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ABSTRACT OF DISSERTATION

Enhancing Node Cooperation in Mobile Wireless Ad Hoc Networks with Selfish Nodes

In Mobile Ad Hoc Networks (MANETs), nodes depend on each other for routing and

forwarding packets. However, to save power and other resources, nodes belonging to

independent authorities may behave selfishly, and may not be willing to help other nodes.

Such selfish behavior poses a real threat to the proper functioning of MANETs.

One way to foster node cooperation is to introduce punishment for selfish nodes. Based

on neighbor-monitoring techniques, a fully distributed solution to detect, punish, and re-

admit selfish nodes, is proposed here. This solution provides nodes the same opportunity

to serve/and be served by others. A light-weight solution regarding battery status is also

proposed here. This solution requires neighbor monitoring only when necessary, thereby

saving nodes battery power.

Another effective way to solve the selfish-node problem is to reward nodes for their

service according to their cost. To force nodes to show their true cost, truthful protocols

are needed. A low overhead truthful routing protocol to find optimal routes is proposed

in this thesis. The most prominent feature of this protocol is the reduction of overhead

from existing solutions O(n3) to O(n2). A light-weight scalable truthful routing protocol

(LSTOP) is further proposed, which finds near-least-cost paths in dense networks. LSTOP

reduces overhead to O(n) on average, and O(n2) in worst case scenarios.

Multiple path routing protocols are an effective alternative to single path routing

protocols. A generic mechanism that can turn any table-driven multipath routing protocol



into a truthful one, is outlined here. A truthful multipath routing protocol (TMRP), based

on well-known AOMDV protocol, is presented as an example. TMRP incurs an only

2n message overhead for a route discovery, and can also achieve load balancing without

compromising truthfulness.

To cope with the selfish-node problem in the area of position-based routing, a truthful

geographic forwarding (TGF) algorithm is presented. TGF utilizes three auction-based

forwarding schemes to stimulate node cooperation. The truthfulness of these schemes

is proven, and their performance is evaluated through statistical analysis and simulation

studies.

KEYWORDS: Ad Hoc Networks, Selfish Nodes, Routing, Neighbor monitoring, Truth-

fulness.
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Chapter 1

Introduction

This dissertation addresses the node cooperation problem in wireless ad hoc networks with

selfish nodes. A fair distributed solution to detect and punish selfish nodes, together with

a light-weight solution considering battery status is first presented. Then, two routing

protocols, a low overhead truthful routing protocol and a light-weight scalable truthful

routing protocol to improve efficiency of truthful routing, are presented. Next, the paper

discusses a generic mechanism to turn any table-driven multipath routing protocol into a

truthful one. Finally, a truthful mechanism for position-based routing and forwarding is

presented in this thesis.

1.1 Ad Hoc Networks

With the rapid development of electronics and mobile computing devices, wireless data

communication is becoming more and more pervasive. Wireless networks are developed by

connecting these wireless devices, and a wireless network can range in size from as small as

a BAN (Body Area Network), which covers the transmission range of the human body, to

as large as wireless WANs (Wide Area Networks)[1]. In addition to providing the platform

for mobile computing, a wireless network provides connection to various resources such

as Internet services. The emergence of wireless networks satisfies the need for ubiquitous

computing by accessing information at any time and any place. For example, at Starbucks,

we can always see customers surfing the Internet while enjoying coffee. Among the various

wireless networks, some have the support of infrastructures. For example, cellular networks

are equipped with base stations, and wireless LANs are equipped with access points. Other

wireless networks are not facilitated by an infrastructure support system. These networks

are established for specific purposes, or in an ‘ad hoc’ manner, and thus are called ad hoc

networks.

A mobile ad hoc network is an autonomous system, whereby a set of nodes (entities),

which could be laptops or PDAs, are connected through wireless links. The system
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allows the seamless interconnection of entities in areas without preexisting infrastructures.

Without an infrastructure, ad hoc networks can be deployed rapidly, and were initially

used for scenarios where establishing an infrastructure was not feasible or economical,

such as disaster relief operations, emergency operations, and in the battlefield. It has

now been extended to civilian and commercial applications. A prototypical example is

mobile conferencing, where group of mobile users can establish an ad hoc network for

collaborative computing, using their laptops. Ad hoc networks can also be used as edge

networks to extend the coverage of cellular networks [2]. The potential applications of

ad hoc networks include home networking, Personal Area Networks, embedded computing

applications, sensor networks, and automotive interaction [1].

In general, mobile ad hoc networks share the following properties:

• Lack of infrastructure. In cellular networks, there are base stations and other

centralized servers such as mobile switch centers. However, in ad hoc networks, there

are no centralized entities in charge of network activities. Therefore, networking

functions have to be executed by nodes. For example, each node has to work as a

router for routing and data forwarding.

• Topology changes. In mobile ad hoc networks, mobility is inevitable. Nodes may move

together as a group in the same direction, or to the same destination, as soldiers move

on the battlefield. In most scenarios, nodes are more likely to move independently.

Nodes may also dynamically join, or leave, the network at any time. Due to the

mobility of nodes and their dynamic presence, the topology of the network link may

change rapidly and unpredictably.

• Scarcity of resource. Nodes in mobile ad hoc networks usually have limited resources,

such as battery power and bandwidth. While nodes in wired networks never take

power into consideration, battery power is a primary concern in mobile ad hoc

networks. Usually, the batteries in laptops last for only a couple of hours under normal

working conditions. Moreover, packet transmission is very energy consumptive, and

accelerates the depletion of battery power.

• Poor channel quality. Communication over wireless channels suffers from propagation

path loss, fading, and interference from other ongoing communications. Different

terrain contours and environments (city or rural, open space or inside office buildings),

have varying impact on path loss. Even the weather, i.e., sunny or rainy, has an effect.

The distance between two nodes is an important factor in channel quality, as received
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signal strength deteriorates exponentially with increased distance. Nodes within radio

range may interfere with each other. A more subtle problem is hidden nodes [3, 4]. In

one scenario, a node is sending packets to a second node. However, a third node, out

of radio range of the sending node but within the transmission range of the receiving

node, may simultaneously send out packets, thus destroying ongoing communications.

Mobile nodes also suffer from frequent link breaks.

• Multi-hop forwarding. Nodes have limited radio ranges to minimize required

transmission power. Usually the expanse of an ad hoc network is much larger than a

node’s transmission coverage. Therefore, multi-hop packet forwarding is necessary for

communication over the entire network range. In cellular networks or wireless LANs,

the base station and the access point can cover the entire network.

• Device heterogeneity. Mobile devices in ad hoc networks can exist in many forms,

such as laptops, PDAs, and cellular phones. These devices differ greatly in features

such as size, memory, power consumption, and processing ability [5].

1.2 Motivations

Routing and data forwarding are two basic functions of networks. In wired networks, routers

are in charge of routing and data forwarding, while in cellular networks base stations have

this responsibility. However, in mobile ad hoc networks, in the absence of dedicated routers

or base stations, nodes have to work as both routers and end systems. On one hand, these

nodes usually have limited radio power and can cover a very limited area. On the other hand,

the range of an ad hoc network can be quite large. Data communication therefore usually

involves multi-hops between nodes. In such a system, without the forwarding help of nodes,

communication beyond a node’s radio range is impossible. Most routing protocols assume

cooperative network settings, whereby nodes are willing to help each other by forwarding

packets without bias. The primary challenge of routing in such an environment is to cope

with node mobility, which, as has been noted, leads to frequently changing network topology.

Many routing protocols [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] have been

proposed for ad hoc networks. The key idea behind all of these protocols is to establish and

maintain loop-free paths to respective destinations, while achieving a good balance with

important performance metrics.

However, in some ad hoc networks, (and particularly civilian ones), such cooperation

cannot be assumed. In these ad hoc networks, nodes belong to different authorities and have
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their own priorities. In ad hoc networks, nodes have very limited resources, particularly

battery power. On the other hand, the transmission of packets is very power-consuming.

To expend this scarce resource on helping other nodes is not in a node’s best interests.

Thus a selfish node is not willing to forward data to other nodes freely, although it may

expect service from other nodes. A selfish node is distinct from a malicious node, which

intends to destroy the network or harm other nodes. When a minority of nodes engages

in selfish behavior, network performance will be degraded, but when the majority of nodes

exhibit selfish behavior, the collapse of the network may result. Thus selfish nodes pose a

real threat to the correct functioning of ad hoc networks.

1.2.1 Punishment Based Solutions

One way to solve the selfish nodes problem is to introduce a punishment mechanism to

force node cooperation. Nodes have the responsibility to help each other, i.e., they have to

forward packets upon request. Uncooperative nodes can be punished by being excluded from

the network. The key issue for such a mechanism is the design of an effective monitoring and

evaluation system to evaluate node forwarding performance, and to detect selfish behaviors.

A good punishment based solution should have the following features:

• In the absence of centralized servers in ad hoc networks, the solution (both detection

and evaluation tasks) should be distributed among nodes. Due to the properties

of wireless communication (such as packet collision and interference), a node can

not make accurate observations regarding other nodes. Thus, a single node’s

opinion/decision regarding conviction of another node cannot be relied upon.

• A selfish node should be identified and punished. Simply finding another route

that bypasses a suspicious selfish node is not enough to force cooperation, since it

encourages the selfish node not to forward packets.

• False conviction should be avoided, i.e., a cooperative node should not be convicted

of being selfish, and be punished. Avoiding false punishment is more important than

identifying all selfish nodes.

• A resource-depleting solution is not feasible. If excessive battery power and bandwidth

consumption are needed to identify selfish nodes, it may be enough to just identify

suspicious nodes. it is important to remember that a selfish node is not a malicious

node, as it just wants to save its resource, not destroy or attack others.
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A node’s selfishness is evaluated based on its forwarding behavior. However, nodes in

different positions in the network (particularly when the network is in a two dimensional

area) have different opportunities to serve, or be served by the network. Some nodes in

certain positions have obvious privilege over other nodes. This unfair utility of network is

known as the location privilege problem. Generally, routing algorithms select short routes

(ideally the shortest routes), and therefore routes are very likely to pass through the middle

of the network. Nodes located in the middle of the network have more opportunities to be

included in routes than those in the periphery. Nodes in the center area have to forward

more packets and therefore spend more resources than those in the periphery. In other

words, nodes in the periphery benefit from saving their resources. The evaluation of selfish

behavior should consider this problem.

1.2.2 Motivation Based Solutions

The selfish nodes problem can be countered by inducing these nodes to cooperate by

motivating them with incentives. This is diametrically opposed to the punishment approach.

All nodes are assumed to be selfish in nature and they have the choice to forward packets,

or not. But, why consume valuable power resources when nothing is received in return?

By being reimbursed for their forwarding cost, and even gaining bonuses, selfish nodes can

benefit from packet forwarding, and will be more willing to cooperate with other nodes.

Reimbursement is usually in the form of virtual money, which can be converted into real

money.

A natural question is how much a node should be paid. A simple way is to reimburse each

node equally for packet forwarding. However, expenditures vary among nodes for forwarding

the same packet, since they may use different emitting power and have different costs for

emitting power units. Also the cost of a node may vary over time due to its battery status.

For example, a node with low battery status is more likely to save the battery for its own use

than one with full battery status. Thus, it is desirable to reimburse nodes according to their

particular situation at any point in time. Meanwhile nodes getting forwarding services can

pay for these services with a reasonably low reimbursement. However, to maximize their

utility, selfish nodes may not divulge their true cost. This poses the requirement for truthful

protocols (strategies) to prevent cheating.

A protocol is truthful (or strategy-proof) if it maximizes the utility of nodes only when

they reveal their true cost. Truthful protocols are very useful in practice. For example, if

ad hoc networks are used as edge networks to extend coverage of access points, or cellular
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networks, truthful protocols provide the means for optimal payment to the forwarding

nodes.

In a truthful protocol, selfish nodes have no incentive to lie about their cost. Note

that the cost here refers to that of data packet transmission only. However, any routing

protocol produces control messages1 for route discovery and route maintenance. Since the

cost of overhead in terms of control messages incurred by such truthful protocols must also

be reimbursed, it is not desirable to reduce cost for data transmissions at the expense of

high overhead, in terms of control messages. If the overall overhead incurred exceeds the

savings for data packet transmission, there is no advantage to the truthful protocol. The

following example illustrates this point. There are 5 intermediate nodes between a given

source and a destination. Each intermediate node asks 5 cents for one packet forwarding

although its true cost (to forward one packet) is only 1 cent. If the source has 1000 packets

to send, it should pay 250 dollars for the service. With a truthful protocol, every node

will show its true cost, which is 1 cent. However, the protocol incurs an overhead of 500

dollars. Of course, as a rational node, the source just wants to pay what an intermediate

node asks. Thus controlling the overhead is as important as guaranteeing the truthfulness

for any practical protocol. Moreover, a lower overhead usually leads to higher network

performance.

Finding a truthful routing protocol for geographic routing is also a challenge. Topology-

based routing algorithms, such as AODV or DSR, usually invoke global route discoveries

to find routes from sources to destinations. Data packets will travel along the found paths.

However, typical geographic routing algorithms[23, 24, 25, 26, 27, 28, 29] do not have

such a global route discovery. Instead, the routing decision is based on local topology

information, particularly 1-hop or 2-hop neighbor information. Without global information,

some truthful methods used in topology-based routing can not be applied directly to

geographic routing.

1.3 Contributions of the Dissertation

In this dissertation, we address the selfish nodes problem. We explore various mechanisms

to solve this problem and have developed two detection-based solutions, two low-overhead

truthful routing protocols, one multiple path truthful routing mechanism, and one

1In this dissertation, we use packet and message interchangeably, meaning formatted blocks of data
transmitted over the network.
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truthful greedy forwarding algorithm for position-based routing. Specifically, the following

contributions are made:

• A fair distributed solution [30] to force node cooperation is presented. It judges,

punishes, and readmits selfish nodes. Unlike previous solutions, the focus is on

fairness, i.e., to provide the same chance for all nodes to gain services from the network

and to offer services to the network. Also considered is location privilege which has not

been emphasized in any of the previous solutions. Simulation results show that the

proposed scheme improves data forwarding capability substantially in the presence of

selfish nodes.

• Also presented here is a light-weight solution considering battery status [31]. The

solution is light-weight in that neighbor monitoring is on-demand, and nodes work in

promiscuous mode only part-time to save power. In addition, the solution is fair, in

that battery status is considered. Compared with the first solution, this solution can

more accurately judge selfish nodes as well as deliver more packets.

• A Low Overhead Truthful routing protocol (LOTTO) [32] reduces the overhead from

O(n3) [33] to O(n2).

– An algorithm is developed that collects topology information using a much lower

overhead (from O(n3) to O(n2)) compared to that of ad hoc-VCG [33]. Thus

LOTTO provides much higher network performance than ad hoc-VCG while

achieving truthfulness and least-cost routing.

– Due to the reduced overhead of the protocol, the net cost for truthful routing is

substantially reduced.

• A Light-weight Scalable Truthful routing Protocol (LSTOP) [34, 35] is also presented,

which further reduces overhead to O(n) on average, and O(n2) in the worst case.

– A scalable method is shown to find near-optimal routes (in simulation) with a

low overhead of O(n) on average.

– Due to the low overhead, the protocol is scalable and provides high network

performance. Simulation results show that LSTOP generates far lower (30 to 60

times less) overhead, incurs far lower (2 magnitude of order) end-to-end delay,

delivers significantly more packets, and has an even better overpayment ratio.

Moreover, the net cost for truthful routing is significantly reduced.
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– An easy and accurate way to calculate payment is shown for nodes involved in

route discoveries.

• GTMR [36], a generic mechanism to transform any table-driven multipath routing

protocol into a truthful one, is presented, and shown for guarantee of truthfulness.

In addition, there is TMRP - a truthful multipath routing protocol based on an

AOMDV protocol as an instance of GTMR. A prominent feature of TMRP is that

it incurs only 2n control packets for a route discovery and doesn’t require new types

of control messages over AOMDV. To the best of our knowledge, this is the lowest

overhead incurred for any truthful routing protocol. TMRP can also achieve load

balancing without compromising truthfulness.

• TGF [37], a truthful geographic forwarding algorithm for position-based routing is

also discussed. Three auction schemes are introduced for forwarding packets to the

next node. We show the truthfulness and effectiveness of TGF. To the best of our

knowledge, TGF is the first truthful geographic forwarding algorithm for ad-hoc

networks.

• Extensive simulation studies have also been conducted to evaluate the network

performance of all solutions and protocols. Specifically, LOTTO and LSTOP are

compared with the ad hoc-VCG. To the best of our knowledge, we are the first to

conduct an extensive simulation study to evaluate important network metrics, such as

packet delivery ratio, overhead, and end-to-end delay for protocols, using mechanism

design for selfish nodes problems. Simulation results show that the protocols greatly

outperform the ad hoc-VCG in all metrics.

1.4 Organization of the Dissertation

The reminder of the dissertation is arranged as follows. Chapter 2 reviews existing studies

in this field. Chapter 3 presents two distributed detection-based solutions: a distributed

solution which provides fairness and mitigates location privilege, and a light-weight solution

which takes battery status into account. Chapter 4 presents two truthful routing protocols

LOTTO and LSTOP, which incur O(n2) and O(n) overhead on average, respectively.

Chapter 5 presents a generic mechanism to turn any table-driven multiple routing protocol

into a truthful one, and gives an instance of such a mechanism. Chapter 6 focuses on

position-based routing and presents a truthful greedy-forwarding algorithm. Chapter 7

concludes the dissertation and discuss possible future studies.
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Chapter 2

Related Work

The problem of nodes cooperation in MANETs has received a lot of research interest

recently. Numerous solutions [33, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 30]

have appeared in the literature, and each solution has a niche of applicability. This chapter

gives a brief overview of these works.

Based on different philosophies of treating selfishness, solutions can be broadly classified

as detection-based approaches and motivation-based approach. Detection-based approaches

assume that nodes have the responsibility to forward packets for others, i.e., selfishness is

not allowed. Nodes are monitored for their performance and necessary actions are taken

once selfish behavior is detected. Motivation-based approaches, on the other hand, assume

that nodes are selfish in nature and try to motivate them to cooperate by using some form

of incentive such as virtual money (given to nodes upon serving the network). In such

protocols, packet forwarding services are not free. Nodes having incentives/credit can use

it to gain services from the network. When there are no accumulated incentives/credit, the

nodes cannot take any services from the network. However, they can earn credit by serving

other nodes.

2.1 Detection-based Approach

Marti et al. [50] were the first to introduce the selfish-node problem, as a type of misbehaving

nodes. While not focusing on this problem alone, they provided a generic solution for

handling misbehaving nodes. They introduced two tools, watchdog and pathrater, into DSR

extensions to mitigate routing misbehavior (including selfish nodes) in ad hoc networks.

Watchdog is based on neighbor monitoring and is used to identify malicious and selfish

nodes. Pathrater evaluates the overall reputation of nodes on a path. It is used to select

routes which bypass misbehaving nodes, including malicious nodes and selfish nodes. In

their solution, selfish nodes are not penalized. Instead, they can still use the network while

not forwarding packets.
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Buchegger et al. [48, 49] proposed the CONFIDANT protocol to monitor the behavior

of nodes, evaluate the reputation of corresponding nodes, and punish selfish nodes.

CONFIDANT consists of four parts: a monitor, a reputation system, a trust manager

and a path manager. The Monitor records the behavior of neighboring nodes. The

reputation system evaluates the reputation of nodes based on direct observation and

friends’ observation. The trust manager collects indirect warning messages from friends,

and the path manager is used to manage routing with selfish nodes. In CONFIDANT,

each node monitors its next-hop neighbor’s behavior. Detected misbehavior is reported to

the reputation system. If the misbehavior is significant and intolerable, the information

is relayed to the path manager, which will delete the related node from its path. Also, a

warning message will be sent from the trust manager to friends. Upon receiving the warning

message, the trust manager of a receiver evaluates the trustworthiness of the message and

passes it on to its reputation system if necessary. CONFIDANT suffers from an inconsistent

evaluation problem, i.e., different nodes may have different evaluations for the same node

and therefore, some may regard a node as selfish whereas others do not. It also suffers

from a location privilege problem since it punishes nodes if they do not forward packets

regardless of how they contributed to the network before. To avoid punishment, nodes

situated in the center of network have to keep forwarding packets and thus have to spend

much more battery power than those on the periphery of the network.

Michiardi et al. [46] suggested using reputation to measure a node’s contribution to a

network. Reputation is actually a combination of three kinds of reputations: subjective,

indirect and functional. Subjective reputation is calculated based on a node’s direct

observation. Indirect reputation is calculated based on the information provided by others.

Functional reputation refers to subjective and indirect reputation with respect to different

functions. Only routing function and packet forwarding function are under consideration.

All three reputations will be aggregated into a collaborative reputation. Michiardi et al.

proposed the CORE [47] protocol to evaluate nodes according to the above collaborative

reputation. In CORE, each node maintains a set of Reputation Tables (RT) and a watchdog

mechanism (WD). WD is used to verify whether a required function is correctly executed

by the requested node by comparing the observed execution of function with the expected

result. RT is used to maintain the reputation value of other nodes. Reputation is created and

updated along time, based on direct observation by the node itself, or indirect information

provided by others. With reputation, a node can judge the selfishness of a service requester

and thus decide to refuse the request or provide the service.

10



Miranda et al. [51] proposed that a node periodically broadcast messages stating its view

of its neighboring nodes. Also, nodes are allowed to publicly declare their refusal to forward

messages to certain nodes. This mechanism causes heavy communication overhead. Paul

and Westhoff [52] introduced security extensions to the DSR protocol to detect attacks

to the routing process. The scheme relies on neighbors monitoring the routing message’s

context in order to find the attacker.

2.2 Motivation-based Approach

2.2.1 Traditional Methods

Traditionally, all nodes participating in data forwarding in traffic get the same payment.

The cost discrepancy (for packet forwarding) between nodes is not taken into consideration.

The use of virtual money (termed a nuglet or credit) to simulate nodes’ cooperation has

been suggested [42, 53]. A node earns money by providing a forwarding service to others,

and has to pay to get service from other nodes. Two payment models, the Packet Purse

Model and Packet Trade Model, have been proposed. In the Packet Purse Model, the sender

attaches nuglets to each packet. Each intermediate node gets some nuglets from the packet

upon forwarding it. In the Packet Trade Model, each intermediate node buys a packet

from its previous node and sells it to its next node. The destination node finally pays the

cost. Security modules independent of nodes are used to protect the nuglets or credit value

from modification and other attacks. Such security modules include some tamper-resistant

hardware which stores certificates of its public key and others from some/all manufacturers.

Fratkin et al. [45] proposed a software solution to avoid the tamper resistant module

in their APE (Ad hoc Participation Economy) system. A trusted third party, termed the

banker node, is used to assure payment consolidation and integrity.

Ben Salem et al. [44] proposed a charging and rewarding scheme in multi-hop cellular

networks. With the help of trustable base stations, the scheme combines symmetric

cryptography with nuglets so that it can prevent some attacks such as refusal to pay and

dishonest rewards. Crowcroft et al.[54] also proposed a pricing model where nodes update

their cost based on bandwidth and power usage.

2.2.2 Game Theory Methods

From the point of view of game theory [55, 56, 57], the node-cooperation problem in wireless

ad hoc networks falls into the framework of the typical non-cooperative game. Here, game

players are all selfish nodes. They are rational in that they make decisions or adopt strategies
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which can maximize their own benefit. Several protocols [33, 58, 59, 60, 41, 39, 38, 40, 61]

have addressed the selfish-node problem from a game theory perspective.

