lipid content. 

[50] 

    [26] 

Abbreviations: EPA, eicosapentaenoic acid; Ia, time averaged light intensity during a flashing cycle; Il, light flash intensity; RuBisCO, Ribulose-1,5-bisphosphate 210 
carboxylase/oxygenase. 211 



2.2. Limits of flashing light on the electron transfer chain 212 

Emerson and Arnold [57] demonstrated that a short light period with an adequate flash 213 

intensity can excite all “open” reaction centres, whereas a sufficient long dark period allows all 214 

reaction centres to “re-open” and harvest most of the incoming photons of the next light flash. 215 

A later study by Radmer and Kok [58] quantified that a light harvesting complex containing 216 

400 chlorophyll molecules harvest ~2,000 electrons per second under full sunlight, whereas the 217 

subsequent carbon fixation reactions are able to process only 100-200 electrons per second. 218 

They showed that the photosynthetic apparatus could only use a small portion of incident light 219 

under continuous light, while, most of the time, reaction centres are closed and light is non-220 

photochemically quenched.  221 

Recent findings about excitation dissipation mechanisms and the quenching role of the PQ 222 

pool may allow other approaches to determine the optimal flashing light settings required for 223 

photosynthesis. It has been suggested that the species-dependent storage capacity of the PQ 224 

pool for plastoquinol may define the threshold frequency, duty cycle and the required averaged 225 

light intensity beyond which the flashing light effect occurs [26, 59]. Vejrazka and colleagues 226 

[21] and Hüner et al. [34] pointed out that if excess plastoquinol is generated, the 227 

plastoquinol:plastoquinone (PQH2:PQ) ratio becomes too high, leading to over-reduction of the 228 

PQ pool, which will prevent the reaction centre II from re-opening [34]. Such over-reduction 229 

occurs if transfer rates of photonic energy exceed the kinetics of its use by metabolic pathways 230 

that promote growth, including those involved in nitrogen, sulphur and carbon utilization. 231 

Detrimentally, excess energy can lead to photoinhibition and photo-oxidative damage due to 232 

ROS evolution. Phototrophs can dissipate this energy by, for example, (i) activating the cyclic 233 

electron flow, (ii) phosphorylating and migrating the light harvesting complex II towards PSI 234 

to reinforce the cyclic electron transfer used to oxidize the PQ pool or (iii) activating the 235 

xanthophyll cycle [39]. However, to avoid photoprotective mechanisms and thus inefficient 236 

photonic energy usage, light supply should take place in balance with the reaction kinetics of 237 

the linear electron transfer chain. Interestingly, a light flash lasting picoseconds is already long 238 

enough to excite and close the PSII reaction centres [26]. To restore the ground state of PSII, 239 

and thus to re-open the reaction centre II, requires the transfer of this charge from the PSII to 240 

the PQ pool in the form of plastoquinol [60] and the reduction of PSII through the water 241 

oxidising complex. In order to avoid excess of plastoquinol reducing equivalents in the PQ-242 

pool, the reduction rate of PQ to plastoquinol at the Qb site of PSII should be similar to the 243 

plastoquinol oxidation rate at the Qo site of the cytochrome b6f complex. However, an imbalance 244 

easily arises because the oxidation of one plastoquinol takes longer (ca. ≈ 3-5 ms) than reducing 245 



PSII by the water oxidising complex (≈ 1-3 ms). To mitigate such imbalances in the linear 246 

electron transfer chain, flashing light may be tailored to a flash period duration of a few hundred 247 

picoseconds to reduce efficiently the reaction centre II without triggering excitation dissipation 248 

mechanisms, and a dark period of 3-5 ms to allow the timely oxidation of plastoquinol, avoiding 249 

the overreduction of the PQ pool.  250 

However, this kinetics would correspond to a duty cycle of only  ≈  10-8 and a frequency 251 

of f ≈ 300-500 Hz. Such settings require low switching times, which are problematic to 252 

implement with the current technologies available (Box 2). Indeed, frequencies higher than 253 

300 Hz did usually result in a flashing light effect in most phototrophs if the averaged light 254 

intensity was near saturation (e.g., Ia ≥ 100 µmol photos s-1 m-2; Table S1). However, 255 

decreasing the averaged light intensity towards sub-saturating levels appears to require higher 256 

frequencies to obtain the flashing light effect [26, 61]. More specifically, Martín-Girela et al. 257 

