487 research outputs found

    SUPPORTING MISSION PLANNING WITH A PERSISTENT AUGMENTED ENVIRONMENT

    Get PDF
    Includes supplementary materialIncludes Supplementary MaterialThe Department of the Navy relies on current naval practices such as briefs, chat, and voice reports to provide an overall operational assessment of the fleet. That includes the cyber domain, or battlespace, depicting a single snapshot of a ship’s network equipment and service statuses. However, the information can be outdated and inaccurate, creating confusion among decision-makers in understanding the service and availability of equipment in the cyber domain. We examine the ability of a persistent augmented environment (PAE) and 3D visualization to support communications and cyber network operations, reporting, and resource management decision-making. We designed and developed a PAE prototype and tested the usability of its interface. Our study examined users’ comprehension of 3D visualization of the naval cyber battlespace onboard multiple ships and evaluated the PAE’s ability to assist in effective mission planning at the tactical level. The results are highly encouraging: the participants were able to complete their tasks successfully. They found the interface easy to understand and operate, and the prototype was characterized as a valuable alternative to their current practices. Our research provides close insights into the feasibility and effectiveness of the novel form of data representation and its capability to support faster and improved situational awareness and decision-making in a complex operational technology (OT) environment between diverse communities.Lieutenant, United States NavyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Developing Extended Reality Projects in Support of Design, Fabrication and Procedure

    Get PDF
    The goal of this internship was to improve and create virtual reality simulations and visualizations for use in parallel with the design, fabrication, and analysis of flight ready hardware for areas like the Environmental Control and Life Support Systems (ECLSS) and also Space Systems. Specifically, my work was done in the XRSpace lab at Marshall Space Flight Center (MSFC) with assistance directly and indirectly from workers at KSC, JSC and LaRC. Led by David Reynolds, the XRSpace lab develops products for various entities at NASA. The work done in the XRSpace lab focuses on Extended Reality (XR) solutions for both simulations and visualization capabilities. The goal of the lab is to support the larger systems of NASA and to help find ways that XR technologies can streamline and optimize the design process. Extended Reality is an umbrella term that encompasses Mixed Reality, Augmented Reality, and Virtual Reality. In this capacity, I was able to complete several elements in the design, building, testing, and deployment for a variety of immersive experiences, including a VR procedure simulation, visualization aids, and a 360-image capture tool

    Developing Extended Reality Projects in Support of Design, Fabrication and Procedure

    Get PDF
    The goal of this internship was to improve and create virtual reality simulations and visualizations for use in parallel with the design, fabrication, and analysis of flight ready hardware for areas like the Environmental Control and Life Support Systems (ECLSS) and also Space Systems. Specifically, my work was done in the XRSpace lab at Marshall Space Flight Center (MSFC) with assistance directly and indirectly from workers at KSC, JSC and LaRC. Led by David Reynolds, the XRSpace lab develops products for various entities at NASA. The work done in the XRSpace lab focuses on Extended Reality (XR) solutions for both simulations and visualization capabilities. The goal of the lab is to support the larger systems of NASA and to help find ways that XR technologies can streamline and optimize the design process. Extended Reality is an umbrella term that encompasses Mixed Reality, Augmented Reality, and Virtual Reality. In this capacity, I was able to complete several elements in the design, building, testing, and deployment for a vari of immersive experiences, including a VR procedure simulation, visualization aids, and a 360-image capture tool

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Analysis of Visualisation and Interaction Tools Authors

    Get PDF
    This document provides an in-depth analysis of visualization and interaction tools employed in the context of Virtual Museum. This analysis is required to identify and design the tools and the different components that will be part of the Common Implementation Framework (CIF). The CIF will be the base of the web-based services and tools to support the development of Virtual Museums with particular attention to online Virtual Museum.The main goal is to provide to the stakeholders and developers an useful platform to support and help them in the development of their projects, despite the nature of the project itself. The design of the Common Implementation Framework (CIF) is based on an analysis of the typical workflow ofthe V-MUST partners and their perceived limitations of current technologies. This document is based also on the results of the V-MUST technical questionnaire (presented in the Deliverable 4.1). Based on these two source of information, we have selected some important tools (mainly visualization tools) and services and we elaborate some first guidelines and ideas for the design and development of the CIF, that shall provide a technological foundation for the V-MUST Platform, together with the V-MUST repository/repositories and the additional services defined in the WP4. Two state of the art reports, one about user interface design and another one about visualization technologies have been also provided in this document