2.2.2.1 General Methods

Zhong et al. [58] proposed Sprite to motivate nodes to report their actions honestly. A

central server, the Credit Clearance Service is placed in each network. The introduction

of CCS relieves the necessity of tamper-proof hardware. In Sprite, every node reports a

receipt, the digest of received or forwarded packets, to CCS whenever it has a connection to

CCS. CCS then determines the charge and credit to each node involved in the forwarding of

the packets. In the basic strategy to motivate nodes to forward packets, CCS asks the sender

to pay the last node on the path receiving a packet α and all predecessors β. However, an

intermediate node may report a (false) receipt even though it does not receive a packet. To

prevent cheating, if the destination does not report a receipt, payment for every node will

be reduced by multiplying a factor of γ to the values in the basic scheme, where γ ≤ 1.

Srinivasan et al. [59] proposed a distributed and scalable acceptance algorithm, named

Generous TIT-FOR-TAT, based on which nodes decide whether to accept a relay request or

not. Specifically, a node i maintains a record of its past experience, including the acceptance

ratio of its own relay request for type j sessions and the acceptance ratio by node i for type

j sessions of other nodes. If node i has relayed more traffic sessions than it should, or for

type j session, it has already relayed more traffic than its own to be relayed by other nodes,

it rejects the relay request. Otherwise, node i accepts the request. It has been showed that

this algorithm leads to a Nash equilibrium. Game theory has also been used to evaluate

the CORE algorithm [60].

2.2.3 Mechanism Design Methods

Since nodes incur different costs to forward packets, it is desirable that they get reimbursed

accordingly so that enough incentive is provided and the total payment charged is the least

possible. This poses the requirement that nodes declare their cost honestly, or turthfully.

Basically, this problem is related to research in mechanism design [62].

Anderegg and Eidenbenz [33] were the first to introduce mechanism design into ad hoc

networks. They proposed the ad hoc-VCG for ad hoc networks with selfish agents. This

routing protocol using the VCG mechanism is truthful and cost-efficient. In ad hoc-VCG, a

route request message is flooded over the network and includes information (power and cost)

of all links it has traversed. Upon receiving such a message and finding that this message
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includes any new unknown link, a node appends its own cost and power information and

broadcasts it. Thus, when a destination receives all the broadcast request messages, it

can construct the whole topology and find a least cost path. The VCG mechanism is

applied to the payment calculation for data messages, and it prevents nodes from cheating

over their cost. However, this protocol has some shortcomings and leaves several questions

unanswered. First, it needs O(n3) control messages for a route discovery. It is prohibitive

for the source to pay this cost for its traffic. Second, with an O(n3) overhead, this protocol

cannot provide good performance on metrics such as packet delivery ratio and end-to-end

delay. Third, mobility is not taken into consideration. Fourth, the calculation of payment

for the route discovery is complicated. All of these problems make this protocol difficult to

use in practice.

Zhong et al. [41] proposed CORSAC, a truthful routing protocol which combines the

VCG mechanism and cryptography. For each available power level, a node sends a signed

test signal message. A route message is also signed. This type of cryptography is used to

prevent possible under-declaration of a receiver. Based on these signed messages, which

are flooded over the network by a route discovery similar to that of the ad hoc-VCG, the

destination can determine the topology of the network and apply the VCG mechanism.

However, this protocol has same shortcomings as the ad hoc-VCG protocol. The message

overhead of this protocol is O(ρ · E · n), where ρ is the number of power levels, E the

number of links and n is the number of nodes. More details of CORSAC are discussed in

Chapter 4.3.3.

Chen and Nahrstedt [39] proposed iPass, an auction system where nodes get forwarding

service by bidding in the intermediate nodes. A node sets an auction mechanism in itself

and gives its power and bandwidth to the winner of the bid at the cost of the highest loser’s

price. To set the auction, iPass requires that any intermediate node needs at least two flows

to pass through it concurrently. In addition, it pays intermediate nodes the same amount

of payment, not taking into consideration their cost diversity. Also it does not specify how

to select the next hop and thus find a path from the source to the destination.

Cai and Pooch [38] proposed another method, TEAM , in an attempt to provide a

truthful and low-cost method. A node that can overhear a sender and a receiver becomes

a redirector of data forwarding, i.e., the sender sends data to the redirector and then the

redirector forwards the data to the receiver. The payment to the redirector is the power

saving of this redirection. However, the payment received by intermediate nodes may not

cover their cost, and thus nodes may have no incentive to forward packets. On the other
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hand, the sender saves nothing and gets worse service due to the greater number of hops

used.

Wang and Li [40] also discussed truthful routing based on the VCG mechanism, with

the assumption that a node has a fixed cost of sending a packet to any of its outgoing

neighbors. In particular, they proposed a time optimal algorithm to calculate payment to

nodes in both centralized and distributed manners. The scheme is not suitable in cases

where the forwarding cost to different neighbors varies.

Eidenbenz et al. [61] proposed another VCG mechanism-based protocol, COMMIT,

which allows a source to set a reserve price for its data transmission to a destination. By

utilizing underlying topology control protocols, COMMIT incurs an overhead of O(n2 log n).

Different from the model of the ad hoc-VCG and CORSAC, COMMIT assumes that a node

incurs the same cost to send packets to different neighbors. On the other hand, selfish nodes

may behave selfishly in routing, and they may do so in the topology control. Therefore,

how to achieve topology control with selfish nodes itself is challenging.

Copyright c© Yongwei Wang 2008
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Chapter 3

Detecting Selfish Nodes Behavior

3.1 Introduction

Punishment is usually an effective way to enforce obligation and cooperation. It has been

shown to be even more effective in fostering cooperation than award-giving in animal

societies [63]. However, such a method faces many challenges in ad hoc networks. Without

trusted authorities, each node has to share the responsibility for detecting selfish behavior.

Besides, the characteristics of wireless communication make accurate neighbor monitoring

impossible. Different nodes have distinct observations for a given node due to their different

sensing conditions/positions. Moreover, nodal mobility makes it difficult to trace node

behavior. A good solution should be distributed, catch selfish nodes accurately, and

introduce low overhead. It should also provide fairness such that nodes have the same

chance to serve others and to be served by others.

We introduce two distributed detection-based solutions to solve the selfish nodes

problem. Nodes in the network monitor, judge, punish and re-admit selfish node

distributively. Both solutions use a polling mechanism to ensure fairness and cope with

false accusations, and take into account the scarcity of resources such as battery life. They

provide each node a fair chance to serve and be served.

The reminder of the chapter is arranged as follows: section 3.2 presents a fair distributed

solution [30]. Section 3.3 presents a light-weight solution considering battery status [31].

Section 3.4 summarizes this chapter.

3.2 A Fair Distributed Solution

3.2.1 Overview

To evaluate the selfishness of nodes, we need a criterion to quantify the selfishness of a

node. We define the information used to evaluate selfishness as credit, and use the packet

forwarding ratio as criterion. The packet forwarding ratio is the ratio of the packets
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forwarded to the total packets meant to be forwarded. Packet forwarding ratio reflects

a node’s contribution to the network. Each node must satisfy a preset minimum value for

the packet forwarding ratio. The minimum forward ratio is based on the battery status

of a node. A node may send (its own packet) far more packets than the number it has

forwarded, as long as this node always satisfies the required forwarding ratio. This is not

possible in motivation based schemes, where a node can only send as many packets as it

forwards. The rationale is that every node provides a different contribution to the network.

Because of location privilege, some nodes can contribute more and others less. However, to

be fair, as long as they contribute, they should not be regarded as selfish nodes, and the

network should provide service to them.

A node’s contribution is evaluated by its neighbors based on their direct observations.

These observations are compared with the node’s self-evaluation, to justify behavior. In

our scheme, nodes broadcast their own credit information, and their neighbors verify the

credibility based on what they observe. To achieve this, every node calculates its credit and

broadcasts it periodically to its 2-hop neighbors. Neighbors monitor the node’s behavior and

compare the declared value of credit with what they observe. If the deviation between the

broadcast self-evaluation and the observed value exceeds a certain threshold, the monitoring

node sends out a warning message about the monitored node. If more than k nodes accuse

the same node, the accused node is considered as a selfish node by all nodes in the network.

The selfish node is punished by other nodes by dropping packets intended for, or originated

from, such a node. Routes to be established bypass the selfish node. After a predetermined

amount of time, a selfish node is re-admitted to the network. Thus, a selfish node knows

that selfishness will be harmful, and will be forced to be cooperative.

3.2.2 Evaluating Selfish Behavior

Each node maintains records to monitor and evaluate the selfishness of 1-hop and 2-hop

neighbor nodes. A record has the following fields: NodeID, Pktdrop, Pktfwd, Perfwd,

Batt stat, Creditacc, Seq num. NodeID denotes the identity of the monitored node. Pktdrop

and Pktfwd are the number of packets that the monitored node dropped and forwarded,

respectively as observed by a monitoring (in the promiscuous mode) node. Perfwd is defined

as
Pktfwd

(Pktdrop+Pktfwd) ∗ 100%. Batt stat represents the battery status of the monitored node.

There are four levels, Normal, Low1, Low2 and Recharged. Normal indicates the node has

enough battery. Low1 indicates that the node does not have enough battery and thus, will

not participate in new route discoveries or flooding (if any). Low2 indicates that the node
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has very low battery and implies that it will not participate in packet forwarding. Recharged

indicates the node has been recharged and has enough battery. Different battery statuses

corresponds to different criteria of selfishness (See below for further discussion). Creditacc is

used to record accumulated net forwarded packets, i.e., Creditacc=
∑

Pktfwd -
∑

Pktdrop

in each battery life cycle (a cycle is the period during which the battery status changes

from Normal to Recharged). Seq num is the latest version of the credit message known to

the monitoring node. A node also keeps its own credit information.

Initially, each node sets up an entry for each of its neighbors. For every entry, the initial

value of all fields is set to zero, except Perfwd, which is set to 100% (that is, initially all

nodes are considered unselfish). Every node maintains its own credit by adding Pktdrop

and Pktfwd, respectively, taking retransmissions into consideration. Periodically, it sends

out a Credit message to its neighbors consisting of NodeID, Pktdrop, Pktfwd, Batt stat,

and Seq num. Each node increases Seq num by one for every credit update message it

broadcasts. The credit message is updated upon the expiration of the credit update timer

or when the Batt stat is changed due to energy dissipation.

3.2.3 Monitoring Selfishness

Nodes monitor neighbors’ activity by listening (in the promiscuous mode) to all packets

within the radio range. If a neighbor forwards a packet, then it increases Pktfwd for that

neighbor, taking the retransmissions into consideration. Similarly, if the neighbor drops a

packet, it increases the corresponding Pktdrop. When a node receives its neighbor’s Credit

message, it compares Pktdrop and Pktfwd data in the message with what it has monitored.

If the data differs from the observed value beyond a threshold, then the monitoring node

suspects that the neighboring node is lying. In practice, there are some cases where it is hard

to judge whether a packet has been forwarded or not [50]. Therefore, the data declared and

the data monitored may not be equal. However, if the originator of the credit message is

honest, then the deviation between these data will not be large. If a node finds the deviation

is under threshold τ , it adapts the declared value and overwrites its own observed value,

and continues monitoring based on this new value. Otherwise, if the deviation exceeds τ ,

the node sends out a warning message to accuse the monitored node with the following

fields, AccusedID, AccuserID, Seq num, andMac. AccusedID and AccuserID denote the

monitored node and the originator of this message, respectively. Seq num is the same as in

the latest Credit message. MAC (Message Authentication Code) is a signed digest over all

previous fields with a private key. It is used to provide integrity and non-repudiation.
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The conviction is based on voting, i.e., if more than k neighbors accuse the same node,

the accused is convicted of being selfish. A selfish node may accuse a normal node of

being selfish. A larger k can prevent more false accusations and avoid unnecessarily false

punishment of a good node. However, a larger k requires more time to converge. On the

other hand, as the nodes on the periphery of the network have fewer neighbors, a smaller

value works well in their situation. Generally, a node in an ad hoc network may have 8-10

direct neighbors [14]. So k can be set as 5 or 6, or at least 60% of the node’s neighbors.

3.2.4 Confirming Selfishness

To confirm that a node is selfish, nodes use Ratiofwd (packet forwarding ratio) and Batt stat.

We use three different thresholds, th1, th2 and th3 for Ratiofwd, corresponding to battery

status. When a node is in normal status, its Ratiofwd should be above th1. Otherwise, the

monitored node is convicted of selfishness. Similarly, th2 and th3 correspond to Low1 and

Low2 battery status. It is also important to note that th1 > th2 > th3. Also, th1 should

be much higher than th3 (th3 is at least 50%) because if the node has enough battery, it

should forward packets.

A node may pretend to have lower battery status to forward few packets and save its

energy. To prevent this, we introduce two strategies. The first strategy is to restrict the

benefits a lying node can get. If a node declares its status in Low1, then it is free from

participating in routing. However, it cannot initiate a new route discovery for itself, and

it has to participate in packet forwarding. A node in Low2 status is free from forwarding

packets. However, it is allowed to send out its own packets, as many as Pktfwd - Pktdrop,

i.e., its net contribution is recorded as credit. After a node is in Low2 status, it is given

a grace period of ∆T seconds to get recharged. During ∆T , the node may not send or

forward packets. After getting recharged, it issues a new Credit message to update its

neighbors. Upon receiving this announcement, the neighbors set Creditacc to Creditacc +

Pktfwd - Pktdrop and resets Pktfwd and Pktdrop for the originator to zero and Ratiofwd to

100%. The data used for Ratiofwd is based on the new Pktfwd and Pktdrop values. This

is because as the node has recharged and has enough battery, and therefore should behave

normally and be evaluated normally. On the other hand, its previous contribution should

not be ignored. So, Creditacc is used to record its previous contribution and the node can

use it when in Low2 status.

Another strategy is to have every node estimate the battery consumption of its

neighbors. A node’s battery consumption consists of four parts: power used for routine task,
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power used for working in the promiscuous mode, power used for forwarding and sending

packets, and power used for receiving packets, denoted by eR, ep, es, er, respectively. Thus,

total power consumption P = eR + ep + es + er . ER and ep are time dependent

quantities and are assumed to be same for all the nodes. Depending on how long a node

has been working during a battery cycle, nodes can estimate eR and ep. Es and er are

proportional to the number of packets sent or received. Supposing that forwarding a packet

requires e units of power and every node consumes the same energy for packet forwarding,

es can be estimated as e ⋆ Pktfwd(the difference in packet length is ignored); similarly we

can estimate er. Since every node can estimate its neighbor’s battery consumption, it can

verify the credibility of Batt stat in the Credit message broadcast by the neighbor. Using

the above criteria, every node can independently decide if a node is selfish.

3.2.5 Punishment and Re-admission

Once a selfish node has been identified, it is punished. The neighbors of a convicted node

refuse to forward any packets originating from this selfish node. Thus, a selfish node will

be excluded from the network. However, the selfish node is excluded only temporally (for

some predetermined temp bypass time). The exclusion is not a perfect solution; instead

the goal is to force the nodes to cooperate and thus benefit each other. After punishment,

a selfish node is likely to be more cooperative. As a selfish node is not a malicious node,

it’s fair to give it a chance to provide service and use the network. However, some nodes

may continue to behave selfishly even after being initially punished. In such a case, the

temp bypass time can be increased exponentially as 2i ⋆temp bypass where i represents the

number of times the node has behaved selfishly. Thus, nodes continuing to behave selfishly

are punished severely.

3.2.6 Combining with Routing Protocols

This protocol can be easily combined with routing protocols such as DSR [13] and

AODV [19]. In AODV, whenever a source node needs a route to a destination node, it

broadcasts the route request RREQ. Any intermediate node which knows a fresh route

to the destination may reply to this request, otherwise it propagates the request. Upon

receiving the request, a destination replies with an RREP towards the source along the

reverse route. During routing maintenance, upon detecting an inaccessible downstream

node, a node sends RERR along the active route(s) toward the source(s). Combined with

our scheme, a node needs to check the selfish node list whenever it gets routing packets. It
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can drop any packet sent from a selfish node. Thus during route discovery, any known selfish

node will be excluded. During routing maintenance, upon convicting its downstream node

as a selfish node, a node sends an RERR to the source. The source may initiate a new route

request to find a good route. The combination is even simpler for DSR. An intermediate

node can exclude selfish nodes as in the case of AODV. The source itself can check the node

list in the RREP and drop routes containing any known selfish node. Similarly, during

data forwarding, when a source receives a message declaring a newly found selfish node, it

deletes all routes containing that selfish node.

3.2.7 Performance Evaluation

3.2.7.1 Simulation Setup

We conducted simulations to evaluate the impact of our scheme on a network with selfish

nodes. Specifically, our simulation focused on the following metrics:

• Packet delivery ratio is defined as
P

Packetsreceived
P

Packetssent
, i.e., the ratio of the total number

of packets received by the intended receivers to total packets originated by all nodes.

To be realistic, we considered the packet delivery ratio as the comprehensive result of

all factors which could affect the packet delivery rate, from the application layer to

the physical layer, such as collisions in the MAC layer, rerouting in the network layer,

and so on.

• Overhead is defined as
∑n

i=1 Packetscontrol
i , i.e., the overall protocol control packets

exchanged by nodes in the network. It includes Hello messages and routing packets

such as RREQ, RREP and RERR. In our study, three additional types of packets (or

messages) are introduced: Credit messages, Accuse messages and Black messages. A

Credit message is periodically broadcast by a sender to provide credit information. An

Accuse message is sent whenever a node suspects that its direct neighbor is behaving

selfishly based on its observations. Finally, a Black message is flooded all over the

network whenever a node has been convicted as a selfish node.

• A false conviction is the number of nodes that convicted as selfish that are actually

cooperative.

• A missed conviction is defined as
Nodesundetected

selfish

Nodesselfish
∗ 100%, i.e., the percentage of nodes

that not detected as selfish nodes that behave selfishly.
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We use AODV as the underlying routing protocol and have two implementations for

it. The original AODV, named base, is used for comparison with our enhancement, termed

enhance.

We modeled selfish behavior in two ways. In the first model, a selfish node starts

behaving selfishly from the beginning. We denote this version as enhance start and

base start, corresponding to enhance and base version, respectively. In the second model,

the selfish node begins to behave selfishly at a random time during the simulation. Thus a

node may drop packets at the beginning of simulation while another node may drop packets

400 seconds into simulation time. Nodes tend to be selfish after they dissipate more energy,

thus we believe this model to be more realistic than the first model. We denote the version

corresponding to this model as enhance random and base random.

Also, we implemented two versions to detect selfish behavior. One is directed at data

packet forwarding only. The other aims to detect selfish routing behavior.

We used Glomosim, a scalable network simulator [64], for simulation. Unless specified

otherwise, the following parameters were used in our simulations. 50 nodes were placed

uniformly in an area of 1000m by 1000m, with a radio range of 250m. 802.11 protocol with

DCF was used as the MAC protocol. All nodes followed the Random Waypoint mobility

model [65] with a speed up to 10 m/s and a pause time of 30 seconds. Each simulation

lasted for 900 seconds of simulated time. 10 CBR flows were simulated, each sending 4 512-

byte data packets per second. Each flow started at 120 seconds and ended at 880 seconds.

The first 120 second period of the simulation was used to provide sufficient randomization

to nodal positions. The last 20 seconds of the simulation were used to prevent the data

transmissions from sudden stopping because of the end of the simulation. Data points

represented in graphs were averaged over 10 simulation runs, each with a different seed.

3.2.7.2 Simulation Results

3.2.7.2.1 Packet Delivery Ratio Fig. 3.1(a) shows the packet delivery ratio with

respect to percentage of selfish nodes. Both enhance versions have a higher packet

delivery ratio than the corresponding base version: enhance start yields as much as a

90% improvement over base start and enhance random shows up to a 36% improvement

over base random. The packet delivery ratio decreases as the percentage of selfish nodes

increases because more nodes drop packets. An important feature is that enhance start

performs better than enhance-random while base start performs better than base-random.

This is because both base and enhance systems suffer from selfish nodes dropping packets.
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Figure 3.1: Performance under different selfish node percentages

However, in the base case, no action is taken to bypass these selfish nodes. In base start,

all selfish nodes behave selfishly from the beginning and thus they drop all packets passing

through them. In base random, selfish nodes only behave selfishly from a random moment.

They may behave cooperatively for some time and forward packets. Some selfish nodes

even behave well for most of the simulation time. Thus more packets are forwarded in the

base random case. However, under an enhanced scheme, selfish behavior will be detected

and those selfish nodes will be bypassed. The earlier the behavior is detected, the fewer

the dropped packets and thus the higher the packet delivery ratio. If selfish nodes behave

selfishly from the beginning, they are much easier to detect. However, if they behave well

initially for a period of time and selfishly thereafter, the deviation of credit between the

observed and the self-declared may not exceed the threshold or the deviation may not be

sharp enough and thus they are hard to be detected. As shown in Fig. 3.1(d), there are more

undetected selfish nodes in enhance random than in enhance start. Finally, in the presence

of 30% selfish nodes, the packet delivery ratio is still as high as 37% in base start. This is

because a portion of traffic occurs between direct neighbors. In addition, some traffic has
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short paths, with only one or two intermediate nodes behaving well.

3.2.7.2.2 Overhead Fig. 3.1(b) shows the overall protocol control overhead introduced

by our enhancement over different evaluating intervals with respect to the percentage of

selfish nodes. It is normalized as packets per node per second. Enhance random 10 and

enhance random 20 correspond to enhance random with an evaluating interval of 10 and

20 seconds, respectively. This is the same for enhance start 10 and enhance start 20. The

overhead is mainly due to the Hello messages, which are broadcast every two seconds

by every node, and RREQ messages. The periodic Credit messages also contribute some

overhead. As the evaluating interval increases, the Credit messages decrease and thus the

overhead decreases. As the percentage of selfish nodes increases, the overhead increases

slowly. This is because more selfish nodes will be detected and thus more new RREQs will

be initiated. This also explains why overhead caused by enhance start is higher than that

caused by enhance random although they produce the same number of credit messages. In

enhance start, selfish behavior is easier to detect and thus produces more RREQ packets.

3.2.7.2.3 False Conviction Fig. 3.1(c) shows the number of false convictions with

respect to percentage of selfish nodes. In any case, no more than 0.5 nodes, averaging over

10 runs, are falsely convicted. So the rate of false conviction is very low. A node will file

an accusation as long as the deviation between the observed and the declared exceeds the

threshold. Due to radio interference, a node cannot always monitor its neighbors accurately

and thus convicting a node based on a single accusation is not feasible. A voting system is

used to avoid false convictions. However, false convictions still happen in special cases. For

example, if the majority of the observed node’s neighbors are between the observed node and

some other traffic, due to interference from these traffic, neighboring nodes may misjudge

the node as a selfish node and accuse it. The accused node will be wrongly convicted. We

can raise the threshold in the voting system to lower false convictions. However, this will

raise the missed convictions and thus lower the performance (i.e., packet delivery ratio).

Therefore, there is a tradeoff between false convictions and missed convictions. A false

conviction is not sensitive to the evaluating interval since it occurs in some special cases.

3.2.7.2.4 Missed Conviction Fig.3.1(d) shows the missed conviction ratio with

respect to the percentage of selfish nodes. Enhance random has a high missed conviction

ratio, averaging about 50% while enhance start has a much lower ratio, averaging less than

14% (about 9.7% for the evaluating interval of 10s). As discussed earlier, detection of selfish
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behavior is difficult in the former case and easy in the latter one. We also observed that the

evaluating interval affected the missed conviction ratio. A larger evaluating interval reduces

the missed conviction ratio in enhance random while increasing the ratio in enhance start.

This can be explained as follows. In enhance random, a selfish node may behave well in the

beginning and selfishly later, so we need a credit deviation between the observed and the

declared sharp enough to detect this behavior. A larger interval helps this deviation. In

enhance start, such a requirement is not necessary and a smaller interval is more aggressive

in detecting the misbehavior. Of course, too small an interval will blur the credit deviation

and thus raise the missed conviction ratio.

