

Joints in Random Forests

Citation for published version (APA):
Correia, A. H. C., Peharz, R., & Campos, C. P. D. (2020). Joints in Random Forests. Paper presented at 34th
Conference on Neural Information Processing Systems, NeurIPS 2020.

Document status and date:
Published: 01/01/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/65a14875-041b-4c29-bc9c-2b9f59de7186

Joints in Random Forests

Alvaro H. C. Correia
a.h.chaim.correia@tue.nl

Eindhoven University of Technology

Robert Peharz
r.peharz@tue.nl

Eindhoven University of Technology

Cassio de Campos
c.decampos@tue.nl

Eindhoven University of Technology

Abstract

Decision Trees (DTs) and Random Forests (RFs) are powerful discriminative learn-
ers and tools of central importance to the everyday machine learning practitioner
and data scientist. Due to their discriminative nature, however, they lack principled
methods to process inputs with missing features or to detect outliers, which requires
pairing them with imputation techniques or a separate generative model. In this
paper, we demonstrate that DTs and RFs can naturally be interpreted as generative
models, by drawing a connection to Probabilistic Circuits, a prominent class of
tractable probabilistic models. This reinterpretation equips them with a full joint
distribution over the feature space and leads to Generative Decision Trees (GeDTs)
and Generative Forests (GeFs), a family of novel hybrid generative-discriminative
models. This family of models retains the overall characteristics of DTs and RFs
while additionally being able to handle missing features by means of marginalisa-
tion. Under certain assumptions, frequently made for Bayes consistency results,
we show that consistency in GeDTs and GeFs extend to any pattern of missing
input features, if missing at random. Empirically, we show that our models often
outperform common routines to treat missing data, such as K-nearest neighbour im-
putation, and moreover, that our models can naturally detect outliers by monitoring
the marginal probability of input features.

1 Introduction

Decision Trees (DTs) and Random Forests (RFs) are probably the most widely used non-linear
machine learning models of today. While Deep Neural Networks are in the lead for image, video,
audio, and text data—likely due to their beneficial inductive bias for signal-like data—DTs and RFs
are, by and large, the default predictive model for tabular, domain-agnostic datasets. Indeed, Kaggle’s
2019 report on the State of Data Science and Machine Learning [20] lists DTs and RFs as second most
widely used techniques, right after linear and logistic regressions. Moreover, a study by Fernandez et
al. [12] found that RFs performed best on 121 UCI datasets against 179 other classifiers. Thus, it is
clear that DTs and RFs are of central importance for the current machine learning practitioner.

DTs and RFs are generally understood as discriminative models, that is, they are solely interpreted as
predictive models, such as classifiers or regression functions, while attempts to additionally interpret
them as generative models are scarce. In a nutshell, the difference between discriminative and
generative models is that the former aim to capture the conditional distribution P (Y |X), while the
latter aim to capture the whole joint distribution P (Y,X), where X are the input features and Y is
the variable to be predicted—discrete for classification and continuous for regression. In this paper,
we focus on classification, but the extension to regression is straightforward.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Generative and discriminative models are rather complementary in their strengths and use cases.
While discriminative models typically fare better in predictive performance, generative models
allow to analyse and capture the structure present in the input space. They are also “all-round
predictors”, that is, not restricted to a single prediction task but also capable of predicting any X
given Y ∪X \X . Moreover, generative models have some crucial advantages on the prediction task
P (Y |X) a discriminative model has been trained on, as they naturally allow to detect outliers (by
monitoring P (X)) and treat missing features (by marginalisation). A purely discriminative model
does not have any “innate” mechanisms to deal with these problems, and needs to be supported with
a generative model P (X) (to detect outliers) or imputation techniques (to handle missing features).

Ideally, we would like the best of both worlds: having the good predictive performance of discrimina-
tive models and the advantages of generative models. In this paper, we show that this is achievable
for DTs and RFs by relating them to Probabilistic Circuits (PCs) [50], a class of generative models
based on computational graphs of sum nodes (mixtures), product nodes (factorisations), and leaf
nodes (distribution functions). PCs subsume and represent a wide family of related models, such as
arithmetic circuits [8], AND/OR-graphs [31], sum-product networks [38], cutset networks (CNets)
[44], and probabilistic sentential decision diagrams [24]. While many researchers are aware of the
similarity between DTs and PCs—most notably, CNets [44] can be seen as a type of generative
DT—the connection to classical, discriminative DTs [40] and RFs [3] has not been studied so far.

We show that DTs and RFs can be naturally cast into the PC framework. For any given DT, we
can construct a corresponding PC, a Generative Decision Tree (GeDT), representing a full joint
distribution P (Y,X). This distribution gives rise to the predictor P (Y |X) = P (Y,X)/

∑
y P (y,X),

which is identical to the original DT, if we impose certain constraints on the conversion from DT to
GeDT. Additionally, a GeDT also fits the joint distribution P (X) to the training data, “upgrading”
the DT to a fully generative model. For a completely observed sample X = x, the original DT and
a corresponding GeDT agree entirely (yield the exact same predictions), and moreover, have the
same computational complexity (a discussion on time complexity is deferred to the supp. material).
By converting each DT in an RF into an GeDT, we obtain an ensemble of GeDTs, which we call
Generative Forest (GeF). Clearly, if each GeDT in a GeF agrees with its original DT, then GeFs also
agree with their corresponding RFs.