[61] found a CO2 fixation efficiency of 6.2 photons per fixed CO2 molecule, which was beyond 258 

theoretical limits (~8 photons CO2
-1) at a frequency of 10,000 Hz (ø = 0.05) with an averaged 259 

light intensity that was only 5% of the photosaturating intensity.  260 

On the other hand, it remains to be seen how phototrophs respond if they are exposed to 261 

extremely low duty cycles (e.g. ø <  10-8), with a flash intensity ≈108 times higher than the 262 

averaged light intensity, which corresponds also to a photon penetration depth 8 times higher 263 

as compared to that of continuous lighting [7]. Under such timescale, dissipation of excess 264 

energy may only take place via fluorescence or thermal decay, and other more complex and 265 

energy-demanding quenching mechanisms (e.g. mediated by PGR5, PGRL1, flavodiiron 266 

proteins or STN7) cannot be activated in time [37, 62]. This may lead to a more efficient light 267 

utilisation and higher photosynthetic efficiencies. On the other hand, these conditions could 268 

also increase flash intensities above a threshold that would instantly cause photodamage. If so, 269 

an under-saturating averaged light intensity could be sufficient to achieve the same or even 270 

enhanced photosynthetic rates compared to continuous lighting with a saturating light intensity, 271 

leading to lower power consumption of artificial lighting. Notably, flash intensities that are 272 

inhibitory if emitted continuously do not inhibit the phototroph if the frequency is high and duty 273 

cycle is short enough (e.g. f > 1 KHz, ø < 0.1) for a given averaged light intensity [24-26, 63-274 

65]. For example, Tennessen et al. [26] exposed tomato leaves to photoinhibitory flash 275 

intensities (If = 5000 µmol s-1 m-2) at a short duty cycle (ø = 0.01) and a high frequency 276 

(f = 5000 Hz) without impairing photosynthesis. Nevertheless, Ley and Mauzerall [66] found 277 

that flash intensities higher than 22,000-37,000 µmol photons m-2 s-1 (e.g., 1016 photons cm-2 278 

supplied during light periods of 450-750 ns) can indeed cause a decline of oxygen evolution 279 



rates in Chlorella vulgaris cultures (td = 2 s). These findings indicate that averaged light 280 

intensity, flash intensity, frequency and duty cycle are interdependent and must be well 281 

balanced to reap the benefits of artificial flashing light-based phototrophic cultivation. 282 

3. Physical boundaries 283 

The most important physical factor of flashing light is the potential to mitigate light 284 

attenuation and increase light delivery in concentrated microalgal cultures [13, 49, 64, 67, 68]. 285 

Current efforts to enhance light delivery include intensive mixing, light path minimization, 286 

antenna size reduction, waveband tailoring or inclusion of fibres and nanoparticles as 287 

waveguides into the photobioreactor [9, 69-72]. In addition to these approaches, high light 288 

intensities can increase photon penetration depth in suspensions as defined by Beer-Lambert’s 289 

law [7]. The Beer-Lambert´s law [7] describes a linear increasing light penetration depth into 290 

microalgal cultures with exponentially rising light intensity, though effects by fluorescence or 291 

light scattering by different algae are not considered. 292 

Too high light intensities cause photoinhibition of microalgae at the periphery of the 293 

photobioreactor, an effect that is mitigated by increasing mixing rates. Higher mixing rates 294 

minimise retention time of cells in the high light zone near the walls and in the dark zones in 295 

the middle of the reactor. These high mixing rates improve light and can provide light-dark 296 

cycles for cells fast enough to obtain the flashing light effect [13, 14]. Particularly high 297 

productive cultivation systems benefit from high culture concentrations and light intensities 298 

[73]. However, these conditions require extreme high mixing velocities, resulting in high 299 

energy consumption [44, 65, 74], shearing, cavitation and pressure changes that impair the 300 

physiology and viability of the microalgal cell [73]. Alternatively, a light source can directly 301 

emit flashing light, which allows the generation of intense light flashes at frequencies and low 302 

duty cycles that do not occur in nature or in any culturing vessel just by adjusting the mixing 303 

velocity of the growth medium.  304 

As mitigating light attenuation is one of the main arguments for flashing light-induced 305 

growth enhancement [13, 49, 64, 67, 68], production systems that operate at high cell 306 

concentrations or culturing vessels with long light path lengths are promising targets for 307 

flashing light-related power savings. Although such trend has only be observed among few 308 

studies [11, 64, 73], the true potential of mitigating light attenuation in dense microalgal 309 

cultures remains uncertain, particularly at extreme high light flash intensities (e.g. 310 