    A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's Gait

    Full text link
    Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to do something and transforms them into a control command for controlling external devices. The feelings described by the participants when they control a self-avatar in an immersive virtual environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar (ownership illusion). It has recently been shown that inducing the ownership illusion and then manipulating the movements of one’s self-avatar can lead to compensatory motor control strategies. In order to maximize this effect, there is a need for a method that measures and monitors embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong ownership illusion. This is particularly true given that reaching a high level of both BCI performance and embodiment are inter-connected. To reach one of them, the second must be reached as well. Some limitations of many existing systems hinder their adoption for neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most systems allow the user to take single steps or to walk but do not allow both, which prevents users from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or self-paced), which prevents users from progressing from machine-dependent to machine-independent walking. Overcoming the aforementioned limitations can be done by combining different control modes and options in one single system. However, this would have a negative impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool. In this case, there will be a need to enhance BCI performance. For such purpose, many techniques have been used in the literature, such as providing modified feedback (whereby the presented feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as more data becomes available). This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility of measuring the level of embodiment of an immersive self-avatar, during the performing, observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting visual feedback that conflicts with the desired movement of embodied participants. The objective of study 2 was to develop and validate a BCI to control single steps and forward walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in cue-paced and self-paced modes. Different performance enhancement strategies were implemented to increase BCI performance. The data of these two studies were then used in study 3 to construct a generic classifier that could eliminate offline calibration for future users and shorten training time. Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD) from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with the contralateral limb or stopped walking before the participant stopped (modified feedback). In study 2, participants completed a 4-day sequential training to control the gait of an avatar in both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking (continuous control mode). The avatar moved as a response to two calibrated regularized linear discriminant analysis (RLDA) classifiers that used the ÎŒ power spectral density (PSD) over the foot area of the motor cortex as features. The classifiers were retrained after every session. During the training, and for some of the trials, positive modified feedback was presented to half of the participants, where the avatar moved correctly regardless of the participant’s real performance. In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results of study 1 show that subjective levels of embodiment correlate strongly with the power differences of the event-related synchronization (ERS) within the ÎŒ frequency band, and over the motor and pre-motor cortices between the modified and regular feedback trials. Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced BCI in both modes. For the cue-paced BCI, the average offline performance (classification rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback group. For self-paced BCI, the average performance was 83% at switch control and 92% at continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models performed as well as models obtained from participant-specific offline data. The results show that there it is possible to design a participant-independent zero-training BCI.Les interfaces cerveau-ordinateur (ICO) ont Ă©tĂ© utilisĂ©es pour contrĂŽler la marche d'un Ă©go-avatar virtuel dans le but d'ĂȘtre utilisĂ©es dans la rĂ©adaptation de la marche. Une ICO dĂ©code les signaux du cerveau reprĂ©sentant un dĂ©sir de faire produire un mouvement et les transforme en une commande de contrĂŽle pour contrĂŽler des appareils externes. Les sentiments dĂ©crits par les participants lorsqu'ils contrĂŽlent un Ă©go-avatar dans un environnement virtuel immersif dĂ©montrent que les humains peuvent ĂȘtre incarnĂ©s dans un corps d'un avatar (illusion de propriĂ©tĂ©). Il a Ă©tĂ© rĂ©cemment dĂ©montrĂ© que provoquer l’illusion de propriĂ©tĂ© puis manipuler les mouvements de l’égo-avatar peut conduire Ă  des stratĂ©gies de contrĂŽle moteur compensatoire. Afin de maximiser cet effet, il existe un besoin d'une