3.2.7.2.5 Impact of Mobility Fig. 3.2(a) and (b) show packet delivery ratio with

respect to maximum node speed, corresponding to selfish behavior from a random moment

and from the beginning, respectively. Four speeds were used in the mobility model - 5m/s,

10m/s,15m/s and 20m/s, keeping a maximum pause time of 30 seconds. In both scenarios,

as speed increases, the packet delivery ratio drops. There are two reasons for this. One

reason is that higher mobility causes more link breakages. Another reason is that missed

convictions increase with higher mobility because it is harder to trace a highly mobile selfish

node. Again, the start cases performed better than the random cases.
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Figure 3.2: Packet delivery ratio vs. selfish node percentage, with changing speed

3.2.7.3 Impact of Routing Packets

Fig. 3.3 shows false conviction based on the detection of selfish routing behavior, where

a node does not participate in routing, with an evaluating interval of 20 seconds. As in

the data forwarding case, we name the cases where nodes behave selfishly from the be-
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ginning and from random moment for routing as routing pkt random and routing pkt start,

correspondingly. Compared to the result based on data packets, termed data pkt random

and data pkt start, false conviction in routing pkt random and routing pkt start is much

higher. In fact, the credit deviation threshold set for routing is less strict than that for data

forwarding. If using same threshold, the false conviction will be even higher and cannot

be used for detecting misbehavior at all. This is ascribed to the broadcast property of the

routing message. Unlike a unicast message, broadcast does not use RTS/CTS. A broadcast

packet is sent out as long as the channel is free and will not be retransmitted even if

collision occurs. Routing message (RREQ) is flooded over the network and causes collision

and interference here and there. So the credit counting for a routing packet forwarded is

much less accurate than that in data forwarding and thus results in a high rate of false

convictions. This simulation reveals the very important fact that a purely detection-based

method is not suitable for detecting routing selfish behavior.

3.3 A Light-weight Solution Considering Battery Status

In the previous section, we presented a fair distributed solution for the selfish-node problem,

focusing on location privilege problems. Selfish nodes should be detected. However, a good

solution for selfish nodes should also be light-weight. If the cost for identifying selfish nodes

in terms of battery and bandwidth is very high, it may be enough to just identify suspicious

nodes. A selfish node is not a malicious node as it just wants to save its resource, not to

destroy or attack others.

In this section, we present a new solution for the selfish-node problem, considering all

the above issues. The solution is based on neighbor monitoring. However, this monitoring

is on demand. We consider battery status such that nodes work in promiscuous mode only
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when necessary. They can ask for exemption from data forwarding based on their battery

status.

3.3.1 Overview

To enable neighbor monitoring, nodes work in the promiscuous mode. However, working

in the promiscuous mode has a high cost. Feeney [66] showed that receiving traffic in the

promiscuous mode is much more expensive than discarding traffic and even more expensive

than working in idle mode. Thus, to save energy, nodes should work in the promiscuous

mode as little as possible.

Generally, the majority of traffic will pass through the center of the network. So, nodes

in the center will forward more packets (and thus consume more energy) than those in the

periphery. This results in a location privilege problem. To mitigate this problem and to

provide fairness to all nodes, we evaluate a node’s behavior based on its battery status. A

node can declare low battery status to exempt itself from forwarding packets. Measures

can be taken to prevent a node from cheating on battery status. Also, a cooperative node

should be able to get service from others.

Initially, all nodes need not work in the promiscuous mode. After sending a data packet,

a transmitter S turns onto promiscuous mode to monitor the downstream node A’s behavior.

Upon detecting the dropping of a certain number of consecutive packets, the transmitter S

sends a broadcast message to ask for the help of A’s neighbors. These neighbor nodes turn on

the promiscuous mode to monitor A’s behavior for some time and turn off promiscuous mode

thereafter. Node A defends itself by declaring the number of packets it has forwarded. Based

on their own observation, neighbors make their judgment about node A. If the majority

of neighbors accuse A, A is convicted as a selfish node. A selfish node will be punished

by other nodes by dropping packets intended for and originated from such a selfish node.

Routes will be re-established to bypass the selfish node. After a predetermined amount of

time, a selfish node can be re-admitted to the network. Thus, a selfish node knows that the

selfish behavior will be harmful and it will be forced to be more cooperative.

3.3.2 Monitoring Selfish Behavior

After a node S sends (or forwards) a packet to its downstream node A, it turns onto

the promiscuous mode to observe if A forwards the packet. No other node monitors A’s

forwarding behavior at this time. If S does not overhear that A forwarded that packet

within a specific period, S suspects that A dropped that packet. If S finds A has not
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forwarded packet for a consecutive number of times (e.g., 20 packets), S has good reason to

believe that A is selfish. However, it is possible that S did not overhear packet forwarding

due to collisions or interference. So S asks the help of other nodes by broadcasting an

Alert message to other adjacent nodes. An Alert message includes the following fields,

Target,Requestor, Period, Seq num, where Target is the ID of the node that needs to be

monitored, Requestor is the ID of the node originating this request (in this example, it is

S), Period indicates how long the observation should last. Period can be decided based

on the rate of the traffic forwarded by the requester. The requester can ask to monitor

a predefined number of packets. Thus, the Period is inversely proportional to the packet

sending rate of a traffic, i.e., the higher the traffic rate, the shorter the period. Node A can

also get an Alert.

Upon receiving the Alert message, every neighbor of A establishes a record for node

A. They turn onto promiscuous mode and overhear the forwarding packets at node A and

increase the packets dropped, sending counts accordingly. This observation lasts for the

observation period in the Alert message. On the other hand, node A also gets the Alert

message. By the end of this observation period, node A has to broadcast a self-declared

Defence message to state how many packets it forwarded during the observation period,

including < NodeID,Pktfwd, Pktdrop, Seq num >, where NodeID is the originator of this

message, Pktfwd and Pktdrop indicates the number of packets forwarded and dropped during

the observation period, Seq num is used to prevent replay of an old Defence.

3.3.3 Conviction of a Selfish Node

Upon receiving a Defence message, A’s neighbors will compare their observation with this

self-declared value. If the deviation exceeds a threshold τ , an Accuse message against

A is sent out. An Accuse message includes the following fields: AccusedID, AccuserID,

Seq num, Mac. AccusedID and AccuserID denote the monitored node and the originator

of this message, respectively. Seq num is the same as in the last Defence message. MAC

(Message Authentication Code) is a signed digest over all the previous fields with the private

key of the sender of the Accuse message. It is used to provide integrity and non-repudiation.

It is possible that A does not broadcast Defence or its neighbor does not receive this

message. Then the node that does not receive the Defence message will send an Accuse

against A. After sending their opinions, A’s neighbors can turn off their promiscuous mode

for the purpose of monitoring A unless requested to do so by other nodes.
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The conviction is based on voting, i.e., if more than the majority of neighbors or over a

predefined number of neighbors accuse a node A, A will be convicted as a selfish node.

A Simplification: The above algorithm can prevent some attacks from malicious

nodes. If we assume no malicious nodes, we can further simplify the algorithm. Some

nodes may have an accurate observation for the observed node. Upon hearing an Accuse

message, if a node finds that its observed value is almost the same as the self-declared

value in the Defence message, it can send an Innocence message to suppress further

Accuse messages. The originator of Alert can verify if the Defence coincides with what

the originator forwarded. This should reduce the overhead caused by Accuse messages.

Moreover, it may reduce false convictions.

Punishment As discussed in Section 3.2, a convicted selfish node is temporarily

excluded from the network for a predetermined temp bypass time and then will be re-

admitted. If it still behaves selfishly thereafter, the temp bypass time is increased

exponentially as 2i ⋆ temp bypass where i represents the number of times the node has

behaved selfishly.

Enhancing Routing Protocols As discussed in Section 3.2, this scheme can be

combined with routing protocols such as DSR [13] and AODV [19]. During route discovery,

nodes drop route request sent (forwarded) from the known selfish nodes. During data packet

forwarding, if a node A convicts its downstream node B as a selfish node, A sends RERR

to the source. The source may initiate a new route request to find a good route. In DSR,

the source can also check the node list in the Route Reply and drop a route containing any

known selfish node. Also, upon receiving a notification that declares a new convicted selfish

node in DSR, the source can delete routes including that selfish node.

3.3.4 Battery Caring

A node may lose battery over time and thus become unsuitable for forwarding packets.

Such a node can declare that it has low battery and is free from forwarding packets. The

traffic going through this node should change routes to bypass this node. The node in low

battery status will not be regarded as a selfish node and can still get service from others.

Under this scheme, nodes in the center of the network, usually consuming more battery

power, can have a rest and get no punishment, and therefore the location privilege problem

is mitigated.

When a node C has low battery, it broadcasts a Battery message to announce its

low battery status, including NodeID,Batt stat, Seq num, where NodeId is the ID of the
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originator, Batt stat indicates battery status of that node (defined as Normal or Low),

Seq num indicates the freshness of the message. After receiving C’s Battery message, its

upstream node on the route should inform the source to change its route.

A node in low battery status is given a grace period ∆T seconds to get recharged. After

recharging, the node issues a new Battery message to inform its neighbors. Thereafter it is

expected to forward packets normally.

A node may pretend to be in low battery status and thus it may forward few packets.

As discussed in Section 3.2.4, two possible strategies can be used to prevent such cheating.

The first strategy is to restrict the benefits a lying node can get. A node in low battery

status is free from forwarding packets. However, it is allowed to send out only Pktallowed

number of its own packets. If a node is cooperative, it will contribute to the network. This

contribution should be reimbursed. However, due to the limited remaining battery power,

even though a node may have a great net contribution, it can only send a limited number

Pktallowed of its own packets while in low battery status. Nodes with less net contribution

may thus get additional benefits. However, this benefit is limited due to the above packet

limitation Pktallowed.

Another strategy is to have every node estimate the battery consumption of its

neighbors. A node’s battery consumption consists of four parts: power used for routine

tasks, power used for working in the promiscuous mode, power used for forwarding

and sending packets, and power used for receiving packets, denoted by eR, ep, es, er,

respectively. ER is time dependent quantity, decided by how long a node has worked during

a battery cycle, and is assumed to be same for all the nodes. Ep consists of two parts, one

to monitor its downstream node’s behavior, which is proportional to the number of packets

sent, and the other to monitor a neighbor’s behavior under the request of some neighbor(s).

This can be assumed to be same for all the nodes. Es and er are proportional to the number

of packets sent or received. Assuming that forwarding a packet requires the same unit of

energy for all nodes, es and er can be estimated based on the number of packets sent or

received. Based on this estimation of battery consumption, a node can verify the credibility

of the Battery message broadcast by the neighbor.

3.3.5 Performance Evaluation

3.3.5.1 Simulation Setup

We conducted an extensive simulation study to evaluate the impact of our scheme on a

network with selfish nodes. In additional to the metrics (packet delivery ratio, overhead,
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false conviction and missed conviction) measured in Section 3.2, we evaluated another

metric, that is, Averaged promiscuous time. This indicates how much time, on the average,

a node works in the promiscuous mode. As Glomosim does not provide enough information

for energy consumption in the promiscuous mode, we use this metric to evaluate the effect

of power saving.

We compared the proposed protocol with work carried out in Section 3.2. The curves

for the algorithm in Section 3.2 are denoted as credit. The curves for the system without

any enhancement, which is used as the baseline for comparison, are denoted as base. The

curves for the light-weight algorithm are denoted as light.

As in Section 3.2.7.2, we modeled selfish behavior in two ways. First, a selfish node starts

behaving selfishly from the beginning. We denoted this version as light start, credit start

and base start, corresponding to light, credit and base versions, respectively. In the second

model, a selfish node begins to behave selfishly at a random time during the simulation.

We denoted the version corresponding to it as light random, credit random and base random

corresponding to light, credit and base versions, respectively.

We used Glomosim for simulation. 50 nodes were placed uniformly in an area of 1000m

by 1000m. The radio range of nodes was 250m. We used AODV as the underlying routing

protocol and 802.11 protocol with DCF as the MAC protocol. All nodes followed the

Random Waypoint mobility model with a speed range of 0 m/s to 10 m/s and a pause time

of 30 seconds. Each simulation lasted for 900 seconds. 10 CBR flows were simulated. Each

flow sent four 512-byte data packets per second, started at 120 seconds and ended at 880

seconds. Data points represented in the graph were averaged over 10 simulation runs, each

with different seed.

3.3.5.2 Simulation Results

3.3.5.2.1 Packet Delivery Ratio Fig. 3.4(a) shows the packet delivery ratio with

respect to the percentage of selfish nodes, with a maximum speed of 10m/s. As the

percentage of selfish nodes increases, the packet delivery ratio decreases as more nodes

drop packets. In the figure, when 35% nodes are selfish, light start improves the delivery

ratio by 130% over base start, and light random improves the delivery ratio by 74% over

base random. Compared with the fair solution in Section 3.2, light start improves the

delivery ratio by 18% over credit start ; light random improves the delivery ratio by 25%

over credit random. Also we can see that light start performs the same as light-random

whereas credit start performs better than credit random and base random performs better
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Figure 3.4: New performance under different selfish node percentages.

than base start. The performance of base and credit have been discussed in Section 3.2.7.2.

In the base case, no action was taken to bypass these selfish nodes. In the credit system,

selfish nodes behaving selfishly from a random moment are more difficult to find than those

behaving selfishly from the beginning. Under the light scheme, once a node is suspected

to behave selfishly, it will be traced and only its behavior during the traced period will be

considered. Thus, a node can be caught regardless of when it behaves selfishly. Compared

with credit, light can catch more selfish nodes, as shown in Fig. 3.4(d), and thus has a higher

packet delivery ratio.

3.3.5.2.2 Overhead Fig. 3.4(b) shows the overall overhead introduced by our enhance-

ment with respect to percentage of selfish nodes, with a maximum speed of 10m/s.. It is

normalized as packets per node per second. The overhead is mainly due to RREQ messages.

In light scheme, total control packets not including RREQ is only 6% - 17% of the overall

overhead, and the total overhead in light start is almost the same as in light random. As the
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percentage of selfish nodes increases, the overhead increases. This is because more selfish

nodes will be detected and thus more new RREQ will be initiated. Compared with the

credit scheme, light start has a lower overhead than credit start whereas light random has a

higher overhead than credit random. Nevertheless, the overhead is still low, with less than

0.75 packet per node per second.

3.3.5.2.3 False Conviction Fig. 3.4(c) shows false convictions with respect to the

percentage of selfish nodes, with a maximum speed of 10m/s. light random causes no false

convictions. Under the light start, false conviction was only 0.1 node (less than 0.8%) and

happens only in 25% and 30% selfish nodes case. Compared with credit, light catches the

selfish node more accurately. We use a voting system to avoid false convictions. Only two

false convictions occurred in some extreme cases. In these cases, the majority of an observed

node’s neighbors are between the observed node and other traffics. These observing nodes

suffer from interference from these traffics and hence have inaccurate observations for the

observed node. Thus, such nodes accuse the observed node.

3.3.5.2.4 Missed Conviction Fig. 3.4(d) shows the missed conviction ratio with

respect to the percentage of selfish nodes, with a maximum speed of 10m/s. Both

light random and light start catch almost all the selfish nodes, with maximum missed

conviction ratio of 4.5%. In most cases of light start, the missed conviction ratio is under

1%. It catches more selfish nodes than light random because nodes behaving selfishly from

the very beginning give the system more time and chance to detect them. On the contrary,

missed conviction in credit is pretty high, particularly for credit random, for the same reason

discussed in the packet delivery ratio section.

3.3.5.2.5 Impact of Mobility Fig. 3.5(a) and (b) show the packet delivery ratio with

respect to maximum speed, corresponding to selfish behavior from a random moment and

from the beginning, respectively. We used four speeds in the mobility model as 5m/s,

10m/s, 15m/s and 20m/s, keeping the maximum pause time at 30 seconds. In both figures,

an increase in speed has little effect on packet delivery ratio, mainly due to higher mobility

causing more link breakages. It shows our scheme is insensitive to mobility.

3.3.5.2.6 Time in the Promiscuous Mode Fig. 3.6 shows the time a node spends

in the promiscuous mode. light start and light random spend almost the same time, which

is less than 35% of the total data traffic time. Unexpectedly, as the percentage of selfish
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Figure 3.5: New packet delivery ratio vs. selfish node percentage, with changing speed

node increases, the time spent in the promiscuous mode decreases. On the one hand, as

selfish nodes increase, more Alert messages will be sent and more nodes will turn on the

promiscuous mode. Thus more nodes may increase their promiscuous time. On the other

hand, more selfish nodes will drop more packets. If a packet is dropped, the successors in

the path do not need to turn on the promiscuous mode to monitor their downstream nodes

and thus, decrease the time in the promiscuous mode. In some cases, the source cannot

find a path within a period. During that period, no node needs to work in the promiscuous

mode for that traffic. The decrease factor outweighs the increase factor, so the overall time

for the promiscuous mode decreases with increase in the number of selfish nodes.
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3.4 Chapter summary

In this chapter, we have presented two distributed detection-based solutions for the selfish-

node problem. In both solutions, we used a voting system to confirm a node’s selfishness

to avoid the necessity for a centralized service. It can also solve the inconsistent evaluation

problem. We emphasized fairness to provide same chance for each node to serve and

be served by others. The first solution uses credit as a metric for evaluating a node’s

contribution to the network. Such a metric is different from the virtual money and

reputation used previously. It can greatly mitigate the location privilege problem not

addressed in other proposals. Our second solution is a light-weight solution, requiring

neighbor monitoring only when necessary. It can identify almost all selfish nodes with

very few mistakes and reduces the time spent in the promiscuous mode to save battery.

Simulation results show our solutions are effective. They raise the packet delivery rate

efficiently, cause few false accusations and have low overhead.

Copyright c© Yongwei Wang 2008
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Chapter 4

Improving the Efficiency of Truthful Routing

4.1 Introduction

An effective way to motivate nodes’ cooperation is to pay them for forwarding packets.

Obviously, selfish nodes want to get paid as much as possible, while the nodes utilizing packet

forwarding want to pay as little as possible. To achieve an equilibrium, it is desirable to

reimburse nodes according to their cost. However, nodes incurs different cost for forwarding

a packet since they may use different level of power and have different costs per unit of power.

On the other hand, to maximize their utility, selfish nodes may not expose their true cost.

Thus, truthful protocols (strategies) are needed to prevent cheating.

Controlling message overhead in the context of truthful routing is critical. First, the cost

of overhead in terms of control messages incurred by such truthful protocols must also be

reimbursed. A rational sender may have no reason to send packets at a very high cost, and

thus truthful routing may lose its significance. Second, high overhead often results in low

network performance. Usually, the less the overhead, the better the network performance.

Anderegg and Eidenbenz [33] recently proposed a truthful routing protocol, named ad hoc-

VCG, for mobile ad hoc networks with selfish nodes. The complexity of the routing overhead

of their protocol is O(n3), where n is the number of nodes in the network. Such an overhead

may be prohibitively large as the network size grows.

We introduced two low overhead truthful routing protocols. The first protocol,

LOTTO [32] - a low overhead truthful routing protocol can find the least cost path for data

transmissions with an overhead of O(n2), a significant improvement over ad hoc-VCG. The

second protocol, LSTOP [34, 35] – a light-weight scalable truthful routing protocol incurs

an even lower overhead of O(n) on average, and O(n2) in the worst case.

The remainder of this chapter is organized as follows: Section 4.2 provides background on

mechanism design and system models. Section 4.3 presents details of the LOTTO protocol,

including protocol description and truthfulness analysis, and a simulation study. Section

4.4 presents details of LSTOP and simulation study. Section 4.5 summarizes this chapter.
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4.2 System Model and Preliminaries

4.2.1 The VCG Mechanism

Mechanism design [67], a subfield of game theory, studies how to design a system so that

its behavior results in the desired system goal, under the assumption that agents are selfish

and rational. It is traditionally used in market settings and now is being introduced into

networking for resource and task allocations.

One of the important results in mechanism design is the VCG mechanism [62],

named after Vickrey [68], Clarke [69] and Grove [70]. The most salient feature of the

VCG mechanism is that it can maximize the total welfare of the system and achieve

truthfulness [62]. Nisan and Renon [62] illustrated the application of the VCG mechanism

in networking as follows. They describe a network as a biconnected graph. Each edge e of

the graph is an agent and has a cost Ti of sending a single message along this edge. The

mechanism design goal is to find a shortest path sp between two given nodes s and d. Then

the following mechanism is truthful: e gets no payment if it is not on the shortest path.

Otherwise, it gets the payment Pe = T−e
sp − T e=0

sp [62]. Where C−e
sp is the cost (length) of

the shortest path not containing e, and T e=0
sp is the cost of the shortest path assuming zero

cost of e. Feigenbaum et al. [71] showed that this claim holds true with nodes as agents.

4.2.2 The System Model

We consider a mobile ad hoc network as a directed weighted graph G = (V,E,W ). V is the

set of nodes, or agents in the mechanism design. E is the set of links between nodes. W

is the set of weights for each link, indicating the cost to forward a packet along that link.

Each link may have a different weight. A node (agent) has a different cost to forward a

packet to different neighbors. The network is biconnected, i.e., the graph is still connected

on removing any node and its incident links.

A node vj within radio range of node vi is represented as the link (vi, vj). Power

consumption is used as the cost metric. The weight wij of the link (vi, vj) is decided as

the product of vi’s emitting power P emit
i and its cost of unit power ci, i.e., wij = P emit

i · ci.

Control messages are sent with maximum emitting power to reach more nodes. However, for

data transmissions, and to save power, the sender sends a packet using the least power with

which the receiver can receive the packet. Technically, a sender i can choose its emitting

power P emit
i and this power determines the radio range. From the wireless propagation

model, the signal strength received by the receiver j is P rec
i,j =

K·P emit
i

dα , where K is a constant

and α ∈ [1,6] is the distance-power gradient depending on the environment condition (α is 2
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for free space and 4 for a two-way ground reflection model). If P rec
i,j exceeds a threshold P rec

min,

then j can receive the data correctly. With the assumption of omnidirectional antenna, data

will be overheard by all the nodes within the radio range of the sender. Therefore, if the

transmitting power P emit
i is known, a receiver j can estimate the minimum emitting power

needed for the sender i to forward data to it (node j) as Pmin
i,j =

P emit
i ·P rec

min

P rec
i,j

.

Virtual money is used to stimulate cooperation between nodes. A node can earn money

by forwarding packets for others. A source is charged for the forwarding service. The

payment is on a per packet basis. It should cover the cost for data transmissions and

control messages, and includes some bonuses. The cost for data transmissions is the sum

of links cost along the least cost paths from sources to destinations. It is important to note

that the cost for route discoveries is high and cannot be ignored due to the large number

of control messages and the high emitting power used. Nodes are assumed to be selfish and

rational. They pursue maximization of their utility and thus may falsely declare their cost.

However, they do not intend to destroy the network or attack other nodes.

In this chapter, we focus on effective truthful routing under the assumption of no

collusion between nodes. Other issues such as the bootstrap of the virtual money, and

securely crediting and transferring money are out of the scope of this chapter. We assume

a payment mechanism [58] that takes care of accounting and transferring of payment

between nodes. Tamper-proof hardware [42] can also be used to protect virtual money

from modification or other attacks.