GeDTs and GeFs have a crucial advantage in the case of missing features, that is, assignments
Xo = xo for some subset Xo ⊂ X, while X¬o = X \Xo are missing at random. In a GeDT, we
can marginalise the missing features and yield the predictor

P (Y |Xo) =

∫
x¬o

P (Y,Xo,x¬o)dx¬o∑
y

∫
x¬o

P (y,Xo,x¬o)dx¬o
. (1)

For GeFs, we yield a corresponding ensemble predictor for missing features, by applying marginali-
sation to each GeDT. Using the true data generating distribution in Eq. (1) would deliver the Bayes
optimal predictor for any subset Xo of observed features. Thus, since GeDTs are trained to approx-
imate the true distribution, using the predictor of Eq. (1) under missing data is well justified. We
show GeDTs are in fact consistent: they converge to the Bayes optimal classifier as the number
of data points goes to infinity. Our proof requires similar assumptions to those of previous results
for DTs [1, 4, 17] but is substantially more general: while consistency in DTs is shown only for a
classifier P (Y |X) using fully observed samples, our consistency result holds for all 2|X| classifiers
P (Y |Xo): one for each observation pattern Xo ⊆ X. While the high-dimensional integrals in
Eq. (1) seem prohibitive, they are in fact tractable, since a remarkable feature of PCs is that computing
any marginal has the same complexity as evaluating the full joint, namely linear in the circuit size.

This ability of our models is desirable, as there is no clear consensus on how to deal with missing
features in DTs at test time: The most common strategy is to use imputation, e.g. mean or k-nearest-
neighbour (KNN) imputation, and subsequently feed the completed sample to the classifier. DTs
also have two “built-in” methods to deal with missing features that do not require external models.
These are the so-called surrogate splits [49] and an unnamed method proposed by Friedman in 1977
[14, 41]. Among these, KNN imputation seems to be the most widely used, and typically delivers
good results on real-world data. However, we demonstrate it does not lead to a consistent predictor
under missing data, even when assuming idealised settings. Moreover, in our experiments, we show
that GeF classification under missing inputs often outperforms standard RFs with KNN imputation.

2

Our generative interpretation can be easily incorporated in existing DT learners and does not require
drastic changes in the learning and application practice for DTs and RFs. Essentially, any DT
algorithm can be used to learn GeDTs, requiring only minor bookkeeping and some extra generative
learning steps. There are de facto no model restrictions concerning the additional generative learning
steps, representing a generic scheme to augment DTs and RFs to generative models.

2 Notation and Background

In this paper we focus on classification tasks. To this end, let the set of explanatory variables (features)
be X = {X1, X2, . . . , Xm}, where continuous Xi assume values in some compact set Xi ⊂ R and
discrete Xi assume values in Xi = {1, . . . ,Ki}, where Ki is the number of states for Xi. Let the
joint feature space of X be denoted as X . We denote joint states, i.e. elements from X , as x and
let x[i] be the state in x belonging to Xi. The class variable is denoted as Y , assuming values in
Y = {1, . . . ,K}, where K is the number of classes. We assume that the pair (X, Y) is drawn
from a fixed joint distribution P∗(X, Y) which has density p∗(X, Y). While the true distribution P∗
is unknown, we assume that we have a dataset Dn = {(x1, y1), . . . , (xn, yn)} of n i.i.d. samples
from P∗. When describing a directed graph G, we refer to its set of nodes as V , reserving letters
u and v for individual nodes. We denote the set of children and parents of a node v as ch(v) and
pa(v), respectively. Nodes v without children are referred to as leaves, and nodes without parents are
referred to as roots.

Decision Trees. A decision tree (DT) is based on a rooted directed tree G, i.e. an acyclic directed
graph with exactly one root vr and whose other nodes have exactly one parent. Each node v in the
DT is associated with a cell X v , which is a subset of the feature space X . The cell of the root node
vr is the whole X . The child cells of node v form a partition of X v, i.e.

⋃
u∈ch(v) X u = X v,

X u ∩ X u′ = ∅, ∀u, u′ ∈ ch(v). These partitions are usually defined via axis-aligned splits, by
associating a decision variableXi to v, and partitioning the cell according to some rule onXi’s values.
Formally, we first project X v onto its ith coordinate, yielding Xi,v := {x[i] | x ∈ X v}, and construct
a partition {Xi,u}u∈ch(v) ofXi,v . The child cells are then given by X u = {x | x ∈ X v∧x[i] ∈ Xi,u}.
Common choices for this partition are full splits for discrete variables, i.e. choosing {Xi,u}u∈ch(v) =
{{xi}}xi∈Xi,v

where children u and states xi are in one-to-one correspondence, and thresholding
for continuous variables, i.e. choosing {Xi,u}u∈ch(v) = {{xi < t}, {xi ≥ t}} for some threshold
t. Note that the leaf cells of a DT represent a partition A of the feature space X . We denote the
elements of A asA and defineAv = X v for each leaf v. A DT classifier is constructed by equipping
each A ∈ A with a classifier fA : A 7→ ∆K , where ∆K is the set of probability distributions over
K classes, i.e. fA is a conditional distribution defined on A. This distribution is typically stored as
absolute class counts of the training samples contained in A.