If > 10,000 µmol photons m-2 s-1), delivered at low duty cycles (e.g., ø < 0.01) and high 311 

frequencies (e.g. f > 1 KHz).  312 

 313 



4. Technical boundaries 314 

In artificial light-based microalgal production, light with low and high light periods (e.g., 315 

flickering or fluctuating light) is naturally emitted by common gas discharge lamps, whereas 316 

flashing light is generated when light intensity of LEDs is controlled via pulse-width 317 

modulation (e.g., Fig. 1). The intensity of light emitted by fluorescent lamps and mercury or 318 

sodium vapour lamps changes between maximum and minimum values (often referred as 319 

“flickering light”) at a ballast- and grid-dependent frequency [47]. For example, fluorescent 320 

lamps driven by a conventional magnetic or electronic ballast emit flickering light at a 321 

frequency of 100-120 Hz and 40-120 KHz, respectively. On the other hand, induction lamps 322 

operate at frequencies from hundreds of KHz to tens of MHz [75]. Therefore, it becomes clear 323 

that neither induction nor gas discharge lamps should be used as “non-flashing” controls in any 324 

flashing light study. In addition, gas discharge lamps are inefficient in terms of photon 325 

conversion efficiency if operated at low duty cycles and may be unsuitable for customised 326 

flashing light modulation. Alternatively, amplitude or pulse-width modulated LEDs can 327 

efficiently emit continuous and flashing light, respectively. However, commonly available 328 

pulse-width modulated dimmers generate flashing light only between frequencies of 150 and 329 

300 Hz, which may be not sufficient to obtain a flashing light effect if dimmed, though higher 330 

frequencies and lower switching times are possible (Box 2). For microalgal production, a 331 

promising flashing LED device may operate at a (sub-)saturating averaged light intensity, 332 

which requires a light flash intensity that increases in inverse proportion to the duty cycle. The 333 

emission of high light flash intensities is possible if the stock densities of LEDs in a luminary 334 

array is increased, which has additional costs. Alternatively, the number of photons emitted per 335 

light emitter can be enhanced under flashing light if the forward current to an LED is increased 336 

far beyond the nominal currents used under continuous operating conditions. This so-called 337 

“overloading” demands precise switching regimes to extract the highest number of photons 338 

with the highest efficiency possible. Considering all losses between power source and light 339 

emission of a flashing light system (referred to as wall plug efficiency), most discriminative 340 

parameters include i) response time and photon conversion efficiency of the LED; ii) operating 341 

frequency and duty cycle; and iii) the efficiency factor of the electronic ballast and pulse-width 342 

modulation unit. Generally, the wall plug efficiency of a flashing lighting system decreases 343 

with increasing frequency, decreasing duty cycle and increasing forward current due to working 344 

and switching losses at transistors and LEDs [76]. The efficiency drop can be damped if 345 

transistors and LEDs display low response times, low working and switching losses under the 346 

used flashing light condition and currents. A joint effort between physicists and biologists is 347 



thus necessary for the development of efficient flashing light systems that enhance energy use 348 

in artificial light-based microalgal production.  349 

 350 

5. Concluding Remarks and Future Perspectives 351 

Using flashing lights is a promising strategy to supply photonic energy to phototrophic 352 

organisms, increasing biomass productivities and reducing the power consumption in artificial 353 

light-based production systems. Flashing light can also be applied to established methods used 354 

to improve the photosynthetic performance of microalgal cultures such as mixing, light guides 355 

or waveband tailoring. The optimal settings of a flashing light regime should correspond to a 356 

frequency high enough to obtain the same or higher photosynthetic efficiencies than those under 357 

continuous light (e.g., f > 300-500 Hz; biological factor) at a shortest possible duty cycle to 358 

obtain the highest possible photon penetration depth (physical factor), but both within the range 359 

of adequate power consumption (technical factor). So far, most studies have tested flashing 360 

light conditions with low frequencies (f < 100 Hz) and relatively high duty cycles (ø > 0.1) to 361 

mimic conditions that are present in mixed microalgal cultures. However, data beyond these 362 

conditions will be of particular interest for artificial light-based microalgal production. 363 

