14,001 research outputs found

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    Using FPGA for visuo-motor control with a silicon retina and a humanoid robot

    Get PDF
    The address-event representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI chips. The event information is transferred using a high speed digital parallel bus. This paper present an experiment based on AER for visual sensing, processing and finally actuating a robot. The AER output of a silicon retina is processed by an AER filter implemented into a FPGA to produce a mimicking behaviour in a humanoid robot (The RoboSapiens V2). We have implemented the visual filter into the Spartan II FPGA of the USB-AER platform and the Central Pattern Generator (CPG) into the Spartan 3 FPGA of the AER-Robot platform, both developed by authors.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    Full text link
    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages.Comment: Presented at DSLRob 2011 (arXiv:1212.3308

    A Software Retina for Egocentric & Robotic Vision Applications on Mobile Platforms

    Get PDF
    We present work in progress to develop a low-cost highly integrated camera sensor for egocentric and robotic vision. Our underlying approach is to address current limitations to image analysis by Deep Convolutional Neural Networks, such as the requirement to learn simple scale and rotation transformations, which contribute to the large computational demands for training and opaqueness of the learned structure, by applying structural constraints based on known properties of the human visual system. We propose to apply a version of the retino-cortical transform to reduce the dimensionality of the input image space by a factor of ex100, and map this spatially to transform rotations and scale changes into spatial shifts. By reducing the input image size accordingly, and therefore learning requirements, we aim to develop compact and lightweight egocentric and robot vision sensor using a smartphone as the target platfor

    Spike-based VITE control with Dynamic Vision Sensor applied to an Arm Robot.

    Get PDF
    Spike-based motor control is very important in the field of robotics and also for the neuromorphic engineering community to bridge the gap between sensing / processing devices and motor control without losing the spike philosophy that enhances speed response and reduces power consumption. This paper shows an accurate neuro-inspired spike-based system composed of a DVS retina, a visual processing system that detects and tracks objects, and a SVITE motor control, where everything follows the spike-based philosophy. The control system is a spike version of the neuroinspired open loop VITE control algorithm implemented in a couple of FPGA boards: the first one runs the algorithm and the second one drives the motors with spikes. The robotic platform is a low cost arm with four degrees of freedom.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/0
    corecore