4.3 LOTTO - A Low Overhead Truthful Routing Protocol

LOTTO is a low-overhead truthful routing protocol which can find a truthful least cost path

for data transmissions by applying the VCG mechanism. To date, the VCG mechanism is

the only truthful mechanism for the least cost path problem [71]. LOTTO is a reactive

routing protocol and is invoked when a new route is needed. It consists of two parts. The

first part is route discovery and is discussed in Section 4.3.1. It intends to determine the

topology of the network, which is essential for applying the VCG mechanism. Our route

discovery greatly reduces the message overhead complexity from O(n3) [33] to O(n2). The

second part consists of payment calculation and is discussed in Section 4.3.2. By using the

VCG mechanism, the payments to nodes are set such that rational nodes have no incentive

to cheat over their cost. Thus truthfulness is guaranteed. Sections 4.3.3 and 4.3.4 presents

the truthfulness analysis and message complexity analysis, respectively.
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4.3.1 Route Discovery

The VCG mechanism can guarantee that a rational node tells the truth about its cost.

However, to apply the VCG mechanism, the source needs to find not only the least cost

path LCP as < s,M1,M2, · · · ,M i, d > to the destination, but also the least cost paths to

the destination excluding node M1, the least cost paths to the destination excluding node

M2, · · · , the least cost paths to the destination excluding node M i, respectively. Thus

route discovery should provide the underlying directed weighted graph of the network to

the source. LOTTO provides a method to collect this topological information effectively.

It reduces the message overhead complexity from O(n3) [33] to O(n2).

Whenever a source s wants to communicate with a destination d, it sends a RREQ

message. The RREQ message is of the form < s, d, seqNo, cs, P
emit
s >, where s and d are

the node IDs of the source and destination, respectively. SeqNo is the sequence number of

this request. Cs is the sender’s cost per unit of power and P emit
s is the emitting power of

the sender.

Upon receiving a RREQ message from node i, a node j takes the following actions:

1. Determine the power P rec
i,j at which j received the packet.

2. Estimate the minimum power from node i to node j as Pmin
i,j =

P emit
i ·P rec

min

P rec
i,j

.

3. Append node i, ci and Pmin
i,j to its neighbor list. A neighbor list is a list of structures

consisting of node ID, the minimum emitting power from the neighbors of node j to

node j, and cost per unit of power of these neighbors.

4. Check the freshness of the RREQ message from its sequence number. If it’s a new

message, node j appends its ID j, its cost per unit of power cj and its emitting power

P emit
j to the RREQ message and rebroadcasts it.1

5. Set a report timer (RT ) for reporting a neighbor list after receiving the first RREQ

message for the session.

When RT times out, nodes in the network send their neighbor lists to the source using a

Neighbor message. A Neighbor message is of the form < s, d, seqNo, i, (j, cj , P
min
j,i ), · · · , (k,

ck, P
min
k,i ) >, where s and d are the IDs of the source and destination; seqNo is the sequence

number obtained from the RREQ; i is the ID of this message sender; j, · · · , k are the IDs

1An alternative is that the RREQ message makes no use of source routing, i.e., rather than appending
its information in the RREQ message, node j replaces node i’s information to the RREQ message with its
own information (ID j, its cost per unit of power cj and its emitting power P emit

j ).
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of i’s neighboring nodes; cj, · · · , ck are the cost per unit of power of neighbors j, · · · , k,

respectively; and Pmin
j,i , · · · , Pmin

k,i are the minimum power needed from neighbor j, · · · , k to

node i, respectively.

The Neighbor message can be sent through source routing, which is established as the

reverse route to the source when a node receives a RREQ message. However, a node which

is not on the least cost path may selectively drop Neighbor messages so that the source node

gets incomplete topology information, thus increasing the probability that this node will

lie on the selected least cost path. To prevent such an occurrence, each Neighbor message

is flooded over the network. Thus, with the assumption that the network is biconnected,

a selective Neighobr message dropped by a node will not thwart the Neighbor messages

from reaching the source through other routes. Nodes within the radio range of the source

can unicast their Neighbor messages directly to the source instead of flooding.

We assume that forwarding nodes will not modify Neighbor messages since such

modification action is a malicious behavior rather than a selfish behavior. However, if nodes

exhibit malicious behavior, cryptography can be applied to detect such modifications. The

neighbor list information in the Neighbor messages can be encrypted using a symmetric key

shared only between the sender and the source node. A symmetric key can be established

a priori or with the help of a public cryptography system.

Upon receiving all the Neighbor messages, the source knows all nodes’ incident links

and thus can construct the underlying directed weighted graph of the network. The source

finds the least cost path using a Dijkstra or Bellmen-Ford algorithm [72] and calculates the

payment to intermediate nodes, as discussed below in Section 4.4.3.2.

Data Forwarding: After finding the least cost path, the source can send data packets

along this path. The header of data packets includes the node list < s, v1, v2, · · · , vk, d >,

the minimum power Pmin
i , i ∈ 1, k needed for every intermediate node vi to forward data

to its downstream node, and payment Pi to every intermediate node vi. The payment

to each intermediate node can also be accounted and reimbursed accordingly by a central

server [58].

Route Rediscovery: Link breakage occurs during data transmission due to node mobility

or the shutting down of a node. Also a node’s cost to forward packets may increase over

time and thus the assigned payment is not feasible for that node. In such cases, the

corresponding node sends a route error (RERR) message to the source. Upon receiving the

RERR message, the source initiates a new route discovery to find an alternate path to the

destination.
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4.3.2 Payment Calculation

All nodes are rewarded for their packets forwarding. To pay nodes accordingly, we need to

know their cost. As stated in Section 4.2.1, the VCG mechanism can guarantee that nodes

show their true cost. The following passage describes how the payment is calculated.

4.3.2.1 Payment for Route Discovery

To encourage nodes’ participation in a route discovery, a source reimburses all nodes involved

in the route discovery. A unit amount is paid to each node to forward a routing message.

This unit payment can cover the maximum cost of a node for a routing message. Credits

to each node can be counted in a way similar to ad hoc-VCG [33].

4.3.2.2 Payment for Data Forwarding

Data is forwarded along the least cost path. The payment to the nodes on the least cost

path is calculated according to the VCG mechanism [62]. Nodes not on the least cost path

get no payment for data transmissions. Specifically, we can suppose that the least cost path

is < s, v1, v2, · · · , vk, d >, denoted as LCP , and the cost of LCP is Clcp. We denote the

declared cost of a node vi, i ∈ {1, · · · , k} as Ti. We denote the least cost path from s to d

excluding node vi as LCP−vi and the cost of this path as C−vi

lcp . Then, Pvi
, the payment to

a node vi, i ∈ {1, · · · , k} [62, 71], is calculated as

Pvi
= C−vi

lcp − Clcp + Ti (4.1)
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Figure 4.1: A weighted graph

Figure 4.1 shows an example of a weighted graph. In this graph the least cost path from

s to d is LCP =< s, v3, v4, d >, and Clcp = 2 + 3 + 2 = 7. The least cost path without v3

is LCP−v3 =< s, v1, v2, d >, and its cost is C−v3

lcp = 5 + 4 + 2 = 11, then the payment to v3

is Pv3
= C−v3

lcp − Clcp + Tv3
= 11 − 7 + 3 = 7. Similarly, the least cost path without v4 is
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LCP−v4 =< s, v3, v2, d >, and its cost is C−v4

lcp = 2 + 4 + 2 = 8. Thus the payment to v4

is Pv4
= C−v4

lcp − Clcp + Tv4
= 8 − 7 + 2 = 3. Note that the total payment to the nodes on

the least cost path is greater than the cost of that path since the intermediate nodes are

awarded more than their own cost. These marginal utilities are what those nodes pursue.

An alternative is to distribute the overpayment evenly among all intermediate nodes

along a path [33]. In this case, every node is reimbursed equal to its cost. Bonus (payment

subtracted by cost) of all intermediate nodes on a path will be summed up and then be

distributed evenly among the nodes.

4.3.3 Truthfulness Analysis

As described in Section 4.3.1, a link lij ’s weight is determined by the sender vi and the

receiver vj. We now show that telling the truth about the cost (emitting power, cost per

unit of power and minimum estimated power) is the dominant strategy for every rational

node [33].

First we show that the sender vi has no incentive to cheat over cost.

Case of Under-declaration A sender vi may under-declare its cost Ti by under-

declaring its emitting power P emit
i or its cost per unit of power ci in an attempt to get extra

utility (margin). There are two possibilities. In the first case, node vi is not on the least

cost path initially. After under-declaration of its cost, if vi is still not on the least cost path,

then it gets no payment for data forwarding. On the other hand, vi may be selected to be

on the least cost path. We denote the actual least cost path before vi’s under-declaration of

its cost as LCPt and its cost as Ct
lcp. We denote the least cost path after under-declaration

as LCP and its cost as Clcp. It is important to note that LCPt will be the least cost path

after excluding vi (on LCP ) from the network, i.e., C−vi

lcp = Ct
lcp. We denote the actual

cost of vi as T t
i (its declared cost is Ti). Then

∑

j∈LCP∧j 6=i Tj + T t
i > Ct

lcp = C−vi

lcp and thus

C−vi

lcp − ∑

j∈LCP∧j 6=i Tj < T t
i . From Equation 4.1, we have

Pvi
= C−vi

lcp − Clcp + Ti = C−vi

lcp −
∑

j∈LCP

Tj + Ti

= C−vi

lcp −
∑

j∈LCP∧j 6=i

Tj .
(4.2)

Thus Pvi
< T t

i , i.e., it implies that vi’s payment cannot cover its cost and thus vi gets

negative utility. In the second case, vi is already on the least cost path initially. In this

case items in Equation 4.2 do not change even if vi under-declares its cost. Thus vi gets the
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same payment as when it tells the truth. Therefore, we conclude that vi has no incentive

to under-declare its cost.

Case of Over-declaration Alternatively, vi may over-declare its cost by over-declaring

its emitting power P emit
i or cost per unit of power ci with the hope of getting a higher

reimbursement. The over-declaration of cost makes the path through vi more expensive.

On one hand, this may cause the least cost path not go through vi and thus vi losses the

chance to get the utility. On the other hand, if vi is still on the least cost path, then items

in Equation 4.2 do not change due to vi’s over-declaration and thus vi’s payment will be

still the same as the payment when it tells the truth. Therefore, vi has no incentive to

over-declare its cost. In summary, vi has no incentive to cheat over its emitting power or

cost per unit of power.

Similarly, a receiver vj’s best strategy is to declare the true estimated minimum emitting

power Pmin
i,j . If vj under-declares Pmin

i,j , it may let the least cost path pass through it.

However, the sender vi will use a lower power to send packets and thus vj will be out of

the radio range of vi. vj can forward nothing and gets no payment. If vj over-declares

Pmin
i,j and thus making the path through vj more expensive, the least cost path may not go

through link lij . Even if link lij is still on the least cost path (after the over-declaration),

vj ’s over-declaration of cost increases the cost of the path Clcp. From Equation 4.1, since

C
−vj

lcp and Tj do not change while Clcp is increased, vj will get less payment than it gets

when it tells truth about Pmin
i,j . Thus vj has no incentive to tell lies about its estimated

minimum emitting power Pmin
i,j .

Zhong et al. [73] discuss vj ’s strategy in case of vi’s over-declaring P emit
i . If vi over-

declares P emit
i by α times and vj declares cost truthfully, then the estimated minimum

power to cover link lij will be αPmin
i,j . Thus lij may not be on the least cost path. If

vj under-declares the cost by β times (1 < β ≤ α), the estimated minimum power will

be αPmin
i,j /β < αPmin

i,j , and thus lij has more chance to be on the least cost path. Since

αPmin
i,j /β > Pmin

i,j , vi can still reach vj. Thus vj can get a better payoff than it could get

by declaring the true minimum power. However, vi will not use this estimated minimum

power αPmin
i,j /β to send packets to vj . Instead, it will factor out its over-declared ratio α

and use Pmin
i,j /β < Pmin

i,j to send the packet. Without this, vi’s over-declaration does not

have a point. Thus vi can not reach vj . Vj gets no payoff, even if lij is still on the least cost

path after the over-declaration of P emit
i . Thus vj ’s best strategy is still to declare the true

estimated minimum power Pmin
i,j .

Base on their argument, Zhong et al. provided a protocol to prevent a node from under-
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declaring Pmin
i,j by combining the VCG mechanism with cryptography. Their protocol results

in the O(ρ ·E · n) message overhead, where ρ is the number of power levels, E the number

of links and n the number of nodes. LOTTO’s route discovery can be used in their protocol

and it reduces their message overhead from O(ρ · E · n) to O(n2).

4.3.4 Message Complexity Analysis

In LOTTO, a route discovery consists of two stages. In the first stage, the RREQ message

from the source is flooded over the network. Each node forwards the RREQ message once,

resulting in a total of n messages, where n is the number of nodes. In the second stage,

each node issues a Neighbor message. If a node is within the radio range of the source, it

can directly send its Neighbor message to the source. Otherwise, it floods the Neighbor

message over the network to prevent being selectively dropped by certain nodes. Thus, in

the worst case, a node’s Neighbor message will be forwarded once by each node, resulting

in an O(n) message overhead. In the second stage, n nodes’ Neighbor messages result

in O(n2) message overhead. To sum up these two stages, a single route discovery incurs

n + O(n2) = O(n2) message overhead.

In ad hoc-VCG, a route discovery also consists of two stages. In the first stage, the

RREQ message is flooded over the network. However, unlike LOTTO, where a node

forwards only one RREQ for a route discovery, in ad hoc-VCG, a node forwards multiple

RREQ messages for a route discovery. A RREQ message is initiated by the source and

includes information ( weight) about all links it has traversed. Upon receiving a RREQ

message from its neighbor node B, a node A checks if this RREQ message contains any

link that it (A) has not known about. If so, node A forwards (broadcasts) this RREQ

message by appending its identification, emitting power and cost of unit power. A node A

may even forward (broadcasts) multiple RREQ messages from the same neighbor B as long

as they contain new links unknown to node A. In a network, the possible number of links is

O(n2), where n is the number of nodes. Thus, each node in ad hoc-VCG (except the source

and the destination) may need to forward (broadcast) O(n2) RREQ messages containing

at least one new link weight, resulting in a total O(n3) message overhead for n nodes. In

the second stage, the destination sends an RREP message to the source after it collects

topology information and calculates a least cost path. This RREP message will traverse

at most n hops, resulting in at most n message overhead. To sum up, a route discovery in

ad hoc-VCG incurs an O(n3) message overhead.
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4.3.5 Performance Evaluation

We conducted an extensive simulation study to evaluate the performance of our protocol

on a network with selfish nodes. We compared the proposed protocol with the ad hoc-VCG

protocol [33], since both the protocols give incentives to nodes to forward packets under

the assumption that nodes are selfish and rational, and both achieve the design objective of

truthfulness of the selected routes. We did not compare our protocol with generic routing

protocols such as DSR and AODV, because our protocol works under a different model of

node behavior. The generic routing protocols are feasible in networks where all nodes are

obedient (i.e. they follow the protocol), and are willing to cooperate. Our protocol, on

the other hand, is aimed at networks where nodes are selfish and need some incentives to

forward packets.

In our simulation study, we consider the following performance metrics:

• Packet delivery ratio, as defined in Section 3.2.7.1. The packet delivery ratio is a

comprehensive result of all factors which could affect the packet delivery ratio, such as

collisions in the MAC layer, rerouting in the network layer, and so on.

• Overhead is the sum total of the protocol control messages exchanged by nodes in the

network, including routing messages as RREQ, RREP, Neighbor and RERR.

• Delay is defined as
Pn

i=1
packeti

delay

n , i.e., the average end-to-end delay of data packets

from senders to receivers.

• Overpayment ratio is defined as
Pn

i=1
Payi + Costs

Pn
i=1

Costi
, i.e., the ratio of total payment to

the intermediate nodes paid by all the source nodes plus the cost of the sources to total

cost incurred by all nodes for data transmission.

• Energy consumption. This is the total energy (power) consumed to send all packets,

including route discoveries and data transmissions.

In the following discussion, vcg stands for the ad hoc-VCG protocol [33] and lotto stands

for the proposed protocol LOTTO.

We used Glomosim [64] for simulations. Unless specified otherwise, the following

parameters were used in simulations. Sixty nodes were placed uniformly in a square area

of 600 meters by 600 meters. Since a wireless card usually has only a few discrete power

level settings instead of a continuum power level, we simulated four levels of power emission

for nodes, i.e., 1, 3, 5, 7 dBm, corresponding to the radio ranges of 125, 158, 198 and 250

meters, respectively. The routing messages were always sent with the highest power level.

For simplicity, we assumed that nodes have the same cost of unit power. We used an 802.11

protocol with DCF as the MAC protocol and modified it to send packets at different power

44



levels. Default values are used for MAC layer parameters. All nodes followed the Random

Waypoint mobility model [65] with a speed range of 0 m/s to 10 m/s and a pause time of

30 seconds. Each simulation lasted for 900 seconds of simulated time. 10 CBR flows were

simulated, starting at 100 seconds and ending at 880 seconds. Each CBR flow sent four

256-byte data packets per second. Data points represented in the graphs were averaged

over 10 simulation runs, each with a different seed. Confidence intervals (95%) are shown

with vertical bars in the graphs.

4.3.5.1 Impact of Mobility
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Figure 4.2: Performance of different speeds for 60 nodes

4.3.5.1.1 Packet Delivery Ratio Fig. 4.2(a) shows the packet delivery ratio with

respect to maximum speed. We observe that lotto provides a much higher packet delivery

ratio over vcg. This can be ascribed to three reasons, all resulting from vcg ’s O(n3) message

overhead.
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First, a large number of RREQs cause heavy message propagation congestion in the

MAC layer and result in a high delay of message propagation. Results of our simulation

study show that, in a static network, a destination node needs several seconds to collect

information about most of the links, and even more time to collect information about

all links. In a dynamic network, it is impossible to collect all link information as the

topology keeps changing during the RREQ flooding period. In order to guarantee that the

selected path is of least cost and truthful, comprehensive topological information is needed.

After collecting link information, the destination sends an RREP message to the source,

including the least cost path and related information. However, the propagation of this

RREP message is time consuming due to heavy congestion in the MAC layer, and in our

simulations we found that it may take a several seconds to reach the source node. Therefore,

the whole route discovery can take long time. In a dynamic network, after the source node

receives the RREP , the selected route (the least cost path) may be outdated. The higher

the mobility of nodes, the higher the probability that the network topology changes, and the

higher the probability that the selected route is outdated. Thus data transmissions along

the selected route may encounter link breakages, resulting in increased route discoveries,

which generate even more RREQ messages and make the situation worse.

The second reason is that vcg ’s large number of RREQ messages cause severe overflows

of the network output queues and thus a lot of packets are dropped, including RREP

packets. The dropping of RREP messages results in increased route discoveries, which

generates even more RREQ and increase the problem. Table 4.1 shows the packets dropped

due to overflow of output queues. The number of packets dropped due to queue overflow in

vcg is about two magnitudes of order higher than that in lotto.

speed 0 2 4 6 8 10

lotto 0 2810 4786 6682 8078 8474

vcg 467431 1476108 1423999 1408228 1346671 1328511

Table 4.1: The number of packets dropped due to output queue overflow

The third reason is that vcg ’s large number of RREQ messages cause severe radio

interference [74], resulting in data packet being dropped. Nodes outside the radio range

but within the interference range of a communicating node pair may interfere with that

communication and result in packets drops. The interference range is larger than the radio

range, and can be twice that of the radio range. The data packet drops result in increased

route discoveries, which generate even more RREQ messages and worsen the situation.
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Even in a static network, many packets are dropped and multiple route discoveries are

invoked during a single data session.

As mobility increases, packet delivery ratio decreases for both protocols. Higher mobility

causes more link breakages and thus results in more packets dropped. Link breakages result

in increased route discoveries, which generate even more RREQ messages and thus make

the situation worse.

4.3.5.1.2 Overhead Fig. 4.2(b) shows the overhead with respect to maximum speed.

We observe that lotto’s overhead is much lower than that of vcg. As discussed in

Section 4.3.4, vcg results in a total O(n3) overhead for a route discovery while lotto results

in a total overhead of O(n2).

4.3.5.1.3 End-to-end Delay Fig. 4.2(c) shows the end-to-end delay with respect to

maximum speed. We observe that lotto’s end-to-end delay is significantly lower than that of

vcg. This is due to the reasons described in Section 4.3.5.1.1. First, vcg takes a long time to

discover a route. Second, in vcg, route discoveries may fail due to RREP messages dropped

resulting from the output queue overflows. Route discoveries may also fail due to the late

arrival of RREP messages, i.e., when RREP messages reach the source nodes, the waiting

timer for the route discoveries might have already timed out, and the source nodes might

have already invoked the route discoveries again. Thus, source nodes need more time to

find paths to the destination nodes. Third, in vcg, data packets have to wait in the output

queue for a long time before being transmitted over the channel. As mobility increases, the

end-to-end delay increases for both protocols. Higher mobility causes more link breakages

and thus results in even more RERRs, which slows down route discoveries and causes even

longer output queues in the MAC layer.

4.3.5.1.4 Energy Consumption Fig. 4.2(d) shows the energy consumed in sending

packets with respect to maximum speed. We observe that lotto consumes much less energy

than vcg because it sends much less control packets than vcg. As mobility increases, the

energy consumption increases for both the protocols because an increase in mobility results

in more route discoveries, which causes transmission of more control packets and thus

consumes more energy.

As shown above, increased mobility degrades the network performance, mainly due to

the increased routing overhead. Thus in case of higher mobility, a proactive routing protocol
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may incur less overhead, and thus may perform better than a reactive routing protocol. This

would be an interesting subject for future research.

4.3.5.2 Impact of the Network Size

To study the impact of network size, we changed the number of nodes. Two cases were

considered. In the first case, we fixed the node density at 6000 m2/node and changed the

number of nodes from 50 to 90. In the second case, we fixed the network area at 600m*600m

and changed the number of nodes from 50 to 80. We set the maximum speed at 10 m/s in

both the cases.

4.3.5.2.1 The case of Fixed Node Density Fig. 4.3(a) shows the packet delivery

ratio with respect to the number of nodes, while keeping the density fixed. We observe

that the packet delivery ratio of lotto is much higher than that of vcg. This is due to the

reasons discussed in Section 4.3.5.1.1. As the number of nodes increases, the packet delivery

ratio decreases for both protocols. With a fixed node density, an increase in the number of

nodes results in an increase in network area and an increase in the average hop count of a

path. Thus node mobility is more likely to cause link breakages, resulting in more packet

drops and increased RREQ messages, particularly for vcg. These control packets weigh

down the network traffic, cause severe output queue overflow, and increase interference for

data transmission, both resulting in more packets being dropped. Also, the number of links

increases with the number of nodes, and thus route discoveries in vcg need more time to

collect link information. Thus the selected paths are more likely to be outdated, causing

more link breakages, which results in increased route discoveries and a worsening situation.

Fig. 4.3(b) shows the overhead with respect to the number of nodes keeping the density

fixed. We observe that the overhead of lotto is much lower than that of vcg. This is because

vcg generates O(n3) overhead while lotto generates an overhead of O(n2). As the number

of nodes increases, the overhead increases for both the protocols for two reasons. First, an

increase in the number of nodes results in an increase in the number of RREQ messages

(and Neighbor messages for lotto). Second, an increase in the number of nodes results in

more link breakages, as discussed above, and thus results in more route discoveries.

nodes 50 60 70 80 90

lotto (pkts.) 1070 1661 2332 3163 4038

vcg (pkts.) 11884 13328 19185 18932 21697

Table 4.2: Average overhead per route discovery with fixed node density
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Figure 4.3: Performance for different numbers of nodes
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To further analyze the overhead, we normalize the overhead as control packets per route

discovery. Table 4.2 shows the overhead per route discovery with different numbers of

nodes. The overhead of lotto is almost 1 magnitude of order lower than that of vcg.

Fig. 4.3(c) shows the end-to-end delay with respect to the number of nodes keeping

the density fixed. We observe that lotto incurs a much lower delay than vcg. This is due

to the reasons discussed in Section 4.3.5.1.3. As the number of nodes increases, the delay

increases for both the protocols. An increase in the number of nodes results in an increase

in the overhead and thus results in more packets in the output queues which aggravate

queue overflow. Longer output queues increase the waiting time of data packets. Queue

overflow causes the failure of a route discovery. In addition, route discovery is slower as

it needs more time to collect link information. Both result in data packets staying in the

source node’ buffers for a longer period of time.