Mainstream flashing light research and industrial application benefit specifically from 364 

inexpensive and technically mature LED modules as light sources. Nevertheless, current LED 365 

technology cannot modulate flashing light in the response time scales close to the boundaries 366 

imposed by the biological responses, such as light harvesting events within the range of femto- 367 

to picoseconds. A possible solution to this limitation is the use of faster responding laser diodes 368 

(see Outstanding Questions), which could replace common LEDs in cutting-edge research, as 369 

well as in future industrial production facilities. Cultures exposed to sub-nanosecond light 370 

flashes might obey the laws of quantum mechanics, which can result in unforeseeable effects 371 

on photosynthesis and growth of phototrophs. Research on charge transfer on quantum level as 372 

e.g. implemented by the EU project H2020-MSCA-QuantumPhotosynth may shed new light 373 

on the limits of photosynthesis and more efficient photon utilisation by microalgae 374 
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Box 1 - Kinetics of the linear electron transfer chain (LET) 382 

Photons coming from a light source are absorbed through light harvesting pigment 383 

complexes within femtoseconds. About 300-500 ps are needed to transfer shared excited energy 384 

states (excitons) through inter-protein hopping and magnetic resonance to the reaction centres 385 

of PSII (reaction centre II or P680), causing the excitation of an electron. The reaction centre 386 

requires two electrons for reduction and “closure” (i.e. P680*; Fig. I; [32]). Once the reaction 387 

centre is in the “closed” state, further excess photon energy cannot be transferred to the reaction 388 

centre II and is released through energy dissipation mechanisms. The low redox state of the 389 

P680* reduces the primary electron acceptor pheophytin within 3 to 8 ps, becoming oxidised 390 

(P680+). The electrons from pheophytin are transferred to the primary (Qa) and secondary (Qb) 391 

acceptor sites within ~200-500 ps and 700-1200 µs, respectively. Upon Qb reduction, this site 392 

acquires protons from the stroma, forming plastoquinol. In turn, plastoquinol diffuses towards 393 

the PQ pool in the thylakoid membrane upon exchange with one PQ molecule, which binds to 394 

the Qb site. The PQ pool serves as energy store. The energy is retrieved upon the oxidation of 395 

plastoquinol by the cytochrome b6f complex via the q-cycle [77]. 396 

The high redox potential of P680+ initiates an electron transfer from the water oxidising 397 

complex through the intermediate electron carrier tyrosine, which reduces P680+ in a succession 398 

of steps (S0-S3). Full oxidation of two water molecules and the release of four electrons takes 399 

place in about 1-2 ms [35]. As P680 is formed, the reaction centre II re-opens and the 400 

subsequent exciton capture takes place. 401 

The slowest (~3-5 ms) and thus limiting step in the linear electron transfer chain is the 402 

oxidation of plastoquinol by the cytochrome b6f. Two protons are released into the thylakoid 403 

lumen and electrons are transferred towards plastocyanin. Plastocyanin transfers electron 404 

towards PSI within 150-550 µs. In PSI, electrons are passed to the electron donor P700 (reaction 405 

centre I), forming P700* through photon energy delivered by the light harvesting complex I 406 

within femtoseconds. Electrons are passed to the electron acceptors A0, A1 and the 4Fe-4S iron 407 

sulphur centres Fx, Fa and Fb within picoseconds, reducing the final electron acceptor, 408 

ferredoxin. Because of these short turnover times, the reactions in P700 are considered to be a 409 

spontaneous reaction [32, 34]. Ferredoxin can donate electrons to ferredoxin-NADP(+) 410 

reductase to form NADPH, completing the LET. The cyclic electron transfer chain is activated 411 

to produce additional ATP and NAPDH required for carbon assimilation via the Calvin-Benson 412 

cycle. 413 



 414 
Figure I - Simplified diagram about the major kinetics of electron transfers in phototrophs, 415 

where the linear electron transfer chain (LET) is depicted and other alternative pathways are 416 

indicated. Reaction times and pathways were summarized from Ref [35, 39]. Note that 417 

stoichiometric values for H+, ATP and NADPH are variable. To balance electron flow under 418 

fluctuating light regimes, phototrophs use species dependently different Flv proteins to reduce 419 

oxygen to water at the expense of NADPH or electrons from the photosystems [85]. 420 

