277 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Analysis of Black hole Attack in Ad hoc On-Demand Distance Vector (AODV) Routing Protocol : Vehicular Ad-hoc Networks (VANET) Context

    Get PDF
    In past years, popularity of Mobile Ad hoc Networks has led to the conception of Vehicular Ad hoc Networks. These networks must be highly secure before their implementation in real world. One of the vital aspects of these networks is routing protocol. Most of the protocols in VANET acknowledge all nodes in a network to be genuine by default. But there might be malicious nodes which can make the network vulnerable to various attacks. One such attacks is a black hole attack on AODV routing protocol. Because of its popularity, AODV and black hole attack are taken into consideration for this thesis. The aim of the thesis is to analyze effects of black hole attack on AODV and understand security need of routing protocols in VANET. The experimentation for this thesis was performed with 40, 60 and 80 nodes in network simulator (NS). The performance metrics such as average throughput, end to end delay and packet delivery ratio of each assumed scenarios under blackhole attack and with prevention method are calculated. The obtained calculations are compared to analyze the network performance of AODV. The results from the simulator demonstrate that overall network performance of AODV increased with black hole prevention algorithm in comparison to AODV under black hole attack only. Out of all the performance metrics that are used to analyze the network performance, the average throughput of AODV is significantly increased by 21 percent (approximately) when the mitigation algorithm is applied. The prevention approach used for the thesis can make AODV perform better against black hole attack. However, this approach is limited to a small to medium sized networks only

    Adaptive Hybrid Routing Protocol for VANETs

    Get PDF
    Within VANETs, vehicle mobility will cause the communication associations between vehicles to deteriorate. Hybrid routing is necessary as one size fits all approach is not suitable for VANET?s due to diversity in the infrastructure consisting of mobile nodes, stationary nodes, road-side units (RSU), control centres etc. Therefore, in the proposed system, we implement a hybrid design methodology, where we syndicate features of reactive routing (AODV) with geographic routing and proactive routing protocol. Adaptive Hybrid Routing Protocol(AHR), vehicles use proactive routing protocol for V2I communication and reactive routing protocol with geographic routing protocol for V2V communication. The system integrates features of both reactive and geographic routing protocols along with proactive routing schemes. It combines these routing protocols in a manner that efficiently uses all the location information available and exit to reactive routing as the location information degrades. As compared to the existing standard routing protocols, the analysis and simulations show that the routing overhead has been significantly reduced. It demonstrates how such a performance enhancement would yield a scalable and efficient routing solution in the context of VANET environments. Even in the occurrence of location errors, proposed system works efficiently and obtains scalable performance, thus making it an optimal protocol for VANETs

    An improved performance routing protocol based on delay for MANETs in smart cities

    Get PDF
    Mobile ad-hoc networks (MANETs) is a set of mobile devices that can self-configuration, self-established parameters to transmission in-network. Although limited inability, MANETs have been applied in many domains to serve humanity in recent years, such as disaster recovery, forest fire, military, intelligent traffic, or IoT ecosystems. Because of the movement of network devices, the system performance is low. In order to MANETs could more contribution in the future of the Internet, the routing is a significant problem to enhance the performance of MANETs. In this work, we proposed a new delay-based protocol aim enhance the system performance, called performance routing protocol based on delay (PRPD). In order to analyze the efficiency of the proposed solution, we compared the proposed protocol with traditional protocols. Experiment results showed that the PRPD protocol improved packet delivery ratio, throughput, and delay compared to the traditional protocols

    Routing Security in Mobile Ad-hoc Networks

    Get PDF
    The role of infrastructure-less mobile ad hoc networks (MANETs) in ubiquitous networks is outlined. In a MANET there are no dedicated routers and all network nodes must contribute to routing. Classification of routing protocols for MANET is based on how routing information is acquired and maintained by mobile nodes and/or on roles of network nodes in a routing. According to the first classification base, MANET routing protocols are proactive, reactive, or hybrid combinations of proactive and reactive protocols. According to the role-based classification, MANET routing protocols are either uniform when all network nodes have the same role or non-uniform when the roles are different and dedicated. A contemporary review of MANET routing protocols is briefly presented. Security attacks against MANET routing can be passive and or active. The purpose of the former is information retrieval, for example network traffic monitoring, while the latter is performed by malicious nodes with the express intention of disturbing, modifying or interrupting MANET routing. An overview of active attacks based on modification, impersonation/ spoofing, fabrication, wormhole, and selfish behavior is presented. The importance of cryptography and trust in secure MANET routing is also outlined, with relevant security extensions of existing routing protocols for MANETs described and assessed. A comparison of existing secure routing protocols form the main contribution in this paper, while some future research challenges in secure MANET routing are discussed

    Enhancing Node Cooperation in Mobile Wireless Ad Hoc Networks with Selfish Nodes

    Get PDF
    In Mobile Ad Hoc Networks (MANETs), nodes depend on each other for routing and forwarding packets. However, to save power and other resources, nodes belonging to independent authorities may behave selfishly, and may not be willing to help other nodes. Such selfish behavior poses a real threat to the proper functioning of MANETs. One way to foster node cooperation is to introduce punishment for selfish nodes. Based on neighbor-monitoring techniques, a fully distributed solution to detect, punish, and re-admit selfish nodes, is proposed here. This solution provides nodes the same opportunity to serve/and be served by others. A light-weight solution regarding battery status is also proposed here. This solution requires neighbor monitoring only when necessary, thereby saving nodes battery power. Another effective way to solve the selfish-node problem is to reward nodes for their service according to their cost. To force nodes to show their true cost, truthful protocols are needed. A low overhead truthful routing protocol to find optimal routes is proposed in this thesis. The most prominent feature of this protocol is the reduction of overhead from existing solutions O(n3) to O(n2). A light-weight scalable truthful routing protocol (LSTOP) is further proposed, which finds near-least-cost paths in dense networks. LSTOP reduces overhead to O(n) on average, and O(n2) in worst case scenarios. Multiple path routing protocols are an effective alternative to single path routing protocols. A generic mechanism that can turn any table-driven multipath routing protocol into a truthful one, is outlined here. A truthful multipath routing protocol (TMRP), based on well-known AOMDV protocol, is presented as an example. TMRP incurs an only 2n message overhead for a route discovery, and can also achieve load balancing without compromising truthfulness. To cope with the selfish-node problem in the area of position-based routing, a truthful geographic forwarding (TGF) algorithm is presented. TGF utilizes three auction-based forwarding schemes to stimulate node cooperation. The truthfulness of these schemes is proven, and their performance is evaluated through statistical analysis and simulation studies
    corecore