17 research outputs found

    Choosing the root of the tree decomposition when solving WCSPs: preliminary results

    Get PDF
    In this paper we analyze the effect of selecting the root in a tree decomposition when using decomposition-based backtracking algorithms. We focus on optimization tasks for Graphical Models using the BTD algorithm. We show that the choice of the root typically has a dramatic effect in the solving performance. Then we investigate different simple measures to predict near optimal roots. Our study shows that correlations are often low, so the automatic selection of a near optimal root will require more sophisticated techniques.Projects RTI2018-094403-B-C33, funded by: FEDER/Ministerio de Ciencia e Innovación Agencia Estatal de Investigación,SpainPeer ReviewedPostprint (published version

    Scaling Up Probabilistic Circuits by Latent Variable Distillation

    Full text link
    Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling

    Joints in Random Forests

    Get PDF
    Decision Trees (DTs) and Random Forests (RFs) are powerful discriminative learners and tools of central importance to the everyday machine learning practitioner and data scientist. Due to their discriminative nature, however, they lack principled methods to process inputs with missing features or to detect outliers, which requires pairing them with imputation techniques or a separate generative model. In this paper, we demonstrate that DTs and RFs can naturally be interpreted as generative models, by drawing a connection to Probabilistic Circuits, a prominent class of tractable probabilistic models. This reinterpretation equips them with a full joint distribution over the feature space and leads to Generative Decision Trees (GeDTs) and Generative Forests (GeFs), a family of novel hybrid generative-discriminative models. This family of models retains the overall characteristics of DTs and RFs while additionally being able to handle missing features by means of marginalisation. Under certain assumptions, frequently made for Bayes consistency results, we show that consistency in GeDTs and GeFs extend to any pattern of missing input features, if missing at random. Empirically, we show that our models often outperform common routines to treat missing data, such as K-nearest neighbour imputation, and moreover, that our models can naturally detect outliers by monitoring the marginal probability of input features

    Embedding Preference Elicitation Within the Search for DCOP Solutions

    Get PDF
    The Distributed Constraint Optimization Problem(DCOP)formulation is a powerful tool to model cooperative multi-agent problems, especially when they are sparsely constrained with one another. A key assumption in this model is that all constraints are fully specified or known a priori, which may not hold in applications where constraints encode preferences of human users. In this thesis, we extend the model to Incomplete DCOPs (I-DCOPs), where some constraints can be partially specified. User preferences for these partially-specified constraints can be elicited during the execution of I-DCOP algorithms, but they incur some elicitation costs. Additionally, we propose two parameterized heuristics that can be used in conjunction with Synchronous Branch-and-Bound to solve I-DCOPs. These heuristics allow users to trade-off solution quality for faster runtimes and a smaller number of elicitations. They also provide theoretical quality guarantees for problems where elicitations are free. Our model and heuristics thus extend the state of the art in distributed constraint reasoning to better model and solve distributed agent-based applications with user preferences

    Sparse Probabilistic Circuits via Pruning and Growing

    Full text link
    Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022
    corecore