The overall DT classifier is given as f(x) = fA(x)(x) where A(x) is the leaf cell containing x;
A(x) is found by parsing the DT top-down, following the partitions (decisions) consistent with
x. This formulation captures the vast majority of DT classifiers proposed in the literature, notably
CART [4] and ID3 [40]. The probably most widely used variant of DTs—which we also assume
in this paper—is to define fA as a constant function, returning the class proportions in cell A. The
arg max of fA(x) is equivalent to majority voting among all training samples which fall into the
same cell. When learning a DT, the number of available training samples per cell reduces quickly,
which leads to overfitting and justifies the need for pruning techniques [4, 32, 40, 42].

Random Forests. Random Forests (RFs) are ensembles of DTs which effectively counteract overfit-
ting. Each DT in a RF is learned in a randomised fashion by, at each learning step, drawing a random
sub-selection of variables containing only a fraction p of all variables, where typical values are
p = 0.3 or p =

√
m. The resulting DTs are not pruned but made “deep” until each leaf cell contains

either only samples of one class or less than T samples, where typical values are T ∈ {1, 5, 10}. This
yields low bias, but high variance in the randomised DTs, which makes them good candidates for
bagging (bootstrap aggregation) [19]. Thus, to further increase the variability among the trees, each
of them is learned on a bootstrapped version of the training data [3].

Probabilistic Circuits. In this paper, we relate DTs to Probabilistic Circuits (PCs) [50], a family of
density representations facilitating many exact and efficient inference routines. PCs are, like DTs,
based on a rooted acyclic directed graph G, albeit one with different semantics. PCs are computational
graphs with three types of nodes, namely i) distribution nodes, ii) sum nodes and iii) product nodes.

3

Input :Decision Tree G and training data D
Output :Probabilistic Circuit G′
let G′ be a structural copy of G and let v′ be the node in G′ which corresponds to v of G
for root node v of G, set Dv = D
for v in topdownsort(V) do

if v is internal then
get partition Xi,u of decision variable Xi associated with v
for u ∈ ch(v) do

let wv′u′ =
∑

x∈Dv
1(x[i]∈Xi,u)

|Dv|
set Du = {x ∈ Dv | x[i] ∈ Xi,u}

end
let v′ be a sum node

∑
u′∈ch(v′) wv′u′u′

else
let v′ be a density pv′(x, y) with support Av , learned from Dv

end
end

Algorithm 1: Converting DT to PC (GeDT).

Distribution nodes are the leaves of the graph G, while sum and product nodes are the internal nodes.
Each distribution node (leaf) v computes a probability density1 over some subset X′ ⊆ X, i.e. a
normalised function pv(x′) : X ′ 7→ R+ from the state space of X′ to the non-negative real numbers.
The set of variables X′ over which the leaf computes a distribution is called the scope of v, and
denoted by sc(v) := X′. Given the scopes of the leaves, the scope of any internal node v (sum or
product) is recursively defined as sc(v) = ∪u∈ch(v) sc(u). Sum nodes compute convex combinations
over their children, i.e. if v is a sum node, then v computes v(x) =

∑
u∈ch(v) wv,uu(x), where

wv,u ≥ 0 and
∑

u∈ch(v) wv,u = 1. Product nodes compute the product over their children, i.e. if v is
a product node, then v(x) =

∏
u∈ch(v) u(x). The density p(X) represented by a PC is the function

computed by its root node, and can be evaluated with a feedforward pass.

The main feature of PCs is that they facilitate a wide range of tractable inference routines, which go
hand in hand with certain structural properties, defined as follows [8, 50]: i) A sum node v is called
smooth if its children have all the same scope: sc(u) = sc(u′), for any u, u′ ∈ ch(v). ii) A product
node v is called decomposable if its children have non-overlapping scopes: sc(u) ∩ sc(u′) = ∅, for
any u, u′ ∈ ch(π), u 6= u′. A PC is smooth (respectively decomposable) if all its sums (respectively
products) are smooth (respectively decomposable). Smoothness and decomposability are sufficient to
ensure tractable marginalisation in PCs. In particular, assume that we wish to evaluate the density
over Xo ⊂ X for evidence Xo = xo, while marginalising X¬o = X \Xo. In PCs, this task reduces
to performing marginalisation at the leaves [37], that is, for each leaf v one marginalises sc(v)∩X¬o,
and evaluates it for the values corresponding to sc(v) ∩Xo. The desired marginal pXo

(xo) results
from evaluating internal nodes as in computing the complete density. Furthermore, a PC is called
deterministic [8, 50] if it holds that for each complete sample x, each sum node has at most one
non-zero child. Determinism and decomposability are sufficient conditions for efficient maximisation,
which again, like density evaluation and marginalisation, reduces to a single feedforward pass.