Fig. 4.3(d) shows the overpayment ratio with respect to the number of nodes keeping

the density fixed. The ratio is no more than 1.13 for lotto. lotto’s overpayment ratio is a

little lower than that of vcg. It implies that lotto can find better paths than vcg. The main

reason is that in vcg, with node mobility, it is difficult to collect complete link information

to get the most effective routes and thus the most effective overpayment ratio. The ratio

changes a little for both the protocols as the number of nodes changes, except at the point

of 90 nodes, where vcg has a lower overpayment ratio than lotto. This is because in vcg a

large portion of data packets delivered to the destinations are sent from the sources to the

destinations directly, meaning that the sources and the destinations are neighbors.

Fig. 4.3(e) shows the energy consumed for sending packets with varying number of nodes

keeping the density fixed. We observe that lotto consumes much less energy than vcg even

though it delivers many more data packets because it generates much fewer control packets.

As the number of nodes increases, more nodes are involved in sending packets, particularly

for route discoveries, and the total energy consumption increases for both protocols.

4.3.5.2.2 The Fixed Area Case Fig. 4.3(f) shows the packet delivery radio with

respect to the number of nodes keeping the network area fixed. We observe that lotto

provides a much higher delivery ratio over vcg. This is due to the reasons discussed in

Section 4.3.5.1.1. As the number of nodes increases, i.e., the node density increases, the

packet delivery ratio decreases for both protocols. For vcg, as the number of nodes increases,

the number of links increases, resulting in longer route discoveries. The probability that

selected paths are outdated increases and thus link breakages increase, causing more packets
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to be dropped. Furthermore, an increase in overhead due to route discoveries results in

severe output queue overflow and radio interference with data transmission, causing more

packet drops. Lotto has less output queue overflow and radio interference than vcg.

nodes 50 60 70 80

lotto (pkts.) 1176 1661 2219 2860

vcg (pkts.) 11317 13328 21287 27239

Table 4.3: Average overhead per route discovery with a fixed area

Fig. 4.3(g) shows the overhead with respect to the number of nodes keeping the area

fixed. We observe that lotto’s overhead is much lower than that of vcg because lotto

generates O(n2) RREQ messages while vcg incurs O(n3) RREQ messages. As the number

of nodes increases, more nodes are involved in the route discoveries, thus increasing the

overhead for both protocols. Table 4.3 shows the overhead per route discovery. Vcg incurs

much higher overhead than lotto. Comparing Table 4.2 with Table 4.3, we can see that,

for lotto the overhead per route discovery in the case of fixed density is almost the same as

that in the case of fixed area. In lotto, every node sends only one RREQ message and one

Neighbor message, which are flooded over the network, for a route discovery. However, for

vcg, the overhead per route discovery in the case of fixed area increases faster than that in

the case of fixed density. This is due to the fact that an increase in the number of links in

a small area is faster than that in a larger area as the number of nodes increases.

Fig. 4.3(h) shows the end-to-end delay with respect to the number of nodes keeping

the area fixed. We observe that lotto incurs a much lower delay than vcg. This is because

of the reasons discussed in Section 4.3.5.1.3. As the number of nodes increases, the delay

increases for both protocols. This is due to the same reason discussed in the case of fixed

node density.

4.3.5.3 Impact of Load

4.3.5.3.1 Packet Delivery Ratio Fig. 4.4(a) shows the packet delivery ratio with

respect to the number of flows for 60 nodes and a maximum speed of 10 m/s. We observe

that lotto provides a much higher packet delivery ratio than vcg. This is due to the reasons

discussed in Section 4.3.5.1.1. As the load increases, the packet delivery ratio decreases for

both protocols. This is because the output queue overflow, together with packets collisions

and interference, increases when the number of flows increases, causing more packet drops.
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Figure 4.4: Performance for different loads with 60 nodes

4.3.5.3.2 Overhead Fig. 4.4(b) shows the overhead with respect to the number of flows

for 60 nodes and a maximum speed of 10 m/s. We observe that lotto causes significantly

lower overhead than vcg since vcg generates O(n3) RREQ messages for route discoveries

while lotto incurs an only O(n2) overhead. In lotto, an increase in the number of flows causes

an increase in route discoveries, resulting in an increase in the overhead. The overhead of

vcg changes little with respect to the number of flows. This occurs for two reasons. First,

with more flows, each route discovery collects fewer RREQ messages due to collisions and

interference of these RREQ messages. Second, due to bounded simulation time, the long

time of route discovery restricts the number of new route discoveries.

4.4 A Light-weight Scalable Truthful Routing Protocol

4.4.1 Overview

It is desirable to find a truthful and optimal (least-cost) path between a source and a

destination. By far, the VCG mechanism is the only solution[71]. The VCG mechanism

requires multiple optimal routes and thus a complete underlying weighted graph should be

determined. However, the least cost path established by the VCG mechanism is meant for

data forwarding. The cost of network topology discovery is beyond the consideration of the

VCG mechanism, and finding network topology is not trivial. It costs ad hoc-VCG [33]

an O(n3) overhead. Moreover, finding the complete topology of a network is not practical.

A network topology can be acquired by some routing protocols, in practice, which resort

to a broadcast approach. Due to collision and radio interference, a broadcast message is

not reliable. There is no guarantee that nodes within the radio range of a broadcaster
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will receive the broadcast message. Thus some links in the network topology may remain

undetected.

A near-optimal (near least-cost) path for data traffic with very low overhead may

reduce total cost and may be more scalable. This is the stimulus for our LSTOP protocol.

Compared to the ad hoc-VCG, LSTOP provides near-optimal paths for data traffic with

significantly low overhead. It reduces the message overhead to O(n2) in the worst case

and to O(n) on the average. The basic idea of how LSTOP functions can be summarized

as follows: the source sends a route request on demand. Every node forwards the route

request once. Based on route requests, nodes construct neighbor lists. One route is selected

by the destination as the base to construct a subgraph of Gp. Only the nodes around this

selected route report their neighbor lists to the source. Using these neighbor lists, the source

constructs a subgraph Gp and finds the least cost path in Gp using the Dijkstra algorithm.

Then, the VCG mechanism is applied to calculate the payment to nodes so that a rational

node has no incentive to lie about its cost.

4.4.2 Route Discovery

Route discovery intends to construct a subgraph Gp of the whole network. The subgraph

Gp includes the source, destination and some intermediate nodes. To apply the VCG

mechanism, this subgraph should be biconnected.

Whenever a source s wants to communicate with a destination d, it initiates an RREQ

message. This message includes < s, d, seqNo, cs, P
emit
s >, where s and d are the node

IDs of the source and the destination, respectively; seqNo is the sequence number of this

request; cs is the sender’s cost per unit of power and P emit
s is the emitting power of the

sender.

Upon receiving a RREQ message from a node i, a node j takes the following actions:

1. Determine the power P rec
j at which j received the message.

2. Estimate the minimum power from node i to node j as Pmin
i,j =

P emit
i ·P rec

min

P rec
i,j

.

3. Append node i, ci and Pmin
i,j to its neighbor list. A neighbor list is a list of structures

consisting of node ID and the minimum emitting power from the neighbors of node j

to node j and cost per unit of power of these neighbors.

4. Check the freshness of the RREQ message by its sequence number. If it’s a new

message, node j appends its ID j, its cost per unit of power cj and its emitting power

P emit
j to the RREQ message and rebroadcasts it.
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After receiving the first RREQ, the destination waits for a specific period τ and then

sends an RREP to the source. We denote the path along which the first RREQ arrived as

SP hop. The RREP is sent along SP hop in the reverse direction and includes the node list

of that path. The waiting period τ is used to let RREQ messages reach as many nodes as

possible so that nodes can get as complete neighbor lists as possible.

After forwarding RREP to the source, nodes on the path SP hop report their neighbor

lists to the source. Nodes work in the promiscuous mode and thus nodes not on the path

SP hop may overhear the RREP message. We denote the set of nodes on the path SP hop as

V on
sp and the set of nodes not on path SP hop but within radio range of SP hop (i.e., within

radio range of any node in V on
sp ) as V near

sp . When nodes in V near
sp overhear RREP messages,

they send their neighbor lists to the source using Neighbor messages. A Neighbor message

includes such fields as < s, d, seqNo, i, (Neighborj , cj , P
min
j,i ), · · · , (Neighbork , ck, P

min
k,i ) >,

where s and d are the IDs of the source and destination, respectively; seqNo is

the sequence number acquired from the RREQ; i is the ID of this message sender;

Neighborj , · · · , Neighbork are the IDs of i’s neighboring nodes; cj , · · · , ck are the cost

per unit of power of neighbor j, · · · , k, respectively; and Pmin
j,i , · · · , Pmin

k,i are the minimum

power needed from neighbor j, · · · , k to node i, respectively. These Neighbor messages use

source routing. The routes to the source are established as the reverse routes of the routes

along which nodes received the RREQ messages. Nodes not overhearing RREP messages

don’t send Neighbor messages.

Upon receiving all these neighbor lists from nodes in V near
sp and V on

sp , the source

constructs a subgraph Gp which includes the source, destination and all nodes within the

radio range of nodes on path SP hop. In a network with sufficient high density, this subgraph

Gp is biconnected. In cases where the acquired subgraph is not biconnected, the source node

invokes a new route discovery. By using the Dijkstra or Bellmen-Ford algorithm [72], the

source can find a least cost path in Gp, denoted as SP p.

Figure 4.5 illustrates this route discovery. s and d denote the source and the destination,

respectively; the thin solid line denotes the SP hop; the thick dash dot line denotes the SP p;

the area enclosed by the dotted line is the found subgraph Gp. Only nodes within this

enclosed area send Neighbor messages to the source node. With high probability, the least

cost path is present in the area enclosed by the dotted line. Thus SP p may be a good

approximation of the least-cost path for the whole network.

Data Forwarding: After finding the least cost path, the source can send data packets

along this path. The header of data packets includes the node list < s, v1, v2, · · · , vk, d >,
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Figure 4.5: Illustration of LSTOP

the minimum power Pmin
i , i ∈ {1, 2, · · · , k} needed for every intermediate node vi to forward

data to its downstream node, and payment Pi to every intermediate node vi. The payment

to each intermediate node can also be accounted for and reimbursed accordingly by a central

server [58]. Tamper-proof hardware [42] can be used to protect virtual money or payment

from modification and other attacks.

Upon link breakage due to mobility or cost change, the corresponding node sends a route

error (RERR) message to the source. The source then invokes a new route discovery.

Message Complexity: In LSTOP, route discovery consists of two stages. In the first

stage, RREQ floods over the network. Every node forwards one RREQ message. Thus a

total of n RREQ messages are sent. In the second stage, nodes in V on
sp and V near

sp send one

Neighbor message each to the source using source routing. The total number of Neighbor

messages forwarded is
∑

i∈V on
sp

hopi
s +

∑

i∈V near
sp

hopi
s, where hopi

s denotes the hop counts

from node vi to the source s. Typically, the diameter of a network is
√

n, i.e., the number

of nodes on a path is
√

n. The number of neighbors of a node, denoted as µ, is determined

by the node density. Thus the neighboring nodes along the path SP p is µ
√

n, where µ is

typically 6 ∼ 8. As some nodes are common neighbors of two consecutive nodes on SP p,

i.e, there is a high probability that the neighbor sets of two nodes will intersect, the actual

value of µ is smaller. Under the assumption that a typical network diameter is
√

n, a total

of O(µ
√

n ·√n) = O(n) Neighbor messages are forwarded. In the worst case, every node in

the network is within the radio range of at least one of the nodes on the path SP p. In this

case all nodes report their neighbor lists and thus the overhead could be O(n2) in the worst

case and O(n3/2) on average. However, in such a case, a least cost path is guaranteed to be

found as the information on the whole graph is available to the source node. To summarize
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the two stages, a single discovery incurs a message overhead of O(n2) in the worst case and

O(n) on average.

4.4.3 Payment Calculation

4.4.3.1 Payment to Route Discovery

We pay a unit amount for each node to forward a routing message. This unit payment can

cover the maximum cost of a node for routing a message. Payment for a route discovery

consists of two parts. The first part pays nodes involved in flooding RREQ. Every node

broadcasts RREQ exactly once. The second part pays nodes involved in the Neighbor

message reporting. Every node that overhears the RREP message along SP hop sends its

neighbor list to the source using a Neighbor message. The message may be relayed by

several intermediate nodes. Since a Neighbor message uses source routing, the source

node can determine all the intermediate nodes that relayed the message by checking the

header of the Neighbor message. Upon receiving a Neighbor message, the source increases

the corresponding credits for the nodes forwarding the packet, and for the initiator of a

Neighbor message.

4.4.3.2 Payment for Data Forwarding

Payment calculation for data forwarding is based on subgraph Gp only. Nodes not in Gp

get no payment for data forwarding. Nodes not on the least cost path get no payment for

data transmissions. Payment to the nodes on the least cost path is calculated according to

the VCG mechanism, as discussed in Section 4.3.2.

4.4.4 Truthfulness Analysis

We show that telling the truth about its cost is a node’s dominant strategy. Path selection

is determined in two stages. In the first stage, SP hop is chosen. SP hop is the path along

which the first RREQ arrives at the destination. It is not dependent on the declared

emitting power or cost per unit of power of any node. Thus a node’s under-declaration or

over-declaration of its cost makes no sense at this stage. In the second stage, SP p is found.

After SP hop is found, the subgraph Gp is constructed based on neighbor list information of

nodes along and around SP hop. The payment to nodes in the subgraph Gp is determined

by applying the VCG mechanism. Only links in the subgraph are used. A link lij ’s cost

is determined by the sender i and the receiver j. As shown in Section 4.3.3, nodes in the

subgraph have no incentive to lie about their cost.

56



4.4.5 Performance Evaluation

We conducted an extensive simulation study to evaluate the performance of our protocol

on a network with selfish nodes. We compared the proposed protocol with the ad hoc-VCG

protocol [33]. In the following discussion, vcg stands for the ad hoc-VCG protocol [33] while

lstop stands for the proposed protocol LSTOP. The same parameters used for simulating

LOTTO were used in the simulations.

In our simulation study, we evaluate the same metrics that we evaluated for LOTTO, i.e.,

packet delivery ratio, overhead, end-to-end delay, overpayment, and energy consumption.

In addition, we evaluate a new metric, approximation ratio, defined as follows,

• The approximation ratio of cost is the ratio of total cost of nodes based on lstop to

that based on the whole graph (which gives the optimal solution, i.e., least cost paths).

Similarly, the approximation ratio of payment is the ratio of total payment plus cost of

source nodes based on lstop to that based on the whole graph. Approximation ratio shows

how well lstop approaches the optimal solution.

4.4.5.1 Approximation Ratio
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Figure 4.6: Approximation ratio

To study the approximation ratio of lstop, we collected the entire topology. Based on

this, we applied the VCG mechanism to calculate the total cost on the least cost paths

and total payment to all intermediate nodes for data traffic. As the paths found based on

the whole graph and those based on the sub graph may be different, mobility may cause

different link breakages and thus results in different route discoveries. To allow comparison,

we set the network to be static.
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Figure 4.6 shows the approximation ratio of cost and payment with respect to node

density. Both the approximation ratio of cost and the approximation ratio of payment

are almost equal to 1. As the network area increases, i.e., node density decreases, the

approximation ratio changes very little. The highest approximation ratio for either cost

or payment is less than 1.007. It shows that selecting a path using lstop approaches the

optimal solution of selecting a path based on the whole topology of a network with sufficient

high density.

4.4.5.2 Impact of Mobility
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Figure 4.7: Performance at different speeds for 60 nodes

4.4.5.2.1 Packet Delivery Ratio Fig. 4.7(a) shows the packet delivery ratio with

respect to maximum speed. We observe that lstop provides much higher packet delivery

ratio than vcg. As mobility increases, the packet delivery ratio of lstop drops slightly. The

mobility increases link breakages and thus results in more packet drops. When a link breaks,
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lstop can find new paths to the destinations quickly with low overhead (See subsection 4.4.2).

On the contrary, vcg ’s packet delivery ratio drops dramatically with an increase in mobility.

This can be ascribed to three reasons, as discussed in Section 4.3.5.1. First, vcg ’s large

number of RREQs cause much delay in message propagation and the source is very likely

to collect outdated route information. Second, large numbers of RREQ messages cause

severe overflow of the network output queues and thus a lot of packets are dropped. Third,

a large number of RREQ messages causes severe radio interference [75], resulting in data

packets drops.

4.4.5.2.2 Overhead Fig. 4.7(b) shows the overhead with respect to maximum speed.

We observe that lstop’s overhead is significantly (by 2 magnitudes of order) lower than

that of vcg. In vcg, each node forwards (broadcasts) every RREQ message carrying link

information unknown to it and thus a node forwards O(n2) RREQ messages, resulting in

a total of O(n3) overhead for a route discovery. On the contrary, in lstop, every node sends

only one RREQ message and one Neighbor message, which may be forwarded for several

hops, for a route discovery, resulting in a total overhead of O(n2) in the worst case and

O(n) on average. As mobility increases, the overhead increases in both protocols because

higher mobility results in more link breakages, and thus results in more RERRs and new

route discoveries.

4.4.5.2.3 End-to-end Delay Fig. 4.7(c) shows end-to-end delay with respect to

maximum speed. lstop’s end-to-end delay is between 0.06∼0.07 second and is on the

horizontal axis. We observe that lstop’s end-to-end delay is significantly (by 2 magnitudes

of order) lower than that of vcg. This is due to the reasons discussed in Section 4.3.5.1.

First, vcg takes a long time to discover a route. Second, multiple route discoveries for a

single route request increase the delay. Third, congestion and long queues in the MAC layer

increase the delay.

As the mobility increases, the end-to-end delay increases for vcg. Higher mobility causes

more link breakages and thus results in new route discoveries, producing more RREQ

messages. This in turn slows down route discoveries and causes even longer output queues

in MAC layer.

4.4.5.2.4 Energy Consumption Fig. 4.7(d) shows the energy consumed in sending

packets with respect to maximum speed. We observe that lstop consumes much less energy

than vcg because it sends far less control packets than vcg. As mobility increases, the energy
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consumption increases for both protocols because an increase in mobility results in more

route discoveries, which causes transmission of more control packets and thus consumes

more energy.

4.4.5.3 Impact of the Network Size

These simulations were conducted with a density of one node per 6000 m2 and a maximum

speed of 5 m/s, and the number of nodes was changed from 50 to 90.
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Figure 4.8: Performance for different numbers of nodes

4.4.5.3.1 Packet Delivery Ratio Fig. 4.8(a) shows the packet delivery ratio with

respect to the number of nodes. We observed that the packet delivery ratio of lstop

was significantly higher than that of vcg. This is due to the reasons discussed in

Section 4.3.5.1(a). As the number of nodes increases, the network area increases and the

average hop count of a path increases, and thus node mobility is more likely to cause

link breakages. In addition, an increase in the number of nodes results in an increase in
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the number of links, and therefore route discoveries in vcg need more time to collect link

information. The selected paths are more likely to be outdated, causing more link breakages.

An increase in link breakages increases the number of packets drops and route discoveries,

which generates more control messages particularly for vcg, thus making the situation worse.

4.4.5.3.2 Overhead Fig. 4.8(b) shows the overhead with respect to the number of

nodes. We observe that the overhead of lstop is far lower (by 2 magnitudes of order) than

that of vcg. This is because vcg generates an O(n3) overhead while lstop generates an

overhead of O(n) on average. As the number of nodes increases, the overhead increases

for both protocols for two reasons. First, an increase in the number of nodes results in an

increase in the control messages of a route discovery. Second, an increase in the number

of nodes results in more link breakages, as discussed above, and thus results in more route

discoveries.

To further analyze the overhead, we normalized the overhead as control packets per route

discovery, including RREQ messages, Neighbor messages and RREP messages. Table 4.4

shows the overhead per route discovery with different numbers of nodes. The overhead of

lstop is almost 2 orders of magnitude lower than that of vcg.

nodes 50 60 70 80 90

lstop 114 136 160 183 206

vcg 15743 18479 21676 23187 24513

Table 4.4: Average overhead per route discovery with fixed node density

4.4.5.3.3 End-to-end Delay Fig. 4.8(c) shows the end-to-end delay with respect to

the number of nodes. The delay of lstop is around 0.1 second and is on the horizontal axis.

We observe that lstop incurs a far shorter delay (by 2 order of magnitude) than vcg. This is

further discussed in Section 4.3.5.1(c). As the number of nodes increases, the delay increases

for vcg. An increase in the number of nodes increases the number of control messages, and

thus results in longer output queues and increases the queue overflow and congestion in the

MAC layer. Longer output queues and congestion increase the data packets’ waiting time.

Queue overflow causes the failure of route discovery. Route discoveries need more time to

collect link information. Both result in data packets’ waiting at the source nodes’ buffers

for a longer period of time.

61



4.4.5.3.4 Overpayment Ratio Fig. 4.8(d) shows the overpayment ratio with respect

to the number of nodes. The ratio changes a little for both protocols as the number of

nodes changes. vcg ’s overpayment ratio is a little higher than that of lstop. It implies that

lstop can find better paths than vcg. The main reason is that in vcg with node mobility, it

is difficult to collect complete link information to get the most effective routes. Therefore

the most effective overpayment ratio is not achieved.
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Figure 4.9: (a) Performance for different densities with 60 nodes

4.4.5.4 Impact of Node Density

These simulations were conducted with 60 nodes and a maximum node speed of 5 m/s, and

the network area was changed from 600*600 m2 to 900*900m2.

4.4.5.4.1 Packet Delivery Ratio Fig. 4.9(a) shows the packet delivery ratio with

respect to the size of network area. We observe that lstop provides a much higher delivery

ratio over vcg. This is discussed further in Section 6.4.1(a). As the area increases (i.e., the

density decreases), the packet delivery ratio decreases for both protocols. This is because

an increase in the area increases the probability of nodes’ moving out of each other’s radio

range, and increases the hop counts of data transmission paths, causing more link breakages

and more packet drops.

4.4.5.4.2 Overhead Fig. 4.9(b) shows the overhead with respect to size of the network

area. We observe that lstop incurs a far lower overhead than vcg as vcg generates O(n3)

RREQ messages for route discoveries. As the network area increases (i.e., the density

decreases), the overhead of lstop increases. This is because an increase in the area results
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in more link breakages, resulting in increased route discoveries, which incurs more control

messages. Vcg ’s overhead decreases as node density decreases. This is because, as the

network area increases, with a fixed number of nodes, the number of links in the network

decrease and thus the number of RREQ messages (which include links information) per

route discovery decrease. Although the number of route discoveries increases due to an

increase in link breakages, the decrease in per route discovery overhead outweighs the

increase in the number of route discoveries.
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Figure 4.10: Performance of different loads with 60 nodes

4.4.5.5 Impact of Load

4.4.5.5.1 Packet Delivery Ratio These simulations were conducted with 60 nodes

and a maximum speed of 5 m/s, and the number of flows was changed from 6 to 14.

Fig. 4.10(a) shows the packet delivery ratio with respect to the number of flows. We

observe that lstop provides a much greater packet delivery ratio than vcg (See Section

6.4.1(a)). As load increases, the packet delivery ratio of lstop changes little, whereas that

of vcg decreases. This is because an increase in the number of flows increases the output

queue overflow, packet collisions and interference, causing more packet drops.