Abbreviations: A1, phylloquinone-based electron acceptor; ADP, adenosine diphosphate; Ao, 421 

chlorophyll based electron acceptor; ATP, adenosine triphosphate; Cytb6f, cytochrome b6f 422 

complex; Cyt bL/H, f, b-type hemes cytochrome bL/H, f; FA/FB & Fx, electron acceptors 4Fe-4S 423 

irons sulphur centres; FeS, Rieske iron-sulphur protein; FD, ferredoxin; Flv, flavodiiron 424 

protein; FNR, Ferredoxin-NADP(+) reductase; LHC, light harvesting complex; NADP+, 425 

nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide 426 

phosphate (reduced); P680, Photosystem II; P700, Photosystem I; PC, plastocyanin; Phe, 427 

pheophytin; Pi, inorganic phosphorus; PQ, plastoquinone; PQH2, plastoquinol; QA, primary 428 

acceptor site; QB, secondary acceptor site; Qi, quinone reductase; Qo, quinol oxidase; RuBP, 429 

ribulose-1,5-bisphosphate; Tyr, tyrosine; WOC, Water oxidising complex. 430 

 431 
  432 



Box 2 - Technical limits of flashing light sources 433 

The efficiency of a flashing light system depends on working and switching losses at 434 

transistors built in pulse-width modulators, controlling units and LEDs that interact differently 435 

with applied current, frequency and duty cycle. For example, work losses in transistors switches 436 

increase if duty cycle and currents are high, but they are frequency-independent. Switching 437 

losses increase with frequency, though they are current-independent [76]. Photon extraction 438 

potential from LEDs is higher if forward current is increased (i.e. LED overloading), and light 439 

and dark periods are short and long enough, respectively, to allow sufficient heat dissipation 440 

from the LED-chip (Fig. II). In this case, frequency and duty cycle are interdependent.  441 

Overloading is a valuable option for flashing light applications, permitting the operation of 442 

an LED under higher currents that exceed nominal levels (e.g., by increasing the supplied 443 

voltage), resulting in maximal photon flux during the duty cycle and heat dissipation during the 444 

dark period [11, 24]. Through overloading, the LED operates at current densities beyond which 445 

the “droop effect” occurs. As result, the photon conversion efficiency drops with increasing 446 

forward currents and maximal photon extraction cannot exceed a given threshold [78]. During 447 

overloading and shortening duty cycle, the maximal extractable averaged light intensity (Ia) per 448 

LED decreases, but the maximal applicable instantaneous forward current and extractable flash 449 

intensity increases.  450 

Another parameter is the LED minimal response time (tr_min), which is the major cause for 451 

electrical losses when emitting flashing light. Here, the depletion region as central internal 452 

element of any LED chip creates capacitances that limit the response of single-coloured LEDs 453 

to a few nanoseconds (tr_min ≈ 1-50 ns). Note that organic LEDs display high capacitances while 454 

phosphor-converted LEDs have long (electro-)luminescence decay times, which restricts 455 

tr_min to approximately ≥ 1 µs [79-81]. Standard laser diodes display very low capacitance, 456 

allowing tr_min <500 ps [82]. Overloading and chip size increases these capacitances and thus 457 

response times, limiting maximal adjustable frequencies or duty cycles. Lowering response 458 

times of (organic) LEDs is an active field of research as required for efficient visible light 459 

communication or screens [80, 82, 83].  460 

Broadband flashing light research at nanosecond scales can use widely available signal 461 

generators connected to high power single-coloured LEDs or laser diodes as a cheap solution 462 

(e.g. <2000€). For larger scale systems with high light output, a more robust and cheaper system 463 

may be used, based on a slower responding open source system (≥1 µs) consisting of an 464 

Arduino microcontroller coupled with standard LED luminaries (for examples see [50, 84]). 465 



 466 

Figure II - The efficiency of LEDs or laser diodes under pulsed power supply can be 467 

calculated from frequency response graphs, called bode plots (A). Here, the cut-off frequency 468 

(fc) refers to the maximal adjustable frequency with maximal 50% power losses (commonly 469 

referred to as 3 dB point). From fc, response times and possible adjustable flashing light regimes 470 

can be calculated for different light sources (B). If switching regimes are below 1 ns, a shift 471 

from laws of classical to quantum mechanics occurs. Overloading (C) is achieved if the input 472 

power (Pin_electrical) increases due to higher forward currents that exceed nominal levels. 473 