3 Generative Decision Trees

Given a learned DT and the dataset D = {(x1, y1), . . . , (xn, yn)} it has been learned on, we can
obtain a corresponding generative model, by converting the DT into a PC. This conversion is given
in Algorithm 1. In a nutshell, Algorithm 1 converts each decision node into a sum node and each
leaf into a density with support restricted to the leaf’s cell. The training samples can be figured to
be routed from the root node to the leaves, following the decisions at each decision/sum node. The
sum weights are given by the fraction of samples which are routed from the sum node to each of its
children. The leaf densities are learned on the data which arrives at the respective leaves.

1By an adequate choice of the underlying measure, this also subsumes probability mass functions.

4

X2 > .5

X1 = 1
(20, 0)

(10, 30)(0, 40)

X2 ≤ .5

X1 = 0

.2

.5
p3(X1, X2, Y) · 1X2>0.5

p2(X1, X2, Y)·
1X1=1 · 1X2≤0.5

p1(X1, X2, Y)·
1X1=0 · 1X2≤0.5

.8

.5

Figure 1: Illustration of a DT and its corresponding PC as obtained by Algorithm 1.

As an example, assuming X and Y factorise at the leaves, Algorithm 1 applied to the DT on the
left-hand side of Figure 1 gives the PC on the right-hand side and the following densities at the leaves:

p1(X1, X2, Y) = p1(X1, X2)(0 · 1(Y = 0) + 1 · 1(Y = 1)),

p2(X1, X2, Y) = p2(X1, X2)(0.25 · 1(Y = 0) + 0.75 · 1(Y = 1)),

p3(X1, X2, Y) = p3(X1, X2)(1 · 1(Y = 0) + 0 · 1(Y = 1)) ,

Note that X1 is deterministic (all mass absorbed in one state) in p1 and p2, since X1 has been fixed
by the tree construction, while p3 is a “proper” distribution over X1 and X2. Densities pi(X1, X2)
do not appear in the DT representation and illustrate the extension brought in by the PC formalism.

We denote the output of Algorithm 1 as a Generative Decision Tree (GeDT). Note that GeDTs are
proper PCs over (X, Y), albeit rather simple ones: they are tree-shaped and contain only sum nodes.
They are clearly smooth, since each leaf density has the full scope (X, Y), and they are trivially
decomposable, as they do not contain products. Thus, both the full density or any sub-marginal can
be evaluated by simply evaluating the GeDT bottom up, where for marginalisation tasks we first
need to perform marginalisation at the leaves. Furthermore, it is easy to show that any GeDT is
deterministic (see supp. material). As shown in [35, 44], the sum-weights set by Algorithm 1 are in
fact the maximum likelihood weights for deterministic PCs.

In Algorithm 1, we learn a density pv(x, y) for each leaf v, where we have not yet specified the
model or learning algorithm. Thus, we denote GeDT(M) as a GeDT whose leaf densities are learned
by “method M”, where M might be graphical models, again PCs, or even neural-based density
estimators [23, 46]. In order to ensure tractable marginalisation of the overall GeDT, however, we use
either fully factorised leaves—for each leaf v, pv(X, Y) = pv(X1)pv(X2) . . . pv(Xm)pv(Y)—or
PCs learned with LearnSPN [16]. In both cases marginalisation at the leaves, and hence in the whole
GeDT, is efficient. Regardless of the model M , we generally learn the leaves using the maximum
likelihood principle, or some proxy of it. Thus, since the sum-weights are already set to the (global)
maximum likelihood solution by Algorithm 1, the overall GeDT also fits the training data. A basic
design choice is how to model the dependency between X and Y at the leaves: we might assume
independence between them, i.e. assume p(X, Y) = p(X)p(Y) (class-factorised leaves)2 or simply
pass the data over both X and Y to a learning algorithm and let it determine the dependency structure
itself (full leaves). Note that we are free to have different types of density estimators for different
leaves in a single GeDT. A natural design choice is to match the complexity of the estimator in a leaf
to the number of samples it contains.

The main semantic difference between DTs and GeDTs is that a DT represents a classifier, i.e. a
conditional distribution f(x), while the corresponding GeDT represents a full joint distribution
p(X, Y). The latter naturally lends itself towards classification by deriving the conditional distribution
p(Y |x) ∝ p(x, Y). How are the original DT classifier f(x) and the GeDT classifier p(Y |x)
related? In theory, p(Y |x) might differ substantially from f(x), since every feature might influence
classification in a GeDT, even if it never appears in any decision node of the DT. In the case of
class-factorised leaves, however, we obtain “backwards compatibility”.
Theorem 1. Let f be a DT classifier and p(Y |x) be a corresponding GeDT classifier, where each
leaf in GeDT is class-factorised, i.e. of the form p(Y)p(X), and where p(Y) has been estimated in
the maximum-likelihood sense. Then f(x) = p(Y |x), provided that p(x) > 0.

2Note that such independence is only a context-specific one, conditional on the state of variables associated
with sum nodes [36, 38]. This assumption does not represent global independence between X and Y .