4.4.5.5.2 Overhead Fig. 4.10(b) shows the overhead with respect to the number of

flows. We observe that lstop causes far lower (about 2 order of magnitude) overhead than

vcg since vcg generates O(n3) RREQ messages for route discoveries. In lstop, an increase

in the number of flows causes an increase in route discoveries, resulting in an increase in

overhead. Vcg ’s overhead changes a little with respect to the number of flows. This is

because, with more flows, each route discovery collects significantly fewer RREQ messages
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due to collisions and interference of these RREQ messages. Also, due to bounded simulation

time, the long route discovery restricts the number of new route discoveries.

4.5 Chapter Summary

In this chapter we have presented two low overhead truthful routing protocols, LOTTO

and LSTOP. We introduced a simple and effective way to collect the topology information

of the network. Each node needs to broadcast one RREQ message instead of O(n2) [33].

By applying the VCG mechanism, both LOTTO and LSTOP guarantee that nodes get

enough payment and have no incentive to cheat over their cost. LOTTO achieves cost

efficiency by finding the least cost path from the source node to the destination node. The

most prominent feature of LOTTO is that it reduces overhead from O(n3) [33] to O(n2)

and greatly mitigates message congestion and queue overflows in the MAC layer. LSTOP,

on the other hand, approaches an optimal routing solution in a dense network and incurs

extremely low overhead of O(n) on average and O(n2) in the worst case, thus providing far

better performance and scalability.

We conducted an extensive simulation study to evaluate our protocols and compare

them with the ad hoc-VCG protocol [33]. To the best of our knowledge, we are the first to

conduct an extensive simulation study for mechanism design methods to evaluate important

network metrics such as packet delivery ratio, overhead and end-to-end delay.

Simulation results show that LOTTO achieves a much higher packet delivery ratio,

generates much lower overhead and has much lower end-to-end delay than ad hoc-VCG,

while LSTOP achieves an even better performance, by generating 2 orders of magnitude

lower overhead, and end-to-end delay in comparison to ad hoc-VCG.

Copyright c© Yongwei Wang 2008
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Chapter 5

Achieving Multipath Truthful Routing

5.1 Introduction

On-demand routing protocols [13, 19] establish paths to respective destinations only when

necessary, and maintain only the active routes between sources and destinations, thereby

reducing the control overhead. Similarly, on-demand multipath routing protocols [76, 16, 77]

establish multiple paths to a given destination in a single route discovery phase. Multiple

paths to a destination provide better fault-tolerance to path-breaks. In case of on-demand

multipath protocols, a new route discovery (which typically requires a network-wide flooding

of a route request message) is necessary only when all paths to a given destination break.

Thus, they provide an (overhead) efficient means to recover from routing failure when

compared to single path on-demand routing protocols.

One might think that truthfulness in conjunction with loop-free routing implies increased

complexity of protocol design, and consequently the related control overhead. On the

contrary, we present here a generic mechanism [36] that makes any table-driven multipath

routing protocol a truthful one, without introducing additional control messages and prove

its truthfulness. As an instance of implementation, we present a Truthful Multipath Routing

Protocol (TMRP) which is based on AOMDV [77]. TMRP establishes multiple loop-free

paths to a given destination and incurs only 2n control overhead, asymptotically the same

as AOMDV.

The rest of the chapter is organized as follows: Section 5.2 provides the system

model and preliminaries. Section 5.3 presents the generic truthful multipath routing

mechanism GTMR. Section 5.4 presents TMRP, an example of GTMR. Section 5.5 presents

a performance evaluation of TMRP through simulations. Section 5.6 summarizes the

chapter.
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5.2 System Model and Preliminaries

We use the well known Unit Disk Graph (UDG) model for ad-hoc networks. In a UDG,

nodes are distributed in a two dimensional Euclidean plane. All nodes use a constant radio

range assumed to be normalized to 1. The nodes u and v in a UDG are connected iff the

Euclidean distance between them uv ≤ 1. The network is assumed to be dense enough such

that there is more than one path between any two nodes in the network, unless the two

nodes are direct neighbors.

Nodes in the network are selfish and rational, but not malicious and do not collude.

Each node uses constant power to send packets and it incurs the same cost to send a

packet to different neighbors. However, the value of a node’s forwarding cost may vary

over time 1. Since different nodes may incur different costs for packet forwarding, it is

desirable to pay nodes according to their cost. As with other truthful routing protocols,

nodes assume a payment mechanism [78] that takes care of accounting and transferring

payments between nodes. Tamper-proof hardware [42] can also be used to protect virtual

money from modification or other attacks.

5.2.1 A Hello Protocol

Nodes use Hello messages to exchange bid (cost) information. Each node establishes a

neighbor table to record its neighbors’ information. The neighbor table consists of multiple

entries, each corresponding to a neighbor. A neighbor table entry includes the fields

<IDi, Costi, TSi>, where IDi is the neighbor node’s identity, Costi is its cost of sending

one packet and TSi is the time of establishing this entry, respectively. Fig. 5.1 shows an

example of a node’s neighbor table.

Further, Hello messages are also used to refresh routing tables. A node has multiple

valid paths to a destination. Whenever a path is used to forward packets, the corresponding

route entry in the routing table is refreshed. If a node tends to select the same next hop to

forward packets, only limited paths will be refreshed during a given period. All other valid

path entries will be timed out gradually. These paths will not be “fresh” enough and they

will become invalid paths even if they are in existence. This may result in unnecessary route

discoveries since our auction mechanism requires multiple paths. With the help of Hello

messages, nodes refresh valid paths periodically. When a node X receives a Hello message

from a neighbor, and if the neighbor is on a valid path, X increases the link life time for

the neighbor by a predetermined number of time units.

1For example, a node’s cost increases when its battery power becomes low.
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Each node maintains two timers: a hello timer (HT ) and a neighbor table flush timer

(NTFT ). Upon the expiration of HT , each node broadcasts a Hello message. A Hello

message includes the fields <ID, Cost>, corresponding to its identity and cost of sending a

packet, respectively. Upon receiving a Hello message, neighbors add an entry corresponding

to the issuer of the Hello message into neighbor tables if it is not already present, or refresh

the entry. The nodes then reset the NTFT for this entry. A node also refreshes its neighbor

entry when it overhears the corresponding neighbor’s sending packet. Upon the expiration of

NTFT , a node checks the timestamp of the entry. If the entry is older than a predetermined

period (typically 2 Hello intervals), the node deletes it from its neighbor table.

5.2.2 An Introduction of an Auction

In GTMR, nodes use an auction-based approach to select the next hop for packet forwarding.

To clarify, we briefly describe the auction schemes below.

An auction is a gathering of persons to bid for an item/good according to certain rules

declared a priori. It has been used since prehistory and is still a very common mechanism

in today’s economics. According to the rules and information known to the bidders, an

auction can be classified into different types [57]. For example, the bidders can make their

bids simultaneously where each bidder puts his bid into a sealed envelop, or sequentially,

where the auctioneer gives successive bids and the bidders vie for those bids. An auction can

also be classified based on how the winner is selected and payed. In the first-price scheme,

the winner is the one who bids the highest (lowest) price and pays (receives) the same. In

the second-price scheme the winner is the one who bids the highest (lowest) price but pays

(receives) the second-best price quoted by the bidders. The second-price sealed bid auction

is well studied in economics theory. This auction is also known as a Vickrey auction, named

after Richard Vickrey, a Nobel Prize winner in economics. One of the salient features of

this auction is that making bids equal to their true valuations is the dominant strategy for

the bidders to win the auction. By doing so, bidders will always get non-negative utilities

(payoffs).

5.3 A Generic Protocol

In this section we present a generic truthful multipath routing protocol GTMR that

transforms any table-driven multipath routing protocol MRP into a truthful protocol, if

the MRP satisfies the following two general requirements:

67



R1 The MRP must establish and maintain multiple loop-free paths to each destination,

such that each intermediate node has at least two next hop neighbors.

R2 The MRP must be table-driven, i.e., each intermediate node should maintain only next

hop(s) for different destinations in a routing table.

Loop-freedom is a basic requirement for any routing protocol, while multiple-path and

table-driven routing are necessary for establishing auctions. Furthermore, in addition to

Hello messages, which are commonly used in ad hoc networks for neighbor discovery, GTMR

uses only the control messages necessary for the proper functioning of MRP.

5.3.1 Description of GTMR

GTMR guarantees the truthfulness of the MRP by establishing a coordination between the

neighbor table and the routing table, which is maintained by the MRP. Fig. 5.1 shows an

example of a node F ’s neighbor table and routing table. A, B, C and E are F ’s direct

neighbors and F has three paths to D through A, B and C. The routing table consists of

destination IDs, next hops and other fields such as sequence number or timestamp, distance

to the destination or height, etc., depending on the multipath routing protocol being used.

Generally, to forward packets, an MRP selects a single next hop towards the destination,

among available multiple next hops, using selection policies like round-robin (in the order of

path creation), least hop, or random. However, in GTMR, the next hop selection is based

on the bid value (for packet forwarding). Precisely, for each packet, nodes select a next hop

by using the second-bid auction scheme. In a later subsection we show that such a next-hop

selection guarantees truthfulness.
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Figure 5.1: Illustration of node F ’s neighbor table and routing table

Nodes establish neighbor tables using the hello protocol described in Section 5.2.1, in

which nodes exchange periodic Hello messages containing their bid values. The bid value

specified by a node in the Hello message represents the bid (cost) for which it is willing
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to forward a packet from its neighbors. It is valid for a hello period (typically one or two

seconds). By exchanging bid values proactively via Hello messages, nodes declare a priori

the bids (cost) per packet-forwarding without any bias towards neighboring nodes.

Upon receiving a packet destined for a certain node, a node F selects a next hop using

the second-price sealed bid auction scheme. All neighboring nodes of F that are next hops

towards the destination in F ’s routing table are qualified bidders. From this point view of

the node that is selecting a next hop, i.e., F , is an auctioneer. Note that nodes do not bid

for each packet. Instead they advertise their bids (on a per packet basis) periodically by

attaching them in their periodic Hello messages. Since the Hello interval is very short, it

is reasonable to assume that a node’s cost will not change during that period.

Let the set of qualified bidders be N obtained from the routing-table of the node F .

F retrieves the bids of qualified bidders from its neighbor table and compares these bids.

The winner of the bid is a node N ∈ N that seeks the least cost for forwarding packets.

The payment to N will be the second least cost (bid) among nodes in N . If more than one

neighboring node seeks the least bid value, then F randomly selects one of them. However,

the payment to this node is the same as its bid since the second lowest bid equals the lowest

bid. Algorithm 1 presents the pseudo-code for selecting the next hop.

In cases where the destination is a direct neighbor, no auction is established since the

destination will not forward the packet further and should not get payment. F sends the

packet directly to the destination.

Algorithm 1: A Packet forwarding algorithm

Input: node F , destination D
Output: N // the next hop of F toward D ;

PayN // payment to next hop N
/*Check if multiple paths are available*/;1

if (!IsMultiplePathAvailable(F, D)) then2

send route error message;3

else4

/*NexthopD
F is the set of neighbor nodes of F in valid paths toward D*/;5

foreach node j ∈ {NexthopD
F } do6

Retrieve Costj from the neighbor table;7

Record the lowest cost min and the second lowest cost minnext;8

if Costj is lowest then9

N = j;10

PayN = minnext;11

end12

end13

return (N ,PayN);14

end15
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After selecting the next hop node N , F adds the node ID N and its payment PayN to

the packet header, and forwards the packet to node N . Under the assumption that nodes are

selfish but not malicious, a forwarding node N is not supposed to modify its payment PayN .

Otherwise, tamper-proof hardware [42] can be used to protect this payment information

from modification or other attacks.

In addition, two methods can be applied to avoid such modifications. The first method

resorts to cryptography. Besides items N and PayN , F calculates a MAC (Message

Authentication Code) over these two items, digitally signs it with its private key, and

appends this MAC to the packet. When the destination receives the packet, it can verify

the amount of payments. The second method resorts to neighbor monitoring. Neighbor

monitoring is a key mechanism in detection-based methods for the selfish-node problem.

Each node works in the promiscuous mode and can overhear packets transmitted by

nodes within the radio range. To prevent the modification of payment amount PayN ,

each neighboring node of F saves the overheard packet P sent to N in its buffer. Upon

overhearing packet P sent out from node N , they compare the corresponding header area

of two instances of packet P and check if PayN is modified.

Lemma 5.3.1. Given an MRP that establishes and maintains loop-free multiple paths to

each destination, the packet forwarding algorithm of GTMR routes a packet along a loop-free

path to the destination.

Proof. The proof follows from the loop-freedom insured by MRP. Let H(D)i represent a set

of next hops for the destination D, maintained by node i in its routing table. If j ∈ H(D)i,

then the hop-distance of j towards the destination is strictly shorter than the hop-distance

of i towards the destination (along j). Since the packet forwarding algorithm of GTMR

selects a next hop from H(D)i at each intermediate node i, the path traced by packet using

the forwarding algorithm of GTMR contains only those nodes which strictly decrease the

hop-distance to the destination, which implies loop-freedom.

5.3.2 Truthfulness of GTMR

In this section, we show that truthful bidding is the dominant strategy for each node for

GTMR. It is important to note that a source node pays other nodes but not itself, and

conducts an auction for other nodes only. Neither destination node gets payment.

Theorem 5.3.2. Given an MRP that establishes and maintains a routing table containing

multiple routes to each destination, bidding true cost is the dominant strategy for every

70



qualified bidder, when the next hop (a bidder) is selected using the packet forwarding

algorithm of GTMR.

Proof. To prove the theorem, we need to show that any bidder i, will benefit only when it

bids its true cost [57] (sent in a Hello message).

Suppose a bidder i with true cost vi declares a bid bi. Let i’s utility be ui. Let m−i

denote the minimum bid besides bi. According to the auction rule, the winner of the auction

receives the second-best (second-least) bid quoted by the bidders and the other bidders get

nothing. Thus the utility ui of a bidder i is

ui =

{

m−i − vi, bi < m−i

0, bi > m−i

There are two possibilities: Bidder i may over-bid or under-bid its cost vi [57].

Case of over-bidding: If the bid is higher than the cost, i.e., bi > vi, then there are

three possibilities.

1. If bi < m−i, then i wins the auction and ui = m−i − vi. However, i can get the same

payoff by bidding its cost vi.

2. If vi < m−i < bi, then i loses the auction and gets zero payoff. However, by bidding

vi, it can get a positive payoff.

3. If m−i < vi, then i gets zero payoff, the same as it if it had bid vi.

Thus, i has no incentive for over-bidding.

Case of under-bidding: If the bid is lower than the cost, i.e., bi < vi, then there are

three possibilities.

1. If vi < m−i, then i gets payoff m−i − vi, the same as if it had bid vi.

2. If bi < m−i < vi, then i gets a negative payoff as m−i − vi < 0. However, by bidding

vi, i gets zero payment, which is better than a negative payoff.

3. If bi > m−i, then i gets zero payoff, the same as if it had bid vi.

Thus, i has no incentive for under-bidding.

In both the cases i’s dominant strategy is to bid its cost vi, and hence the theorem.
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5.4 A Truthful Multipath Routing protocol

In this section, we present an instance of GTMR based on the Ad-hoc On-demand

Multipath Distance Vector routing protocol (AOMDV) [77]. AOMDV satisfies the general

requirements specified in the previous section. We call this instance of GTMR with AOMDV

a Truthful Multipath Routing Protocol (TMRP). To clarify, we first explain the AOMDV

protocol. Then, we present a detailed description of TMRP.

5.4.1 AOMDV

AOMDV [77] is an extension to AODV [19] that aims to find multiple paths, especially

link-disjoint paths. Like AODV, AOMDV is based on a distance vector concept and uses

hop-by-hop routing. Moreover, it ensures loop-freedom.

In AOMDV, when a source has packets to send to a destination and finds no routes in its

routing table, it invokes route discovery by broadcasting RREQ packets. Route discovery in

AOMDV is similar to AODV. An RREQ packet in AOMDV includes all fields that occur in

AODV. It includes an additional field called the last hop2, i.e., the neighboring node of the

source. This information and the next hop information, i.e., the node from which to receive

the RREQ, are used to achieve link disjointness for reverse paths to the source [77]. A

node may receive multiple duplicate RREQ packets. For each packet received, it examines

if an alternate reverse path to the source can be formed such that loop-freedom and link-

disjointness are preserved.

Upon establishing a reverse path to the source, an intermediate node checks if it has any

valid paths to the destination. If so, it generates an RREP packet, including a forwarding

path not used in any previous RREP s for this RREQ, and sends the RREP back to the

source through the reverse path. Otherwise, it checks if it has forwarded this request before

and forwards it it has not.

Upon receiving a RREQ packet, the destination tries to form a reverse path to the

source as above. It then generates a RREP packet for each RREQ copy that arrives

through a loop-free path to the source. Multiple RREP s intend to increase the probability

of finding multiple disjoint paths.

Upon receiving an RREP packet, an intermediate node checks if it can form a loop-free

and disjoint path to the destination using the same rule as when it receives a RREQ packet.

If not, it drops the RREP . Otherwise, it checks if there are any reverse paths to the source

2The last hop of a path to a destination is the node just proceeding the destination on that path.
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that has not been used to forward an RREP for this route discovery. If so, it chooses one

of the unused reverse paths to forward the RREP . Otherwise, it drops the packet.

Loop-freedom is guaranteed by satisfying the following sufficient conditions: 1) The

sequence rule. For each destination, multiple paths maintained by a node should have

the same sequence number, i.e., the highest known destination sequence. 2) For the same

destination sequence number, a node never advertises a route shorter than one already

advertised, and never accepts a route longer than one already advertised. More details and

a proof are available in [77].

Route maintenance is also very similar to AODV. Upon link breakage of the last path

to the destination, a node generates or forwards a RERR packet.

5.4.2 An Implementation of Multipath Routing

AOMDV [77] is a reactive hop-by-hop routing protocol which finds node/link disjoint

multiple paths. However, it cannot guarantee finding multiple paths from a node. In

AOMDV, a node forwards packets as long as there is one path to the destination. On

the other hand, TMRP requires multiple paths from a node to establish an auction. To

achieve this, upon receiving a packet, an intermediate node checks if it has at least two

valid next hop nodes to the destination. An exception is that an intermediate node is the

direct neighbor of the destination. In that case the intermediate node forwards the packet

directly to the destination. If no multiple paths are available, the node drops the packet

and sends an RERR packet. While keeping most implementation of AOMDV, especially

the necessary condition for loop-freedom, and thus keeping the feature of loop-freedom, we

modify AOMDV implementation to satisfy general requirements for auctions.

We modified AOMDV to maximize the number of multiple paths. First, we relax the

requirement for node/link disjoint paths. Node/link disjointedness is a good feature for

routing robustness. However, it limits the number of multiple paths. Second, the RREP

packet is handled in the same manner as RREQ packets. RREP is also flooded over the

whole network. Whenever a node receives an RREP packet, it examines if it can form

an alternate reverse path to the destination. If so, it checks if it has forwarded the first

copy of RREP for this route discovery and forwards it if it has not. Otherwise, it drops

the RREP . Third, while guaranteeing that each node maintains routes only to the highest

known destination sequence number, we changed the rule for sequence number updating in

case of link breakages and link timeout so that the sequence number will not be changed

during the propagation of RREP s. A node may change the destination sequence number
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included in an RREP if it has a higher one. Upon receiving a copy of RREP with a higher

destination sequence number, a node creates a new route to replace valid routes created

by RREP copies with lower destination sequence numbers and thus reduces the number of

multiple paths.

We do not allow an intermediate node to generate an RREP even if it has multiple

valid forwarding paths to the destination. Only the destination can generate RREP s for

a route discovery. By doing so, all nodes have chances to refresh their routing entries to

this destination and get more accurate routing information. Also periodic Hello messages

instead of adaptive Hello messages are used to help maintain routing tables, as discussed

in Section 5.2.1.

Upon expiration of the timer for a route discovery, the source node checks if it has

established multiple paths to the destination. If not, it retries the route discovery. Upon

receiving a packet, an intermediate node also checks if there are multiple paths to the

destination. If not, it drops the packet and sends (broadcasts) an RERR packet.

Route maintenance is also modified from AOMDV. Upon link breakage, a node on an

active path checks if it still has valid multiple paths to the destination. If not, it generates

an RERR to inform other nodes that it can not reach the destination for auction-based

packet forwarding (it can still reach the destination). A receiver of RERR invalidates the

routing entry corresponding to the RERR initiator and repeats the above actions.

5.4.3 TMRP

Nodes establish and maintain multiple routes using a modified version of AOMDV (as

described in Section 5.4.2). Nodes maintain a neighbor table using the hello protocol

described in Section 5.2.1.

We simulated two variations of TMRP for nodal cost. In the first variation, nodes don’t

change their packet forwarding cost over time. In the second variation, a node’s packet

forwarding cost may change over time. A node increases its cost proportionally to the

number of packets sent (or forwarded). However, when a node’s cost reaches an upper

boundary, it goes down to the low boundary. This is to simulate the scenario where a node

can have its battery recharged upon battery depletion.

A good feature of the latter implementation is that it can achieve good load balancing.

Our auction mechanism always selects nodes with the lowest cost as forwarding nodes.

Without changing their cost, nodes with a low cost have a high probability of being

forwarding nodes. They are likely to forward more traffic than other nodes and thus they
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become hot spots or are in hot areas, resulting in packet collisions and radio interferences.

However, if these nodes’ cost increases as the packets are forwarded, their cost will gradually

increase more than other nodes. Thus they are less likely to be selected as forwarding nodes.

Other nodes will get more chances to forward packets. Packets are therefore forwarded along

different paths by different nodes over time and load balance is achieved. Note that such

load balancing does not compromise truthfulness due to the use of the auction mechanism.

To forward packets, nodes use the next hops from the routing table entries, and execute

the packet forwarding algorithm (Algorithm 1) of GTMR with inputs from the neighbor

table. It follows from Lemma 1, that such a forwarding scheme guarantees loop-freedom,

given that the underlying AOMDV is loop-free.

5.4.4 Message complexity

Note that the Hello messages, which are very commonly used by nodes for neighbor

discovery in most ad-hoc networks, are the only additional messages for TMRP, and they

are broadcast only locally.

Compared with AOMDV, TMRP incurs a little higher overhead for route discovery. In

both the protocols, each node except the destination broadcasts an RREQ packet, and thus

a total of n−1 packets are transfered. In TMRP, each node except the source forwards one

RREP packet. Thus n− 1 RREP packets are transfered. On the other hand, in AOMDV,

several instances of RREP s are unicast back to the source, resulting in k
√

n packets on

average and n−1 packets in the worst case, where k is the number of instances. In summary,

a route discovery in TMRP incurs 2n− 2 packets while that in AOMDV incurs n+ k
√

n on

average. Thus both protocols incur an O(n) overhead. To the best of our knowledge, this

is the lowest overhead incurred by a truthful routing protocol.

The other overhead incurred is due to RERR packets. Upon link breakage, a node sends

an RERR to a destination. The receiver of this packet forwards the RERR if there are

no multiple paths to the destination, excluding the path containing the new link breakage

indicated by the RERR. In the best case, only one node, which is a neighbor of the source,

sends an RERR. In the worst case, which is very unlikely, each node except the source

and the destination sends an RERR and thus at most n − 2 packets are transfered. Our

simulation study shows that only a very small fraction of nodes send RERRs.
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5.5 Performance Evaluation

We conducted an extensive simulation study to evaluate the performance of TMRP in ad-

hoc networks with selfish nodes. To the best of our knowledge, TMRP is the only truthful

multipath routing protocol in the literature. For this reason, we did not have another

protocol for comparison. Generic routing protocols such as AODV [19] or AOMDV [77] are

not comparable as those protocols work under the different assumption that nodes follow

the protocol accurately and are willing to cooperate.

Our simulations focused on the following five metrics: packet delivery ratio, routing

overhead, average end-to-end delay, overpayment ratio and average hop count, which is the

average number of hops needed from a source to a destination.

