62,859 research outputs found
School Budgets and Student Achievement in California: The Principal's Perspective
Presents the results of workshops conducted with 45 elementary, middle, and high school principals from California public schools. Documents the variety of resource allocation strategies used by principals to maximize student academic performance
Thermal stability of some aircraft turbine fuels derived from oil shale and coal
Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data
Effect of load flank angle modifications on the structural integrity of buttress threaded connections
One of the main requirements of threaded & coupled connections used in oil-producing wells is the ability to resist high tensile loads. In order to ensure integrity under ever-increasing loads, the geometric parameters of the connection can be modified. In this paper, an FEA study of a 4.5 inch casing connection is reported to examine the effects of a modified load angle in combination with high tensile forces. The focus is on two failure mechanisms: jump-out and plastically deformed zones. Furthermore, a relative motion of pin and box at the contact regions is observed. It is concluded that using a negative load flank might be beneficial in order to prevent jump-out. At the same time, the deformations at the roots of the last engaged threads of the pin appear to be larger and relative sliding increases. Despite an optimization against one failure mechanism, the connection might fail as a result of an inevitable reduction of resistance against another
Fuel quality/processing study. Volume 3: Fuel upgrading studies
The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen
Low temperature tensile properties of line pipe steels
Given the expected increase in Arctic oil and gas exploitation, there is a demand for high-strength line pipe steels able to cope with the Arctic climate. The state-of-the-art of the tensile properties of API 5L steels at low temperatures is reviewed and discussed. Well-known characteristics such as an increase in strength and Young’s modulus with decreasing temperatures are confirmed. The Y/T ratio is fairly unaffected by changes in temperature. Lüders elongation manifests itself at low temperatures where the Lüders plateau tends to increase. Conflicting statements about the relation between ductility and temperature were found. Altogether, quantifiable test results are scarce, especially for the high strength grades from API 5L X90 grade onwards. The urgent need for more tensile strength and ductility data of these steels at low temperatures is stated and defended
DIRAC framework evaluation for the -LAT and CTA experiments
DIRAC (Distributed Infrastructure with Remote Agent Control) is a general
framework for the management of tasks over distributed heterogeneous computing
environments. It has been originally developed to support the production
activities of the LHCb (Large Hadron Collider Beauty) experiment and today is
extensively used by several particle physics and biology communities. Current
( Large Area Telescope -- LAT) and planned (Cherenkov Telescope Array --
CTA) new generation astrophysical/cosmological experiments, with very large
processing and storage needs, are currently investigating the usability of
DIRAC in this context. Each of these use cases has some peculiarities:
-LAT will interface DIRAC to its own workflow system to allow the access
to the grid resources, while CTA is using DIRAC as workflow management system
for Monte Carlo production and analysis on the grid. We describe the prototype
effort that we lead toward deploying a DIRAC solution for some aspects of
-LAT and CTA needs.Comment: proceedings to CHEP 2013 conference : http://www.chep2013.org
Use of refinery computer model to predict fuel production
Several factors (crudes, refinery operation and specifications) that affect yields and properties of broad specification jet fuel were parameterized using the refinery simulation model which can simulate different types of refineries were used to make the calculations. Results obtained from the program are used to correlate yield as a function of final boiling point, hydrogen content and freezing point for jet fuels produced in two refinery configurations, each one processing a different crude mix. Refinery performances are also compared in terms of energy consumption
The generic mapping tools version 6
The Generic Mapping Tools (GMT) software is ubiquitous in the Earth and ocean sciences. As a cross-platform tool producing high-quality maps and figures, it is used by tens of thousands of scientists around the world. The basic syntax of GMT scripts has evolved very slowly since the 1990s, despite the fact that GMT is generally perceived to have a steep learning curve with many pitfalls for beginners and experienced users alike. Reducing these pitfalls means changing the interface, which would break compatibility with thousands of existing scripts. With the latest GMT version 6, we solve this conundrum by introducing a new "modern mode" to complement the interface used in previous versions, which GMT 6 now calls "classic mode." GMT 6 defaults to classic mode and thus is a recommended upgrade for all GMT 5 users. Nonetheless, new users should take advantage of modern mode to make shorter scripts, quickly access commonly used global data sets, and take full advantage of the new tools to draw subplots, place insets, and create animations.Funding Agency
National Science Foundation (NSF)
Appeared in article as
U.S. National Science Foundation
MSU Geological Sciences Endowmentinfo:eu-repo/semantics/publishedVersio
Prompt Application-Transparent Transaction Revalidation in Software Transactional Memory
Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution
- …