5

For space reasons, proofs and complexity results are deferred to the appendix. Theorem 1 shows that
DTs and GeDTs yield exactly the same classifier for class-factorised leaves and complete data. DTs
achieve their most impressive performance when used as an ensemble in RFs. It is straight-forward
to convert each DT in an RF using Algorithm 1, yielding an ensemble of GeDTs. We call such an
ensemble a Generative Forest (GeF). This result extends to ensembles, as clearly when all GeDTs in a
GeF use class-factorised leaves, then according to Theorem 1, GeFs yield exactly the same prediction
function as their corresponding RFs. This means that the everyday practitioner can safely replace
RFs with class-factorised GeFs, gaining the ability to classify under missing input data.

4 Handling Missing Values

The probably most frequent strategy to treat missing inputs in DTs and RFs is to use some single
imputation technique, i.e. to first predict any missing values based on the observed ones, and then use
the imputed sample as input to the classifier. A particularly prominent method is K-nearest neighbour
(KNN) imputation, which typically works well in practice. This strategy, however, is not Bayes
consistent and can in principle be arbitrarily bad. This can be shown with a simple example. Assume
two multivariate Gaussian features X1 and X2 with var(X1) ≥ τ , var(X2) ≥ τ for some τ > 0,
i.e. the variances of X1 and X2 are bounded from below. Let the conditional class distribution be
p(y |x1, x2) = 1(|x2 − E[X2 |x1]| > ε), i.e. Y detects whether X2 deviates more than ε from its
mean, conditional on X1. Assume X2 is missing and use KNN to impute it, based on X1 = x1. KNN
is known to be a consistent regressor, provided the number of neighbours goes to infinity but vanishes
in comparison to the number of samples [9]. Thus, the imputation for X2 based on x1 converges to
E[X2 |x1], yielding a constant prediction of Y = 0. It follows that by making ε arbitrarily small, we
can push the classification error arbitrarily close to 1, while the true error goes to 0.

Assuming that inputs are missing at random [28] and that we have only inputs xo for some subset
Xo ⊂ X, a GeDT naturally yields a classifier p(y |Xo), by marginalising missing features as in
Eq. (1). Recall that marginalisation in PCs, and thus in GeDTs, can be performed with a single
feedforward pass, given that the GeDT’s leaves permit efficient marginalisation. In our experiments,
we use either fully factorised leaves or PC leaves learned by LearnSPN [16], a prominent PC learner,
such that we can efficiently and exactly evaluate p(Y |Xo) with a single pass through the network.
Thus, a GeDT represents in fact 2|X| classifiers, one for each missingness pattern. Since the true
data distribution yields Bayes optimal classifiers for each Xo, and since the parameters of GeDTs are
learned in the maximum likelihood sense, using the GeDT predictor p(y |Xo) for missing data is
natural. For a simplified variant of GeDTs, we can show that they converge to the true distribution and
are therefore Bayes consistent classifiers for each Xo. Theorem 2 assumes, without loss of generality,
that all variables in X are continuous.

Theorem 2. Let P∗ be an unknown data generating distribution with density p∗(X, Y), and let Dn

be a dataset drawn i.i.d. from P∗. Let G be a DT learned with a DT learning algorithm, using axis-
aligned splits. Let An be the (rectangular) leaf cells produced by the learning algorithm. Assume it
holds that i) limn→∞ |A

n| log(n)/n→ 0 and ii) P∗({x | diam(An
x) > γ})→ 0 almost surely for all

γ > 0, where diam(A) is the diameter of cell A. Let G′ be the GeDT corresponding to G, obtained
via Algorithm 1, where for each leaf v, pv is of the form pv(Y)pv(X), with pv(X) uniform on Av

and pv(Y) the maximum likelihood Categorical (fractions of class values of samples in Av). Then
the GeDT distribution is l1-consistent, i.e.

∑
y

∫
|p(x, y)− p∗(x, y)|dx→ 0, almost surely.

Note that the assumptions in Theorem 2 are in line with consistency results for DTs. See for example
[4, 9, 30], all of which require, in some sense, that the number of cells vanishes in comparison
to the number of samples, and that the cell sizes shrink to zero. Theorem 2 naturally leads to the
Bayes-consistency of GeDTs and GeFs under missing inputs.

Corollary 1. Under assumptions of Theorem 2, any GeDT predictor p(Y |Xo), for Xo ⊆ X is
Bayes consistent.

Corollary 2. Assume a GeF whose GeDTs are learned under assumptions of Theorem 2. Then the
GeF of GeDT predictors p(Y |Xo), for any Xo ⊆ X, is Bayes consistent.

6

5

0

−5

−10

−15

KNN (reference) Surr Friedman

.0 .2 .4 .6 .8

5

0

−5

−10

−15

MissForest

.0 .2 .4 .6 .8

GeF

.0 .2 .4 .6 .8

GeF(LSPN)

Proportion of missing values

A
cc

ur
ac

y
ga

in
re

la
tiv

e
to

R
F

+
K

N
N

im
pu

ta
tio

n
(%

)

Figure 2: Average accuracy gain relative to RFs (100 trees) plus KNN imputation against proportion
of missing values. The same plot is repeated six times, each time highlighting one method. The
average as well as the confidence intervals (95%) are computed across the 21 datasets of Table 1.