Nominal conditions are obtained when LEDs operate under continuous power supply and rated 474 

(or nominal-) currents at a given temperature. Under a nominal power input (Pin_electical), an LED 475 

achieves its nominal light output (Pout_optical) and nominal efficiency (e.g., photon conversion 476 

efficiency; PCE = Pout_optical/Pin_electrical) as defined by the manufacturer. LED light output 477 

comes at the cost of efficiency after passing a critical current density beyond which the droop 478 

effect occurs (dashed line) and usually reaches a peak (maximum) with subsequent decline. All 479 

values given are examples and may differ among diodes. Abbreviations: pc-LED: phosphor 480 

converted LED, AlGaAs LED: gallium-aluminium-arsenide LED.  481 

  482 



Glossary box 483 

• Intermittent light includes flashing or pulsed light and fluctuating, flickering or 484 

oscillating light. Light and dark periods of flashing or pulsed light conditions shift in an 485 

all-or-nothing, rectangular waveform. Fluctuating or oscillating light is a fluent 486 

transition between high and low light periods, whereas instantaneous light intensities 487 

alter continuously over time, following usually a sinusoidal waveform. Sunflecks or 488 

cells moving from light to dark zones within a photobioreactor trough mixing usually 489 

follow fluctuating light patterns.  490 

• Light attenuation: Self-shading by microalgal cells is the most challenging bottleneck 491 

limiting the productivity and maximal achievable cell concentration in 492 

photobioreactors. Cells located at the periphery of a culture absorb most of the incoming 493 

light and may become photoinhibited, whereas cells at the inner layers remain in the 494 

dark and become photolimited. This results in high respiration and energy dissipation 495 

rates, causing inefficient photobioreactor use. The depth of the light penetration depends 496 

primarily on absorption by cells under cultivation, incoming light intensity and 497 

wavelength, cell morphology (e.g. cell size) and biochemistry (e.g. pigment contents).  498 

• Mehler and Mehler-like reactions are controlling light-depended O2 consumption. 499 

Unlike the Mehler reaction, the Mehler-like reaction involves flavodiiron proteins to 500 

reduce O2 without ROS evolution. Mehler-like reactions enable cyanobacteria, 501 

microalgae, and plants to cope efficiently with intermittent light regimes. 502 

• Minimal response times (tr_min): The minimal response time of LEDs and transistors 503 

can be calculated by 𝑡𝑟_𝑚𝑖𝑛 = ø × 𝑓𝑐
−1, where ø is the duty cycle and  𝑓𝑐  is the flashing 504 

frequency at “cut-off”, obtained from a frequency response graph (i.e. Bode plot). 505 

• Photosynthetic efficiency referrers to how much light (e.g. amount in photons or 506 

energy) is required by a phototroph to take up CO2 or produce O2 through 507 

photosynthesis (e.g. µmol CO2 or O2 per µmol of photons). Effects of flashing light on 508 

the photosynthetic efficiency of single cells or chloroplasts and whole cultures should 509 

be distinct. Dilute cultures with narrow light paths and negligible light attenuation are 510 

usually used to identify effects of flashing light on single cells or chloroplasts 511 

(biological boundary). However, flashing light was mostly found to improve 512 

photosynthetic efficiency of whole microalgal cultures with high light attenuation (e.g. 513 

highly concentrated cultures). 514 

• Photo- and mixotrophy: Phototrophic organisms use light as energy source to fix 515 

inorganic carbon dioxide in organic compounds. Heterotrophic organisms obtain energy 516 



and carbon from organic sources (glucose or acetate). A few mixotrophic microalgae 517 

are able to obtain energy and carbon skeletons by means of photosynthesis, active 518 

predation, endocytosis, and membrane-bound transport systems. Some others are even 519 

able to steal chloroplasts from other microalgae using a mechanism called myzocytosis. 520 

• Pulse-width modulation is a tool used to control the power supply (e.g. dimming) of 521 

electrical devices such as LEDs. It generates a pulse wave signal (i.e., rectangular pulse 522 

wave) with an asymmetrical shape (i.e. the duration of the on-off cycle) described by 523 

the duty cycle.   524 
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