mĂ©thode qui mesure et surveille les niveaux d’incarnation des participants immergĂ©s dans la rĂ©alitĂ© virtuelle (RV) pour induire et maintenir une forte illusion de propriĂ©tĂ©. D'autre part, atteindre un niveau Ă©levĂ© de performances (taux de classification) ICO et d’incarnation est interconnectĂ©. Pour atteindre l'un d'eux, le second doit Ă©galement ĂȘtre atteint. Certaines limitations de plusieurs de ces systĂšmes entravent leur adoption pour la neurorĂ©habilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systĂšmes permettent Ă  l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas Ă  un utilisateur de passer des pas Ă  la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmĂ© (cue-paced) ou auto-rythmĂ© (self-paced). Surmonter les limitations susmentionnĂ©es peut ĂȘtre fait en combinant diffĂ©rents modes et options de commande dans un seul systĂšme. Cependant, cela aurait un impact nĂ©gatif sur les performances de l’ICO, diminuant ainsi son utilitĂ© en tant qu'outil potentiel de rĂ©habilitation. Dans ce cas, il sera nĂ©cessaire d'amĂ©liorer les performances des ICO. À cette fin, de nombreuses techniques ont Ă©tĂ© utilisĂ©es dans la littĂ©rature, telles que la rĂ©troaction modifiĂ©e, le recalibrage du classificateur et l'utilisation d'un classificateur gĂ©nĂ©rique. Le projet de cette thĂšse a Ă©tĂ© rĂ©alisĂ© en 3 Ă©tudes, avec objectif d'Ă©tudier dans l'Ă©tude 1, la possibilitĂ© de mesurer le niveau d'incarnation d'un Ă©go-avatar immersif, lors de l'exĂ©cution, de l'observation et de l'imagination de la marche, Ă  l'aide des techniques encĂ©phalogramme (EEG), en prĂ©sentant une rĂ©troaction visuelle qui entre en conflit avec la commande du contrĂŽle moteur des sujets incarnĂ©s. L'objectif de l'Ă©tude 2 Ă©tait de dĂ©velopper un BCI pour contrĂŽler les pas et la marche vers l’avant d'un Ă©go-avatar dans la rĂ©alitĂ© virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmĂ©s et auto-rythmĂ©s. DiffĂ©rentes stratĂ©gies d'amĂ©lioration des performances ont Ă©tĂ© mises en Ɠuvre pour augmenter la performance (taux de classification) de l’ICO. Les donnĂ©es de ces deux Ă©tudes ont ensuite Ă©tĂ© utilisĂ©es dans l'Ă©tude 3 pour construire des classificateurs gĂ©nĂ©riques qui pourraient Ă©liminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation. Vingt participants sains diffĂ©rents ont participĂ© aux Ă©tudes 1 et 2. Dans l'Ă©tude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affichĂ© dans un casque de RV du point de vue de la premiĂšre personne (1PP). Ils ont Ă©tĂ© invitĂ©s Ă  performer, Ă  regarder ou Ă  imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatĂ©ral ou a arrĂȘtĂ© de marcher avant que le participant ne s'arrĂȘte (rĂ©troaction modifiĂ©e). Dans l'Ă©tude 2, les participants ont participĂ© Ă  un entrainement sĂ©quentiel de 4 jours pour contrĂŽler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmĂ©, ils ont imaginĂ© un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmĂ©, il leur a Ă©tĂ© demandĂ© d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrĂŽle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrĂŽle continu). L'avatar s'est dĂ©placĂ© en rĂ©ponse Ă  deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrĂ©s qui utilisaient comme caractĂ©ristiques la densitĂ© spectrale de puissance (Power Spectral Density; PSD) des bandes de frĂ©quences ” (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont Ă©tĂ© recalibrĂ©s aprĂšs chaque session. Au cours de l’entrainement et pour certains des essais, une rĂ©troaction modifiĂ©e positive a Ă©tĂ© prĂ©sentĂ©e Ă  la moitiĂ© des participants, oĂč l'avatar s'est dĂ©placĂ© correctement quelle que soit la performance rĂ©elle du participant. Dans les deux Ă©tudes, l'expĂ©rience subjective des participants a Ă©tĂ© analysĂ©e Ă  l'aide d'un questionnaire. Les rĂ©sultats de l'Ă©tude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrĂ©lĂ©s Ă  la diffĂ©rence de la puissance de la synchronisation liĂ©e Ă  l’évĂ©nement (Event-Related Synchronization; ERS) sur la bande de frĂ©quence ÎŒ et sur le cortex moteur et prĂ©moteur entre les essais de rĂ©troaction modifiĂ©s et rĂ©guliers. L'Ă©tude 2 a montrĂ© que tous les participants Ă©taient capables d’utiliser le BCI rythmĂ© et auto-rythmĂ© dans les deux modes. Pour le BCI rythmĂ©, la performance hors ligne moyenne au jour 1 Ă©tait de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amĂ©liorĂ© la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne Ă©tait de 85,9±8,4% pour le groupe de rĂ©troaction modifiĂ© (77-97%) contre 75% pour le groupe de rĂ©troaction non modifiĂ©. Pour le BCI auto-rythmĂ©, la performance moyenne Ă©tait de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont Ă©tĂ© amĂ©liorĂ©es par la rĂ©troaction modifiĂ©e (p = 0,001). Enfin, les rĂ©sultats de l'Ă©tude 3 montrent que pour la classification des initialisations des pas et de la marche, il a Ă©tĂ© possible de construire des modĂšles gĂ©nĂ©riques Ă  partir de donnĂ©es hors ligne spĂ©cifiques aux participants. Les rĂ©sultats montrent la possibilitĂ© de concevoir une ICO ne nĂ©cessitant aucun entraĂźnement spĂ©cifique au participant
    • 

    corecore