5 Related Work

Among the many variations of DTs and RFs that have been proposed in the last decades, the closest
to our work are those that, similarly to GeDTs and GeFs, extend DT leaves with “non-trivial”
models. Notable examples are DTs where the leaves are modelled by linear and logistic regressors
[13, 26, 43], kernel density estimators (KDEs) [29, 47], linear discriminant models [15, 22], KNN
classifiers [5, 29], and Naive-Bayes classifiers (NBCs) [25]. Nonetheless, all these previous works
focus primarily on improving the classification accuracy or smoothing probability estimates but
do not model the full joint distribution, like in this work. Even extensions by Smyth et al. [47]
and Kohavi [25], which include generative models (KDEs and NBCs, respectively) do not exploit
their generative properties. To the best of our knowledge, GeFs are the first DT framework that
effectively model and leverage the full joint distribution in a classification context. That is of practical
significance as none of these earlier extensions of DTs offer a principled way to treat missing values
or detect outliers. Here it is also worth mentioning the contemporary work of Khosravi et al. [21]
that proposes a similar probabilistic approach to handle missing data in DTs.

On the other side of the spectrum, DTs have also been extended to density estimators [18, 44, 45, 53].
Among these, Density Estimation Trees (DETs) [45], Cutset Networks (CNets) [44], and randomised
ensembles thereof [10], are probably the closest to our work. These models are trained with a greedy
tree-learning algorithm but minimise a modified loss function that matches their generative nature:
joint entropy across all variables in CNets, mean integrated squared error in DETs. Notably, CNets,
like GeFs, are probabilistic circuits, and hence also allow for tractable inference and marginalisation.
They, however, have not been applied in a discriminative setting and are not backwards compatible
with DTs and RFs. Moreover, GeDTs (and GeFs) can be seen as a family of models depending on
the estimation at the leaves, making a clear parallel with what DTs (and RFs) offer.

Finally, one can also mimic the benefits of generative models in ensembles by learning predictors for
all variables, as in MERCS [52]. That is fundamentally different from our probabilistic approach and
might entail prohibitively large numbers of predictors. Handling missing values, in the worst case,
would require one predictor for each of the 2|X| missing patterns, and that is why MERCS relies on
imputation methods when needed. Conversely, GeDTs model a full joint distribution, thus being
more compact and interpretable.

6 Experiments

We run a series of classification tasks with incomplete data to compare our models against surrogate
splits [4, 49], Friedman’s method [14, 41], and mean (mode), KNN (k = 7) and MissForest [48]
imputation. In particular, we experiment with two variants of GeFs: one with fully-factorised leaves,

7

Table 1: Accuracy at 30% percent of missing values at test time with 95% confidence intervals. The
best performing model is underlined, whereas all models within its confidence interval appear in bold.

Dataset n Surrogate Friedman Mean KNN MissForest GeF GeF(LSPN)

dresses 500 45.48 ± 1.57 55.8 ± 1.21 58.18 ± .85 56.62 ± 1.57 55.68 ± .95 57.12 ± 1.11 57.14 ± 1.07
wdbc 569 94.96 ± .36 94.96 ± .35 94.92 ± .58 95.59 ± .41 94.92 ± .36 95.64 ± .47 96.26 ± .42

diabetes 768 72.97 ± .73 73.35 ± .70 71.67 ± .84 72.4 ± .75 72.46 ± .92 73.93 ± .63 73.83 ± .72
vehicle 846 71.61 ± .92 67.12 ± .79 63.27 ± 1.05 71.77 ± 1.01 70.69 ± 1.33 72.39 ± 1.13 72.77 ± 1.27
vowel 990 78.79 ± .86 70.81 ± 1.45 64.51 ± .83 85.62 ± .66 81.85 ± 1.10 89.25 ± .77 89.59 ± .91

credit-g 1000 71.97 ± .32 72.42 ± .31 73.01 ± .64 73.06 ± .65 73.03 ± .78 73.81 ± .38 73.97 ± .36
mice 1080 95.84 ± .44 91.01 ± .77 84.91 ± 1.03 97.7 ± .50 96.08 ± .52 98.38 ± .32 99.06 ± .15

authent. 1372 88.65 ± .74 87.13 ± .69 84.47 ± .79 91.98 ± .55 90.74 ± .37 90.33 ± .65 89.66 ± .64
cmc 1473 48.7 ± .79 49.8 ± .38 47.67 ± .86 48.38 ± .58 48.28 ± .90 49.96 ± 1.03 50.08 ± 1.05

segment 2310 93.32 ± .27 84.14 ± .69 78.34 ± .68 94.25 ± .32 93.21 ± .41 93.42 ± .20 93.41 ± .34
dna 3186 90.53 ± .31 77.23 ± .36 83.91 ± .43 89.31 ± .33 90.76 ± .34 87.42 ± .19 82.99 ± .25

splice 3190 86.09 ± .46 84.76 ± .65 84.65 ± .28 89.06 ± .53 86.18 ± .26 91.1 ± .50 85.69 ± .53
krvskp 3196 73.62 ± .92 82.81 ± .73 83.58 ± .64 86.58 ± .43 86.24 ± .56 88.35 ± .39 88.65 ± .32
robot 5456 91.74 ± .23 84.73 ± .57 89.39 ± .28 92.74 ± .25 91.72 ± .37 92.97 ± .28 94.67 ± .20

