459 research outputs found

    Holistic Measures for Evaluating Prediction Models in Smart Grids

    Full text link
    The performance of prediction models is often based on "abstract metrics" that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging "big data" domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.Comment: 14 Pages, 8 figures, Accepted and to appear in IEEE Transactions on Knowledge and Data Engineering, 2014. Authors' final version. Copyright transferred to IEE

    Data-driven methods to improve resource utilization, fraud detection, and cyber-resilience in smart grids

    Get PDF
    This dissertation demonstrates that empirical models of generation and consumption, constructed using machine learning and statistical methods, improve resource utilization, fraud detection, and cyber-resilience in smart grids. The modern power grid, known as the smart grid, uses computer communication networks to improve efficiency by transporting control and monitoring messages between devices. At a high level, those messages aid in ensuring that power generation meets the constantly changing power demand in a manner that minimizes costs to the stakeholders. In buildings, or nanogrids, communications between loads and centralized controls allow for more efficient electricity use. Ultimately, all efficiency improvements are enabled by data, and it is vital to protect the integrity of the data because compromised data could undermine those improvements. Furthermore, such compromise could have both economic consequences, such as power theft, and safety-critical consequences, such as blackouts. This dissertation addresses three concerns related to the smart grid: resource utilization, fraud detection, and cyber-resilience. We describe energy resource utilization benefits that can be achieved by using machine learning for renewable energy integration and also for energy management of building loads. In the context of fraud detection, we present a framework for identifying attacks that aim to make fraudulent monetary gains by compromising consumption and generation readings taken by meters. We then present machine learning, signal processing, and information-theoretic approaches for mitigating those attacks. Finally, we explore attacks that seek to undermine the resilience of the grid to faults by compromising generators' ability to compensate for lost generation elsewhere in the grid. Redundant sources of measurements are used to detect such attacks by identifying mismatches between expected and measured behavior

    Load forecast on a Micro Grid level through Machine Learning algorithms

    Get PDF
    As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes. Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede. A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo.Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs. For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application. Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations. From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics

    Customer active power consumption prediction for the next day based on historical profile

    Get PDF
    Energy consumption prediction application is one of the most important fieldsthat is artificially controlled with Artificial Intelligence technologies to maintainaccuracy for electricity market costs reduction. This work presents a way to buildand apply a model to each costumer in residential buildings. This model is built by using Long Short Term Memory (LSTM) networks to address a demonstration of time-series prediction problem and Deep Learning to take into consideration the historical consumption of customers and hourly load profiles in order to predict future consumption. Using this model, the most probable sequence of a certain industrial customer’s consumption levels for a coming day is predicted. In the case of residential customers, determining the particular period of the prediction in terms of either a year or a month would be helpful and more accurate due to changes in consumption according to the changes in temperature and weather conditions in general. Both of them are used together in this research work to make a wide or narrow prediction window.A test data set for a set of customers is used. Consumption readings for anycustomer in the test data set applying LSTM model are varying between minimum and maximum values of active power consumption. These values are always alternating during the day according to customer consumption behavior. This consumption variation leads to leveling all readings to be determined in a finite set and deterministic values. These levels could be then used in building the prediction model. Levels of consumption’s are modeling states in the transition matrix. Twenty five readings are recorded per day on each hour and cover leap years extra ones. Emission matrix is built using twenty five values numbered from one to twenty five and represent the observations. Calculating probabilities of being in each level (node) is also covered. Logistic Regression Algorithm is used to determine the most probable nodes for the next 25 hours in case of residential or industrial customers.Index Terms—Smart Grids, Load Forecasting, Consumption Prediction, Long Short Term Memory (LSTM), Logistic Regression Algorithm, Load Profile, Electrical Consumption.</p

    Data-driven Detection of Stealth Cyber-attacks in DC Microgrids

    Get PDF
    corecore