We conducted two implementations of TMRP and compared simulation results between

them. In one version, viz. tmrp-c, nodes don’t change their packet forwarding cost during

the simulation. In the other version, viz. tmrp-v, nodes’ cost change over time. A node’s

packet forwarding cost increases proportionally to the number of data and control packets

sent or forwarded. However, when a node’s cost reaches the upper boundary, i.e., 40, it

goes down to the lower boundary, i.e., 20. This is to simulate battery recharging.

We used GloMoSim [64] for our simulations. Unless specified otherwise, the following

parameters were used in the simulations. 100 nodes were initially placed uniformly in an

area of 600m by 1500m. Nodes used a radio range of 250 meters, and picked a packet

forwarding cost randomly between 20 and 40. All nodes followed the Random Way-point

mobility model [65] with a maximum speed of 1 m/s to 10 m/s and a pause time of 30

seconds. Each simulation lasted for 900 seconds. To generate traffic we simulated 10 CBR

flows. Each flow sent four 512-byte data packets per second, starting at 120 seconds and

ending 880 seconds. Nodes used the 802.11 protocol with DCF as the MAC protocol. Data

points represented in a graph were averaged over 20 simulation runs, each with a different

seed.

5.5.1 Impact of Node Mobility

These simulations were conducted with a maximum node speed ranging from 1 to 10 m/s.

5.5.1.1 Packet delivery ratio

Fig. 5.2(a) shows the packet delivery ratio with respect to the maximum node speed. In

both implementations, more than 91% of the packets are delivered. As mobility increases,

the packet delivery ratio drops as mobility increases link breakages, resulting in more packet
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Figure 5.2: Performance with respect to mobility.

drops. We didn’t implement local packet salvage, or the packet delivery ratio could have

been higher. We observe that tmrp-v performs better than tmrp-c. This is in tmrp-c, node

cost does not change over time. Nodes with lower cost have a higher probability of being

selected as next hops than those with higher cost. Such nodes are more likely to become

hot nodes or be in a hot area and thus incur more packet collision or radio interference,

resulting in packet drops. On the other hand, in tmrp-v, nodes increase their cost as they

send packets. The more packets sent, the higher the cost. After forwarding packets, hot

nodes have a high cost and are less likely to be continued as next hops. Thus the problem

of hot nodes or hot areas is mitigated. So tmrp-v achieves some good load balancing.

5.5.1.2 Routing Overhead

Fig. 5.2(b) shows the routing overhead with respect to the maximum node speed. TMRP

incurs a 2n overhead per route discovery. As mobility increases, link breakage increases,

resulting in more RERRs and more route discoveries. Thus the overall route overhead
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increases. tmrp-v incurs less overhead than tmrp-c since it mitigates the hot node/area

problem, as discussed above, and thus results in fewer link breakages.

5.5.1.3 End-to-end Delay

Fig. 5.2(c) shows the end-to-end delay with respect to the maximum node speed. The delay

is very low for both versions, and less than 0.09 second for each point. Mobility increases

link breakages, resulting in more route discoveries and thus packets need more time to

reach destinations. tmrp-v incurs a lower delay than tmrp-c since it results in fewer route

discoveries and shorter output queues by avoiding hot nodes/areas.

5.5.1.4 Overpayment Ratio

Fig. 5.2(d) shows the overpayment ratio with respect to maximum node speed. The

overpayment ratio for both versions is lower than 1.12 and varies little over mobility. TMRP

therefore overpays nodes very little over their cost. tmrp-v incurs a lower overpayment ratio

than tmrp-c, as cost change and load balancing may result in less difference between bids

(nodes’ cost).

5.5.2 Impact of Network Size

These simulations were conducted with a density of node/9000m*m and a maximum node

speed of 5 m/s, and the number of nodes was changed from 80 to 120.

5.5.2.1 Packet Delivery Ratio

Fig. 5.3(a) shows packet delivery ratio with respect to the number of nodes. Both versions

deliver more than 92% of the packets. As the number of nodes increases, the packet delivery

ratio decreases for both versions. An increase in the number of nodes results in an increase

in the network area and an increase in the average hop count of a path, as shown in

Fig. 5.3(e). Thus node mobility is more likely to cause link breakages, resulting in more

packet drops. tmrp-v performs better than tmrp-c due to its load balancing, as discussed

in Section 5.5.1.1.

5.5.2.2 Routing Overhead

Fig. 5.3(b) shows the routing overhead with respect to the number of nodes. As the number

of nodes increases, the overhead increases for both versions. First, more nodes are involved

in routing and thus transfer more control packets. Second, an increase in link breakages

due to an increase in the area results in more RERRs and route discoveries, which incurs
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Figure 5.3: Performance with respect to number of nodes.

more overhead. Due to load balancing, tmrp-v incurs few route discoveries and thus results

in less overhead than tmrp-c.
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5.5.2.3 Average End-to-end Delay

Fig. 5.3(c) shows end-to-end delay with respect to the number of nodes. The delay is very

low for both versions and less than 0.09 second for each point. As the number of nodes

increases, the network area increases and the average hop count for a path increases, thereby

increasing end-to-end delay. Also, an increase in nodes results in more contention for the

radio channel. Data packets are likely to need more time to get the channel. Again, tmrp-v

performs better than tmrp-c due to its load balancing.

5.5.2.4 Overpayment Ratio

Fig. 5.3(d) shows overpayment ratio with respect to the number of nodes. The ratio is less

than 1.12 for both versions and does not change over the number of nodes. tmrp-v still

performs better than tmrp-c due to its load balancing.

5.5.2.5 Average Hop Count

Fig. 5.3(e) shows the average hop count of a path with respect to the number of nodes.

As the number of nodes increases, with a fixed node density, the network area increases,

thus the average hop count for a path increases. tmrp-c and tmrp-v generate identical hop

counts. This is because multiple paths from a node to a destination are formed by the

multiple-path routing protocol such that they are no longer than an advertised hop count,

which is set to the length of the longest available path at the time of first advertisement for

a sequence number. These different paths almost have the same length.

5.5.3 Impact of Node Density

These simulations were conducted with a maximum node speed of 5 m/s and the node

density was changed from node/7000m2 to node/11000m2.

5.5.3.1 Packet Delivery Ratio

Fig. 5.4(a) shows the packet delivery ratio with respect to node density. As density

decreases, the network area increases and thus mobility is more likely to cause link breakages,

resulting in more packet drops. Tmrp-v performs better than tmrp-c due to its capacity of

load balancing.

5.5.3.2 Overhead

Fig. 5.4(a) shows the routing overhead with respect to node density. As node density

decreases, the overhead increases. First, an increase in the network area due to a decrease
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Figure 5.4: Performance with respect to node density.

in node density results in more RERRs and more route discoveries. Second, as node density

decreases, a node has fewer neighbors and can form fewer multiple paths. Thus, a route

discovery is more likely to occur.

5.5.3.3 Average End-to-end Delay

Fig. 5.4(c) shows end-to-end delay with respect to node density. As node density decreases,

end-to-end delay increases for both versions. A decrease in node density results in an

increase in route discoveries, and thus packets need a longer time to reach destinations.

A decrease in node density also results in an increase in network area, and thus packets

may travel over more hops. Nevertheless, all these end-to-end delays are very low, and the

highest recorded was only 0.11 second.
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5.5.3.4 Overpayment Ratio

Fig. 5.4(d) shows overpayment ratio with respect to node density. The ratio is less than

1.12 for both the versions and does not change over density changes. tmrp-v still performs

better than tmrp-c due to its capacity of load balancing.
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Figure 5.5: Performance with respect to load.

5.5.4 Impact of Load

These simulations were conducted with a maximum node speed of 5 m/s and the number

of flows was changed from 6 to 14.

5.5.4.1 Packet Delivery Ratio

Fig. 5.5(a) shows packet delivery ratio with respect to the number of flows. As load increases,

the packet delivery ratio decreases for both the versions. This is because an increase in the

number of flows increases the number of data and control packets, resulting in more packet
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collisions and more severe radio interference, which cause more packet drops. Tmrp-v

delivers more packets than tmrp-c due to load balancing.

5.5.4.2 Overhead

Fig. 5.5(b) shows routing overhead with respect to the number of flows. As the load

increases, the overhead increases, as an increase in flow results in more route discoveries. In

addition, a heavier load results in more packet drops, as discussed above, producing more

RERRs and causing even more route discoveries. tmrp-v incurs less overhead than tmrp-c

as it invokes less route discoveries.

5.5.4.3 Average End-to-end Delay

Fig. 5.5(c) shows end-to-end delay with respect to the number of flows. As flows increase,

the delay increases for both versions. A heavier load increases the number of packets and

thus increases the contention for a radio channel. Nodes need more time to get the radio

channel to transfer packets. This results in a longer route discovery and slower data packet

forwarding. Tmrp-v incurs shorter delay than tmrp-c since it invokes fewer route discoveries

and has a shorter output queue by avoiding hot nodes/areas.

5.5.4.4 Overpayment Ratio

Fig. 5.5(d) shows overpayment ratio with respect to the number of flows. The ratio is less

than 1.12 for both versions and does not change over the number of flows. Tmrp-v performs

better than tmrp-c due to its capacity of load balancing.

5.6 Chapter Summary

We presented a generic method, GTMR, to transform a table-driven multipath routing

protocol into a truthful routing protocol. By applying an auction mechanism for packet

forwarding, GTMR achieves truthfulness and stimulates nodes to declare their true cost.

As an example of implementation, we presented TMRP, a Truthful Multipath Routing

Protocol which is based on the AOMDV protocol. A prominent feature of TMRP is that

it incurs only 2n control packets for a route discovery and needs no new types of control

messages over AOMDV. To the best of our knowledge, this is the lowest overhead incurred

for truthful routing protocols. TMRP can also achieve load balancing without compromising

truthfulness. We have proved that GTMR guarantees truthfulness and thus TMRP. We also

conducted an extensive simulation study to evaluate the performance of two variations of
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TMRP. Simulation results showed that TMRP provided high packet delivery ratio and had

low overhead and low end-to-end delay without compromising the overpayment of nodes.

Copyright c© Yongwei Wang 2008
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Chapter 6

Truthful Greedy Forwarding

6.1 Introduction

Geographic routing protocols [79, 80, 23, 24, 25, 26, 27, 28, 81, 82, 83, 84], also known as

position-based routing protocols for mobile ad-hoc networks use the position information

of nodes in the network for routing and location service. Unlike topology-based routing

protocols [19, 13], nodes in geographic routing protocols do not establish or maintain routes

in the network. A node forwards packets towards a destination solely based on the position

of the destination, its own position, and the position of neighboring nodes. By using only

local topological information, geographic routing protocols cope with node mobility, and

exhibit better scalability than topology-based routing protocols [79].

Recent research [33, 73, 39, 38] has focused on designing truthful protocols for the selfish-

node problem in the context of topology-based routing protocols. Such protocols rely on

the discovery and maintenance of routes in the network, which require substantial overhead

(in the order of O(n3) [33, 73] control messages, where n is the number of nodes in the

network). On the other hand, geographic forwarding incurs a localized overhead of control

messages [79]. It is therefore desirable that a geographic forwarding algorithm designed to

cope with selfish nodes should also be localized in nature.

In this chapter, we present such an algorithm, viz., the T ruthful Geographic Forwarding

algorithm (TGF ) [37] for data forwarding in ad-hoc networks. TGF introduces three

auction-based packet forwarding schemes that guarantee truthfulness while maintaining the

localized nature of geographic forwarding. We prove that TGF is truthful, statistically

analyze the average progress made per hop for proposed auction-based packet forwarding

schemes, and present results from our extensive simulation study. To the best of our

knowledge, TGF is the first algorithm to address truthfulness in the context of geographic

forwarding.

We have used the same system model as in Chapter 5. Additionally, each node knows its

own position by means of a positioning system such as GPS, and reveals its true position.
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Furthermore, the source node is assumed to know the position of the destination [85, 86, 87,

82, 88]. The network is assumed to be dense enough such that there is more than one path

between any two nodes in the network, and avoids dead-ends due to geographic forwarding.

The rest of the chapter is organized as follows: Section 6.2 presents the truthful

geographic forwarding protocol, Section 6.3 presents an analysis of TGF, Section 6.4 presents

the performance evaluation through simulations and Section 6.5 summarizes the chapter.

6.2 Truthful Geographic Forwarding

6.2.1 The Basic Idea

The truthful geographic forwarding algorithm (TGF) is a combination of greedy forwarding

with an auction scheme. Unlike pure greedy forwarding where the selection of the next hop

is based on the progress (Euclidean distance) made towards the destination, in TGF the

selection of the next hop is based on a combination of bid value (for packet forwarding)

along with progress made by the node towards the destination. To achieve this, nodes

exchange periodic Hello messages containing their positions and bid values, and establish

neighbor tables. The bid value specified by a node in the Hello message represents its bid

(cost) for which it is willing to forward a packet from its neighbors. This bid value in a Hello

message is valid for a hello period (typically one or two seconds). By exchanging bid values

proactively via Hello messages, nodes declare a priori the bids (cost) per packet-forwarding

without any bias towards neighboring nodes.

When a node has a packet to forward to the destination, it uses an auction scheme to

select a next hop for the destination from its neighbors. As the bid values and the positions

of the neighbors are known a priori (because of Hello message exchange) selecting a next

hop requires a neighbor table look-up and selecting a neighbor according to the auction

scheme. The auction scheme(s) guarantee that TGF is truthful. It is important to note

that the control overhead incurred by TGF is only due to the Hello messages, which are

one hop broadcast messages. Thus, the control overhead of TGF is O(1) per node every t

seconds, where t is the hello interval.

6.2.2 Packet Forwarding

Generally, geographic routing protocols [79] use greedy forwarding in which a node forwards

a packet to a node that is geographically closest to its destination among neighboring nodes.

However, this approach is not suitable in the context of selfish nodes, where nodes are more

interested in cost and payment. To address this issue TGF takes into account the cost
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of packet forwarding of nodes, and forces nodes to show their true cost. TGF uses three

forwarding schemes, the basic scheme, the restricting bidders scheme, and the unit price

bid scheme.

6.2.2.1 Basic Forwarding Scheme (BaFS)

Upon receiving a packet destined for a certain node, node F selects the next hop using the

second-price sealed bid auction scheme. All neighboring nodes of F that make progress

towards the destination are qualified bidders, and F is an auctioneer. Nodes do not bid for

each packet. Instead they bid on a per packet basis periodically by attaching bids to their

periodic Hello messages.

Let D(a, b) be the Euclidean distance between node a and node b, and NBa be the set

of neighboring nodes of a. Then, the qualified bidders K ∈ NBF are nodes that satisfy

the condition D(K,D) < D(F,D), where D is the destination ID. We denote the set of

qualified bidders as N . The winner of the bid is node N ∈ N that seeks the lowest cost for

forwarding packets. The payment to N will be the second least bid among nodes in N . If

there is more than one neighboring node seeking the lowest bid value, the node making the

maximum progress towards the destination (i.e., having min(D(K,D))) will be the winner.

However, the payment to this node is the same as its bid, since the second lowest bid equals

the lowest bid. After selecting the next hop node N , F adds the node identity N and its

payment PayN to the packet header, and forwards the packet to node N . The same method

as discussed in Section 5.3.1 can be used to secure payment.

6.2.2.2 Average Plus Forwarding Scheme (A+FS)

In the basic scheme, each node making progress towards the destination is a potential next

hop. However, it is possible that the lowest bidder selected using the basic scheme may

make the least progress (among the potential next hops) towards the destination. Thus,

the basic forwarding scheme can increase the number of hops, resulting in a higher total

payment. Hence, it is desirable to reduce total cost as long as truthfulness is guaranteed.

If an auctioneer selects only those nodes making enough progress towards the destination

as qualified bidders, then the average hop count to the destination will be reduced. To

achieve this, an auctioneer calculates the average distance (AvgDst) over all neighboring

nodes that are closer to the destination than the auctioneer. It selects only nodes that make

greater progress more than AvgDst towards the destination as qualified bidders (QB′). The

bidder with the lowest bid in QB′ will win the auction. Its payment will be the second lowest
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Figure 6.1: Illustration of the Average Plus Forwarding Scheme (A+FS).

bid in QB′. If there are less than two qualified nodes in QB′, then the auction fails. In such

a case, the auctioneer returns to the BaFS, i.e., sets all nodes making progress towards the

destination as the qualified bidder, and selects the lowest bidder as the winner.

Fig. 6.1 illustrates an example of A+FS. In the figure, F is the auctioneer and the dotted

circle denotes the radio range of F . R denotes the distance from F to destination D. Nodes

nk, k ∈ 1, · · · , 6 are the neighbors of F that are closer to the destination than F . The

dashed line denotes the AvgDst of these six nodes. Thus only nodes in the shadowed area,

n4, n5 and n6, are the qualified bidders (i.e., belong to QB′). Among these nodes, n4 has

the lowest bid (12) and n6 has the second lowest bid (14). Thus n4 will be the winner of

the auction and gets a payment of 14.

6.2.2.3 Unit Price Bid

In both BaFS and A+FS, bidders quote their bids for sending a packet and the lowest

bidder wins the auction. An alternative way to bid in both schemes is to use the price of

unit progress as a criterion. In this case, the bidder asking the least price per unit progress

will be the winner. For example, in BaFS the auctioneer F selects all neighboring nodes

that make progress towards destination D as qualified bidders (QB). Based on the bid bi

value and progress (D(ni,D)−D(F,D)) of each node ni ∈ QB, F calculates the unit price

of each node ni as:

µi =
bi

(D(ni,D) −D(F,D))
.

The auctioneer F selects the node with the least µi, denoted as ns, as the next hop. The

payment to ns will be made according to the unit price instead of the bid for the packet. The

next hop node, ns, gets the unit payment as the second least unit price among QB, denoted

as µ′. Thus, the payment to the node ns per packet will be µ′ ∗ (D(ns,D) −D(F,D)).
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6.3 Analysis of TGF

In this section, we first show that truthful bidding is the dominant strategy for each node

for BaFS [57], A+FS and the unit price bid schemes. Second, we present an analysis of

progress made per hop for both BaFS and A+FS schemes.

6.3.1 Truthfulness of TGF

Theorem 6.3.1. In BaFS, bidding true cost is the dominant strategy for every qualified

bidder.

Proof. This proof is similar to that in Section 5.3.2. Suppose a bidder i with true cost vi

declares a bid bi. Let i’s utility be ui. We denote the minimum bid besides bi as m−i, and

the distance between i and the destination D as Di. According to the auction rule, the

utility ui of a bidder is

ui =











m−i − vi, bi < m−i

m−i − vi, bi = m−i ∧ Di = min
∀j∈bidders

{Dj}
0, bi > m−i

There are two possibilities: Bidder i may over-bid or under-bid its cost vi [57].

Case of over-bidding: If the bid is higher than the cost, i.e., bi > vi, then there are

five possibilities:

1. If bi < m−i, then i wins the auction and ui = m−i − vi. However, i can get the same

payoff by bidding its cost vi.

2. If vi < m−i < bi, then i loses the auction and gets zero payoff. However, by bidding

vi, it can get a positive payoff.

3. If m−i < vi, then i gets zero payoff, the same as it could have received by bidding vi.

4. If m−i = bi and Di = min
∀j∈bidders

{Dj}, then i gets the same payoff as by bidding vi.

5. If m−i = bi and Di 6= min
∀j∈bidders

{Dj}, then i loses the auction and gets zero payoff.

However, by bidding vi it can get a positive payoff.

Thus, i has no incentive for over-bidding.

Case of under-bidding: If the bid is lower than the cost, i.e., bi < vi, then there are

five possibilities:

1. If vi < m−i, then i gets payoff m−i − vi, the same as it could have received by bidding

vi.
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2. If bi < m−i < vi, then i gets a negative payoff as m−i − vi < 0. However, by bidding

vi, i gets zero payment, which is better than a negative payoff.

3. If bi > m−i, then i gets zero payoff, the same as it could have received by bidding vi.

4. If bi = m−i and Di = min
∀j∈bidders

{Dj}, then i gets m−i − vi < 0. However, by bidding

vi, i gets zero payment, which is better than a negative payoff.

5. If bi = m−i and Di 6= min
∀j∈bidders

{Dj}, then i gets zero payoff, the same as it could have

received by bidding vi.

Thus, i has no incentive for under-bidding.

In both the cases i’s dominant strategy is to bid its cost vi, and hence, the theorem.

Corollary 6.3.1. In A+FS, bidding the true cost is the dominant strategy for each node.

Proof. There are only two possibilities.

1. There is more than one node in QB′ (refer to the A+FS algorithm). Only nodes in

QB′ are qualified bidders. They may over-bid or under-bid their cost. However, from

Theorem 6.3.1, their dominant strategy is to bid their true cost.

2. There is at most one node in QB′. In this case, the auction for QB′ cannot be set

up. Thus the auctioneer sets up the auction as in BaFS. From Theorem 6.3.1, the

dominant strategy is to bid their true cost.

Theorem 6.3.2. In the unit price bid scheme along with BaFS, bidding the true cost is the

dominant strategy for each bidder.

Proof. Suppose a bidder i with true cost vi bids with a value bi, and i’s utility is ui. We

denote D(F,D)−D(i,D) as δi, where F is the position of the auctioneer, and the minimum

unit bid besides i as t−i. The utility of a node (qualified bidder) i is:

ui =











t−iδi − vi,
vi

δi
< t−i

t−iδi − vi,
vi

δi
< t−i ∧ Di = min

∀j∈bidders
{Dj}

0, vi

δi
> t−i

Bidder i may over-bid or under bid its cost vi [57].

Case of over-bidding: The bid is higher than the cost, i.e., bi > vi, and therefore

there are five possibilities:
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1. If bi/δi < t−i, then i wins the auction and gets the payoff as t−iδi − vi. However, i

can get the same payoff by bidding its cost vi.

2. If vi/δi < t−i < bi/δi, then i loses the auction it should win and gets zero payoff. By

bidding vi, it can get a positive payoff.

3. If t−i < vi/δi, then i gets zero payoff, the same as it would have received by bidding

its cost vi.

4. If t−i = bi/δi and Di = min
∀j∈bidders

{Dj}, then i gets the same payoff as it would have

received by bidding vi.

5. If t−i = bi/δi and Di 6= min
∀j∈bidders

{Dj}, then i loses the auction it should win and gets

zero payoff. By bidding vi, it can get a positive payoff.

Thus, i has no incentive for over-bidding.

Case of under-bidding: The bid is lower than the cost, i.e., bi < vi, and there are

therefore five possibilities:

1. If vi/δi < t−i, then i gets payoff t−iδi − vi, the same as it would have received by

bidding vi.

2. If bi/δi < t−i < vi/δi, then i gets a negative payoff as t−iδi − vi < 0. By bidding vi, i

gets zero payoff, which is better than a negative payoff.

3. If bi/δi > t−i, then i gets zero payoff, the same as it would have received by bidding

vi.

4. If bi/δi = t−i and Di = min
∀j∈bidder

{Dj}, then i gets t−iδi − vi < 0. By bidding vi, i gets

zero payoff, which is better than a negative payoff.

5. If bi/δi = t−i and Di 6= min
∀j∈bidder

{Dj}, then i gets zero payoff, the same as it could

have received by bidding vi.

Thus, i has no incentive for under-bidding.

In both the cases i’s dominant strategy is to bid its cost vi, and hence the theorem.

Corollary 6.3.2. In the unit price bid scheme along with A+FS, bidding true cost is the

dominant strategy for each bidder.

Proof. This follows from Theorem 6.3.2 and Corollary 6.3.1 above.
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6.3.2 Average Progress Made Per Hop in BaFS

Intuitively, selecting the next hop towards a destination based on Euclidean distance makes

more sense than basing the choice on BaFS. However, greedy distance based forwarding

does not guarantee truthfulness. On the other hand, progress made per hop (towards

the destination) is another important design issue for forwarding algorithms. Thus, we

statistically analyze the average progress made per hop in BaFS.