texture 5500 95.31 ± .15 89.85 ± .34 84.24 ± .42 97.13 ± .15 95.4 ± .17 95.93 ± .15 97.12 ± .13
wine 6497 84.49 ± .17 82.45 ± .10 83.2 ± .15 85.73 ± .26 85.95 ± .12 85.22 ± .18 85.85 ± .19

gesture 9873 58.37 ± .15 52.86 ± .27 55.41 ± .21 61.62 ± .22 61.48 ± .26 58.65 ± .18 60.2 ± .21
phishing 11055 81.52 ± .50 88.98 ± .17 88.02 ± .19 92.06 ± .13 91.18 ± .18 92.99 ± .08 93.3 ± .06

bank 41188 90.42 ± .18 90.3 ± .15 90.09 ± .11 90.64 ± .14 90.4 ± .19 90.79 ± .21 90.77 ± .21
jungle 44819 63.45 ± .24 71.91 ± .12 66.89 ± .40 66.25 ± .15 65.67 ± .20 72.4 ± .12 72.3 ± .11

electricity 45312 79.79 ± .09 77.47 ± .10 73.24 ± .19 80.55 ± .11 81.21 ± .10 82.23 ± .12 82.64 ± .11

which we denote simply GeF, and another with leaves learned via LearnSPN [16], which we call
GeF(LearnSPN). We use a transformation of GeFs into a clever PC that prunes unnecessary sub-trees
[6], speeding up computations and achieving time complexity comparable to the original DTs and
RFs (see supp. material). In all experiments, GeF, GeF(LearnSPN) and the RF share the exact same
structure (partition over the feature space) and are composed of 100 trees; including more trees has
been shown to yield only marginal gains in most cases [39]. In GeF(LearnSPN), we run LearnSPN
only for leaves with more than 30 samples, defaulting to a fully factorised model in smaller leaves.

We compare the accuracy of the methods in a selection of datasets from the OpenML-CC18 bench-
mark3 [51] and the wine-quality dataset [33]. Table 1 presents results for 30% of missing values
at test time (different percentages are shown in the supp. material), with 95% confidence intervals
across 10 repetitions of 5-fold cross-validation. GeF models outperform other methods in almost all
datasets, validating that the joint distributions at the leaves provide enough information for computing
the marginalisation in Eq. (1). We also note that increasing the expressive power of the models at the
leaves seems worthwhile, as GeF(LSPN) outperforms the vanilla GeF in about half of the datasets.
Similar conclusions are supported by Figure 2, where we plot the average gain in accuracy relative
to RF + KNN imputation at different proportions of missing values. While earlier built-in methods,
Friedman’s and surrogate splits, perform poorly (justifying the popularity of imputation techniques
for RFs), GeFs are on average more than 3% more accurate than KNN imputation. For the sake of
space, a thorough exposition of these experiments is deferred to the supp. material, where we fully
describe the experimental procedure, show different percentages of missing data and include results
with PCs learned via class-selective LearnSPN [6], as baseline for a standard generative model.

The reviewers suggested a direct comparison against CNets [44] since, like GeFs, they are based on
DTs and encode a proper joint distribution over all the variables. However, while we acknowledge
the value of such comparison, the implementations to which we had access either did not support
missing data or were too slow to yield reliable experimental results with ensembles of similar size, in
the short time available to revise the paper. Also, it is worth noticing that CNets are currently not
available for mixed variables, which prevents their application to most datasets in Table 1.

Another advantage of generative models is the ability of using the likelihood over the explanatory
variables to detect outliers. GeFs are still an ensemble of generative GeDTs and thus do not encode a
single full joint distribution. However, we can extend GeFs to model a single joint by considering a
uniform mixture of GeDTs (using a sum node), instead of an ensemble of the conditional distributions
of each GeDT. In this case, the model represents the joint p(X, Y) = n−1t

∑nt

j=1 pj(X, Y), where
each pj comes from a different GeDT. This model is named GeF+ and achieves similar but slightly
inferior performance than GeFs in classification with missing data (still clearly superior to KNN

3https://www.openml.org/s/99/data

8

https://www.openml.org/s/99/data

imputation). This does not come as a surprise: the benefits of a fully generative models often comes
at the cost of a (small) drop in classification accuracy (results in the supp. material).

We illustrate how to detect outliers with GeFs by applying a GeF+(LSPN) to the the wine dataset
[7] with a variant of transfer testing [2]. We learn two different GeF+(LSPN) models, each with
only one type of wine data (red or white), to predict whether a wine has a score of 6 or higher. We
then compute the log-density of unseen data (70/30 train test split) for the two wine types with both
models. As we see in the histograms of Figure 3, the marginal distribution over explanatory variables
does provide a strong signal to identify out-of-domain instances. In comparison to a Gaussian Kernel
Density Estimator (KDE), GeF+(LSPN) achieved similar results even though its structure has been
fit in a discriminative way.