In the basic scheme, a node F selects a neighbor with the lowest bid as the next hop.

Let N be the set of neighbors that are closer to destination D than F , such that m = |N |.
Let ξ be the random variable representing the next hop location. Then the expected next

hop location is:

Eξ =
m

∑

i=1

pili .

where pi is the probability that node i is selected as the next hop, and li is i’s location.

Since i’s cost is independent of its location, every node i ∈ N has the same probability of

being the lowest bidder. Thus pi is same for all i ∈ N . Thus,

Eξ =
1

m

m
∑

i=1

li .

If m is large enough, under the assumption of uniform distribution, discrete random variable

ξ can be considered as a continuous variable ξ′, then:

Eξ′ =

∫

lρ(l)dl .

where ρ(l) is the probability density function of location. One way to interpret this change

in variable is as follows: even though m is small, if such a next hop selection runs many

times, from the statistical point of view, it is reasonable to use the expected continuous

variable ξ′ to estimate the expectation of the discrete variable ξ.

The next question is how to calculate ξ′. Under the assumption of uniform distribution,

ξ′ is the center of geometry of the shaded area in Figure 6.2. In the figure, the line connecting

auctioneer F and destination D is set as the x-axis. Without loss of generality, let F be at

the origin (0,0), and D be at (R,0). Due to the symmetry of the upper and lower parts, ξ′

must be located on the x-axis, i.e., its y-coordinate equals zero. We denote the radio range
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Figure 6.2: The expected position of a next hop node.

of node F as r and the distance from F to D as R. ξ′’s x-coordinate is calculated as follows:

Eξ′x =

∫∫

FABCF xdxdy
∫∫

FABCF dxdy

=

∫

r2

2R

0 x
√

R2−(x−R)2dx+
∫ r

r2

2R

x
√

r2−x2dx

∫

r2

2R

0

√

R2−(x−R)2dx+
∫ r

r2

2R

√
r2−x2dx

.

(6.1)

As both F and ξ′ are on the x-axis, the average progress in BaFS is |Eξ′x |.

6.3.3 Average Progress Per Hop in A+FS

In A+FS only nodes making more progress than AvgDst will be qualified as bidders.

As shown in Fig. 6.2 above, only nodes in the enclosed area EBHGE can be potential

candidates for selection as the next hop. Statistically, the expectation of the next hop’s

position is the geometric center of the shaded area of EBHGE in Fig. 6.2, which can be

calculated in a similar way to the geometrical center of FABCF if we have G’s x-coordinate

(for convenience denoted as ∆). With uniform distribution, G is the geometry center of

area FABCF . Thus ∆ can be calculated from Equation 6.1. Using the value of ∆, the

expectation of the next hop’s x-coordinate can be calculated, in a similar way:

Eξ′x =

∫∫

EBHGE xdxdy
∫∫

EBHGE dxdy

=

∫ β
∆ x

√

(R−∆)2−(x−R)2dx+
∫ r
β x

√
r2−x2dx

∫ β
∆

√

(R−∆)2−(x−R)2dx+
∫ r
β

√
r2−x2dx

where β =
2∆R − ∆2 + r2

2R
.

(6.2)
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Thus the average progress made by A+FS is |Eξ′x |.
Table 6.1 shows the expected progress made using the BaFS and the A+FS with respect

to ratio of r/R.

r/R BaFS A+FS

2 0.466r 0.721r
3 0.453r 0.702r
4 0.446r 0.693r
5 0.442r 0.687r
6 0.439r 0.682r

Table 6.1: The expected progress made towards a destination

6.4 Performance Evaluation

To evaluate the performance of proposed schemes, we conducted extensive simulations using

GloMoSim [64]. Unless specified otherwise, the following parameters were used in the

simulations. 100 nodes were initially placed uniformly in an area of 600m by 1500m. Nodes

used a radio range of 250 meters, and picked a cost randomly between 10 and 30. All nodes

followed the Random Waypoint mobility model [65] with a maximum speed of 0 m/s to 10

m/s and a pause time of 30 seconds. Each simulation lasted for 900 seconds. To generate

traffic we simulated 10 CBR flows. Each flow sent four 512-byte data packets per second,

starting at 120 seconds and ending at 880 seconds. Nodes used the 802.11 protocol with

DCF as the MAC protocol. Data points represented on a graph were averaged over 10

simulation runs, each with a different seed. Simulations focus on five metrics, including

packet delivery ratio, average hop count, average end-to-end delay, overpayment ratio and

total payment, which is the total amount paid to all intermediate nodes.

TGF does not introduce any additional control packets in comparison to the pure

geographic forwarding algorithm. In both algorithms, the overhead is only due to the

Hello messages. TGF needs only one additional field (4 bytes) in each Hello message. The

overhead incurred by TGF is .66 Hello packet per node per second.

Since TGF is the first algorithm to address truthfulness in the context of geographic

forwarding, we compared results among the different schemes proposed. In the following

discussion and in the graphs, UiFS represents the unit price bid scheme along with BaFS,

and DIST represents distance-based greedy forwarding. Our simulation emphasizes the

effect of node mobility and the number of nodes on the proposed schemes.

94



 80

 85

 90

 95

 100

 0  2  4  6  8  10

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

maximum speed (m/s)

DIST
BaFS
A+FS
UiFS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10

ho
p 

co
un

t

maximum speed (m/s)

DIST
BaFS
A+FS
UiFS

(a) Packet delivery ratio. (b) Hop count.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  2  4  6  8  10

en
d-

to
-e

nd
 d

el
ay

 (
s)

maximum speed (m/s)

DIST
BaFS
A+FS
UiFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10

ov
er

pa
ym

en
t r

at
io

maximum speed (m/s)

BaFS
A+FS
UiFS

(c) End-to-end delay. (d) Overpayment ratio.

Figure 6.3: Performance of different schemes with respect to mobility.

6.4.1 Impact of Mobility

6.4.1.1 Packet Delivery Ratio

Fig. 6.3(a) shows packet delivery ratio with respect to maximum node speed. All four

schemes show almost identical behavior, and deliver more than 99% of packets. AT the

given node density, nodes in various schemes can find feasible next hops and forward packets

to destinations. As the mobility increases, the packet delivery ratio drops slightly. This

is because with the fixed Hello message interval, neighbor information is more likely to be

outdated. Thus, a supposed neighbor may have already moved out of radio range, resulting

in more packets being dropped.

6.4.1.2 Average Hop Count

Fig. 6.3(b) shows the average hop count for a packet to reach a destination with respect to

maximum node speed. We observe that different schemes result in different hop counts, with
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BaFS, A+FS, UiFS and DIST in descending order (highest to lowest hop counts). DIST

needs the lowest average hop count as it always selects the node closest to the destination as

the next hop. BaFS needs more hops than other schemes as it does not take into account the

progress (distance) when selecting the next hop. A+FS needs less hops than BaFS because

it selects a node that makes enough progress towards a destination as the next hop. In UiFS,

the closer a node is to the destination, the lesser its unit price, and the higher the probability

of the node being selected as the next hop. In other words, nodes making more progress

towards the destination are more likely (depending upon their bid value) to be selected

as the next hop. In all schemes, more hop counts are needed in a static network than in

a mobile network. This is because mobility randomizes the position of source-destination

pairs as well as the intermediate nodes, and increases network connectivity.

6.4.1.3 End-to-end Delay

Fig. 6.3(c) shows end-to-end delay with respect to maximum node speed. We observe that

the performance of all schemes is similar to that in Fig. 6.3(b), and the curves are identical

to their corresponding parts: DIST has the shortest end-to-end delay, followed by UiFS,

then A+FS, with BaFS incurring the largest delay. This is because the more hops a packet

travels, the more delay it incurs. Nevertheless, the delay difference between various schemes

are negligible.

6.4.1.4 Overpayment Ratio

Fig. 6.3(d) shows overpayment ratio with respect to maximum node speed. BaFS has the

lowest overpayment ratio since it always finds the lowest bidder and pays it with the second

lowest bid. A+FS has a slightly higher overpayment ratio than BaFS as the bidders in this

scheme constitute only a fraction of those in BaFS. UiFS incurs the highest overpayment

ratio. In UiFS, the second lowest unit price multiplying the distance and progress made

towards a destination, instead of the second lowest bid, will be paid to the winner. Thus,

the scheme incurs a higher rate of overpayment than the other schemes.

6.4.1.5 Total Payment

Fig. 6.4 shows total payment incurred with respect to maximum node speed. A+FS requires

the least total payment. Although its overpayment ratio is a little higher than that of BaFS,

it needs less hops. The decrease in average hop count outweighs the increase in overpayment

ratio, and thus the overall payment is less than the other two schemes. UiFS needs fewer
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Figure 6.4: The payment of different schemes with respect to mobility

hops but incurs a higher overpayment ratio, whereas BaFS incurs the lowest overpayment

ratio but needs the highest number of hops. Overall, UiFS and BaFS incur similar payments.

The above result shows that A+FS has a low end-to-end delay and incurs the least total

payment, and thus performs better than BaFS and UiFS from the point of view of source

nodes.

6.4.2 Impact of Node Density

6.4.2.1 Packet Delivery Ratio

Fig. 6.5(a) shows the packet delivery ratio with respect to node density, with a maximum

node speed of 6 m/s. All four schemes show almost identical behavior, and deliver more

than 99.4% of packets to their destination. DIST delivers a slightly fewer packets than the

other three schemes. This is because DIST always selects the node closest to the destination,

and is more likely to be far away from the sender than those selected by other schemes.

Under mobile scenarios, such nodes are more likely to move out of the sender’s radio range,

resulting in more packets being dropped.

6.4.2.2 Average Hop Count

Fig. 6.5(b) shows its average hop count for a packet to reach the destination with respect

to node density, with a maximum node speed of 6 m/s. We observe that different schemes

result in different average hop counts, for reasons discussed in Section 6.4.1.2. As the node

density increases, the average hop count incurred by DIST, A+FS and UiFS change little

whereas that incurred by BaFS decreases by a small amount.

97



 95

 96

 97

 98

 99

 100

 100  120  140  160  180  200

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

number of nodes

DIST
BaFS
A+FS
UiFS

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100  120  140  160  180  200

ho
p 

co
un

t

number of nodes

DIST
BaFS
A+FS
UiFS

(a) Packet delivery ratio. (b) Hop count.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 100  120  140  160  180  200

en
d-

to
-e

nd
 d

el
ay

 (
s)

number of nodes

DIST
BaFS
A+FS
UiFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100  120  140  160  180  200

ov
er

pa
ym

en
t r

at
io

number of nodes

BaFS
A+FS
UiFS

(c) End-to-end delay. (d) Overpayment ratio.

Figure 6.5: Performance of different schemes with respect to node density.

6.4.2.3 Average End-to-end Delay

Fig. 6.5(c) shows end-to-end delay with respect to the node density, with a maximum node

speed of 6 m/s. As node density increases, the end-to-end delay increases a little for all

four schemes. With a fixed Hello message interval, an increase in the number of nodes

incurs more Hello messages, resulting in more contention for the radio channel. Thus,

data messages are likely to need more time to attain a channel, resulting in a longer delay.

Nevertheless, all these end-to-end delays are very low, as the longest one is only 0.063

seconds.

6.4.2.4 Overpayment Ratio

Fig. 6.5(d) shows overpayment ratio with respect to node density, with a maximum node

speed of 6 m/s. As node density increases, the overpayment ratio decreases for all three

auction-based schemes, and in particular for BaFS. With a fixed cost range, an increase in
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nodes is more likely to decrease the cost difference between the best bid and the second

best bid, i.e., the second best bid is more likely to be close to the best bid.

6.4.2.5 Total Payment

Fig. 6.6 shows the total payment incurred with respect to node density, with a maximum

node speed of 6 m/s. A+FS incurs the least payment, UiFS incurs a higher payment, and

BaFS incurs the highest payment. For an analysis of the reason for this, see Section 6.4.1.5.

As node density increases, the total payment decreases for all the three schemes. Within

a fixed cost range, the greater the number of nodes (bidders), the higher the probability

that the second best bid is close to the best bid, i.e., the second best bid is more likely to

decrease as node density increases. As payment is determined by the second best bid, total

payment will decrease.
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Figure 6.6: Payment of different schemes with respect to node density

6.5 Chapter Summary

In this chapter, we have presented TGF, a truthful protocol for geographic routing in mobile

ad hoc networks with selfish nodes. TGF uses the auction-based forwarding schemes, BaFS,

A+FS and unit price bid scheme that selects a next hop based on the winner of the auction.

To stimulate nodes ooperation, all BaFS, A+FS and unit price bid schemes provide incentive

to nodes to forward packets correctly, and to prevent nodes from cheating over their cost.

We have theoretically proved that all three schemes guarantee truthfulness, i.e., nodes

maximize their utilities only when they reveal their true cost. We also statistically analyze

the average progress made per hop for BaFS and A+FS. Our simulation results show that

99



these schemes provide a high packet delivery ratio and have a low average hop count and

low end-to-end delay without compromising overpayment to the nodes.

Copyright c© Yongwei Wang 2008
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Chapter 7

Conclusion

7.1 Conclusions

In this dissertation, node-cooperation problem in mobile ad hoc networks with selfish nodes

were addressed. We explored several methods to solve this problem.

First we applied the methodology of punishing uncooperative nodes to enforce cooper-

ation. By resorting to neighbor monitoring technology, a fair and distributed solution to

detect, punish and readmit selfish nodes was presented. It emphasized providing nodes with

equal opportunities to serve, and be served by others, and introduced credit as a metric for

evaluating node contribution to the network. The solution greatly mitigated the location

privilege problem. We further presented a light-weight detection-based solution considering

battery status. This solution requires neighbor monitoring only when necessary, and nodes

working in the promiscuous mode only part-time, thereby reducing the overhead and saving

battery life. A voting system was introduced in both solutions to avoid the necessity

of a centralized server. This system can also solve the inconsistent evaluation problem.

Simulation results showed that both solutions could catch selfish node very effectively, incur

low overhead and improve network performance significantly.

We then explored the methodology of rewarding nodes, specifically mechanism design

methods, to motivate selfish but rational nodes to forward packets to other nodes. A

low overhead truthful routing protocol (LOTTO) was first presented. It rewards nodes

according to their individual cost, which may be different even for the same node according

to its different neighbors. In LOTTO, we introduced a simple and effective way to collect

the topological information of a network. Based on this, LOTTO can find least cost paths

from source nodes to destination nodes. By applying the VCG mechanism, this protocol

guarantees that nodes get enough payments and have no incentive to cheat over their

cost. The most prominent feature of LOTTO is that it reduces the message overhead from

O(n3) [33] to O(n2) and greatly mitigates message congestion and queue overflows in the

MAC layer. Thus it has a much better performance than ad hoc-VCG.
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We conducted extensive simulation studies for LOTTO, as well as for our other solutions

and algorithms. To the best of our knowledge, we are the first to conduct an extensive

simulation study for mechanism design methods to evaluate important network metrics such

as packet delivery ratio, overhead and end-to-end delay. Our simulation results showed that

LOTTO greatly outperforms ad hoc-VCG.

We further presented a light-weight scalable truthful routing protocol (LSTOP). It

requires partial topological information of a network and incurs a very low overhead of

O(n) on average and O(n2) in the worst case. LSTOP provides near-least-cost paths and

even least-cost paths with a high probability in dense networks. Simulation results showed

that LSTOP achieves far a better network performance when compared to ad-hoc VCG as

it generates 30-50 times less overhead, results in 2 orders of magnitude lower end-to-end

delay and delivers far more packets. Moreover, it greatly reduces overall cost, and thus

makes mechanism design method significant.

We also presented a generic mechanism, GTMR, that can turn any table-driven multiple

routing protocol into a truthful one. By applying an auction mechanism to packet

forwarding, GTMR stimulates nodes to show their true cost. Furthermore, a truthful

multipath routing protocol (TMRP), as an example of GTMR, was presented. TMRP

is derived from a well-known AOMDV protocol and incurs only 2n overhead in route

discovery, without introducing new types of control messages. By far, this is the least

overhead incurred in any truthful routing protocol. TMRP can also achieve load balancing

without compromising truthfulness.

The selfish nodes problem, as related to location-based routing protocols is addressed

here. A truthful geographic forwarding protocol (TGF) was presented. TGF utilizes three

auction-based forwarding schemes to stimulate node cooperation. In all schemes the next

hop node is typically the winner of the auction. We theoretically proved the truthfulness of

all three schemes, and showed their performance through simulation studies. Also shown

is a statistical analysis of the average progress made per hop for the two schemes. TGF is

the first algorithm to address truthfulness in the context of geographic forwarding.

7.2 Future Work

The selfish-node problem is still an active research area and there are still many unanswered

questions. In the following section, directions and areas for further research are outlined.
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7.2.1 Detecting Byzantine Selfish Behavior

In the fair distributed and light-weight solutions, as well as other detection-based solutions,

it is assumed that selfish behavior is straightforward, i.e., a node may behave selfishly from

the very beginning or at a random moment. Once behaving selfishly, it continues until

being detected. However, a selfish node may behave more subtly. It may behave selfishly

for some time and then behave cooperatively, then selfishly again. Such behavior is termed

byzantine selfish behavior. We propose the following scheme as a tentative solution to

detect byzantine selfish behavior.

Each node is assigned agents. The agents’ IDs can be acquired by applying a pre-defined

hash function to the node’s ID. So every node can know its own agents and those of other

nodes. A node’s agents are used to record the lifetime of packet forwarding information of

the client node. Suppose node A is selected as an intermediate node for a data flow. Node

P and node N are node A’s upstream node and down stream node, respectively. P and N

should report the number of packets forwarded to A, Pktfwd, and received from A, Pktrcvd,

to A’s agents, respectively. Reporting will be invoked in two cases. In the first case, the

data flow through A completes normally. Suppose a node can determine whether the flow is

complete or not. At the end of the flow, P and N report the corresponding packet number

to A’s agents. A should also report its forwarding statistics, Pktrcvd
self and Pktfwd

self , to its

agents. In the second case, upon finding the link to N broken, A sends an RERR message

to the source. Upon receiving the RERR, the upstream node P reports the number of

packets forwarded from A to A’s agents. Also, N will report the number of packets received

from A upon timeout of a certain timer. Meanwhile, A reports its forwarding statistics to

its agents.

Upon receiving reports from the upstream node P and downstream node N of a client

node A, an agent R adds Pktfwd and Pktrcvd to Pktacc
fwd and Pktacc

rcvd, respectively, where

Pktacc
fwd is the total number of packets sent to node A and Pktacc

rcvd is the total number

of packets received by A’s downstream node(s). Also, R calculates the accumulated self-

declared number of packets from A, Pktacc
self . The agent checks if the deviation between

Pktacc
fwd, Pktacc

rcvd and Pktacc
self is beyond a certain threshold. If it is, it convicts the client

node as a selfish node.

A node will be equipped with multiple agents. Using multiple agents can mitigate

the dropping of reports containing the forwarding statistics of the client node. It can

also enhance reliability and robustness. The distribution scheme of agents should be well

designed and takes the following issues into consideration. The first issue is the location
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of agents. An agent close to a client is more likely to receive all reports. The second

issue is node mobility, which may change initial layout substantially . The third issue

is the number of agents. More agents provide more robustness against report dropping

(intentionally by selfish nodes, or unintentionally due to collision). However, having more

agents incurs a higher overhead for reporting. A possible solution to this is to distribute

agents hierarchically, as in GLS [89] and DLM [90]. In such a scheme, a node will have lg N

agents, where N is the number of nodes in the network.

7.2.2 Detection-based Cost-efficient Method

Detection-based methods are combined with conventional routing algorithms such as DSR

or AODV, where cost-efficiency is not a consideration. Due to limited battery life, which is

the main reason for selfish behavior, it is necessary to use battery efficiently. Researchers

have focused on this issue and proposed quite a few algorithms to reduce overall power

consumption or to extend the life of the network [91, 92, 93, 94, 95, 96, 97]. These

solutions use some metrics related to emitting power or power consumption information.

However, it is almost impossible to accurately check if a node lies about such information,

unless a truthful protocol is used. Thus some questions are raised. Is it possible to find a

detection-based cost efficient method for selfish-node problem? Although they are based on

incompatible philosophies, can we combine the detection-based method and the motivation-

based method?

7.2.3 Truthful Mechanism Prevention of Node Collusion

The VCG mechanism is truthful. However, it cannot prevent the collusion of nodes, i.e., it

is not group-strategyproof. A mechanism is group-strategyproof if not lying about its cost is

its dominant strategy even if agents collude. Informally, a group-strategyproof mechanism

requires that “if any agent in the group benefits from the group’s collusion and lying to the

mechanism, then at least one agent will lose benefit”[98]. Finding a group-strategyproof

and cost-efficient mechanism is a challenge.

7.2.4 Truthful Mechanism Based on Cryptography

Mitchell et al. [99] observed that if we apply cryptography to every message received and

sent in an Autonomous System on the Internet, then all forms of cheating can be detected.

Feigenbaum and Shenker [98] provided some open questions using such a cryptography

mechanism in a BGP protocol. Such an observation and open questions should be applicable

to MANET. One question is “Can a protocol detect all forms of cheating without using
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public key infrastructure?” [98]. Salem et al. [44] proposed a charging and rewarding scheme

in multi-hop cellular networks. The scheme uses symmetrical cryptography to assist in

rewarding honesty. However, it is inherent in the scheme, with the help of base stations,

that all forwarding nodes get the same reimbursement. With different reimbursements

to different nodes, the question remains whether cryptography alone can help to prevent

cheating.

7.2.5 Payment Management

A complete motivation-based solution should include a payment scheme and a money

management mechanism in charge of (virtual) money crediting and transferring. These

two components are decoupled so that they are tractable. Most researchers in the literature

focus on how to design an effective payment scheme according to different criteria, assuming

an existing payment management mechanism. Only two schemes have been proposed for

payment management, and both have limitations. The first solution [58, 45] assumes there

is a centralized service. Nodes report their credits to the central server (or Banker node)

when they are connected to it. The banker node manages the accounting of all nodes.

Such a centralized service can be provided in an ad hoc network that works as an edge

network of a cellular network or by access points. However, typically centralized service is

not available in an ad hoc network. Thus a distributed payment management mechanism is

required. Another solution [42] assumes there is a secure module which is independent of a

node (user) and is tamper-proof. This hardware module can determine payment correctly

and fairly. For economic reasons, it is difficult to attach such a hardware module to each

node in the network.

To deploy a motivation method for the selfish-node problem in practice, a feasible

payment management mechanism is a prerequisite. On designing such a mechanism, the

following issues should be considered.

• Who assumes the responsibility of accounting and transferring credit? In edge

networks, access points or base stations are natural choices. However, for other ad

hoc networks, no single node can work as an accounting server. A possible solution is

to distribute the responsibility to a subset of nodes, as in the threshold cryptography

key management scheme [100]. As discussed in [101], such a task sharing scheme

is not suitable for civilian networks, since nodes in these networks are selfish, and

have no interest in taking on added responsibilities. However, with additional awards,
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these nodes may have the incentives to do such a job. One issue for such a distributed

solution is that it should not incur a high overhead.

• How is the credit to be accounted for? This does not pose a problem in a single server

scheme. However, in a distributed scheme, accounting coordination is an important

issue due to possible loss of payment-related control messages.

• What should the money format be? How can it be turned into real currency?

Intuitively, virtual currency should be introduced for virtual money circulation. Such

virtual currency could be official tokens signed by certain authorities.

• When is money paid? The money can be distributed immediately at the end of the

forwarding service, or upon request.

Copyright c© Yongwei Wang 2008
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