−40−30−20−10

log p(x)
ROC AUC=0.987

0.0
0.1
0.2
0.3
0.4
0.5

D
en

si
ty

Gaussian KDE

−40−30−20−10

log p(x)
ROC AUC=0.988

0.4

0.3

0.2

0.1

0.0

GeF+(LSPN)

−40−30−20−10

log p(x)
ROC AUC=0.985

0.0
0.1
0.2
0.3
0.4
0.5

Gaussian KDE

−40−30−20−10

log p(x)
ROC AUC=0.983

0.4

0.3

0.2

0.1

0.0

Trained on white wine data Trained on red wine data
GeF+(LSPN)

white wine test data red wine test data

Figure 3: Normalised histograms of log p(x) for samples from two different wine datasets.

We repeat a similar experiment with images, where we use the MNIST dataset [27] to fit a Gaussian
KDE, a Random Forest and its corresponding GeF+. We then evaluate these models on different
digit datasets, namely Semeion [11] and SVHN [34] (converted to grayscale and 784 pixels), to see
whether they can identify out-of-distribution samples. We also use the entropy over the class variable
as a baseline, since this is a signal that is easily computed on a standard Random Forest. Again,
GeF+successfully identified out-of-domain samples, outperforming the two other methods and even
encoding slightly different distributions for SVHN and Semeion digits. Note that in both experiments
we also compare the methods in terms of the area under the receiver operating characteristic curve
(AUC ROC), which we computed using the log-density (or entropy) as a signal for a binary classifier
that discriminates between in- and out-of-domain samples.

−2.0 −1.0−1.5 −0.5 0.0

Entropy
ROC AUC=0.943

.0

2.5

5.0

7.5

D
en

si
ty

Random Forest

−900−850−800−750−700

log p(x)
ROC AUC=0.977

.0
.02
.04
.06
.08

Gaussian KDE

−900−850−800−750−700

log p(x)
ROC AUC=0.992

.0
.02
.04
.06
.08

GeF+

MNIST
SVHN
Semeion

Figure 4: Normalised histograms of log p(x) for samples from three different image datasets.

7 Conclusion

By establishing a connection between Decision Trees (DTs) and Probabilistic Circuits (PCs), we have
upgraded DTs to a full joint model over both inputs and outputs, yielding their generative counterparts,
called GeDTs. The fact that GeDTs, and their ensemble version GeFs, are “backwards compatible”
to DTs and RFs, while offering benefits like consistent classification under missing inputs and outlier
detection, makes it easy to adopt them in everyday practice. Missing data and outliers, however,
are just the beginning. We believe that many of the current challenges in machine learning, like
explainability, interpretability, and (adversarial) robustness are but symptoms of an overemphasis on
purely discriminative methods in the past decades, and that hybrid generative approaches—like the
one in this paper—will contribute significantly towards mastering these current challenges.

9

Broader Impact

This work establishes a connection between two sub-fields in machine learning, namely decision
trees/random forests and probabilistic circuits. Since there was very restricted communication
between these two research communities, a fruitful cross-fertilisation of ideas, theory and algorithms
between these research domains can be expected. This represents a highly positive impact on
fundamental machine learning and artificial intelligence research.

Decision trees and random forests are a de facto standard classification and regression tools in
daily applied machine learning and data science. Being—so far—purely discriminative models,
they struggle with two problems which are key concerns in this work: missing data and outlier
detection. Since the improvements suggested in this paper can be incorporated in existing decision
tree algorithms with very minor changes, our results have a potentially dramatic and immediate
impact on a central and widely used machine learning and data science tool.

Since our work is elementary machine learning research, its ethical consequences are hard to assess.
However, the main ethical and societal impact of our work is the extension of a standard prediction tool,
increasing its application domain and pertinence, and thus amplifying existing ethical considerations
of data-driven and automatic prediction.

Acknowledgments and Disclosure of Funding

The authors thank the reviewers for their useful insights and suggestions. During part of the three
years prior to the submission of this work, the authors were affiliated with the following institutions
besides TU Eindhoven: Alvaro Correia was a full-time employee at Accenture and Itaú-Unibanco,
and affiliated with Utrecht University; Cassio de Campos was affiliated with Queen’s University
Belfast and Utrecht University; Robert Peharz was affiliated with the University of Cambridge.

References

[1] G. Biau, L. Devroye, and G. Lugosi. Consistency of Random Forests and Other Averaging
Classifiers. Journal of Machine Learning Research, 9:2015–2033, 2008.

[2] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani. Adversarial examples, uncertainty, and
transfer testing robustness in gaussian process hybrid deep networks. arXiv:1707.02476, 2017.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees.
CRC press, 1984.

[5] S. E. Buttrey and C. Karo. Using k-nearest-neighbor classification in the leaves of a tree.
Computational Statistics & Data Analysis, 40(1):27–37, 2002.

[6] A. H. C. Correia and C. P. de Campos. Towards scalable and robust sum-product networks.
In International Conference on Scalable Uncertainty Management, pages 409–422. Springer,
2019.

[7] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data
mining from physicochemical properties. Decision Support Systems, 47(4):547–553, nov 2009.

[8] A. Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM,
50(3):280–305, 2003.

[9] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

[10] N. Di Mauro, A. Vergari, T. M. Basile, and F. Esposito. Fast and accurate density estimation
with extremely randomized cutset networks. In Joint European conference on machine learning
and knowledge discovery in databases, pages 203–219, 2017.

[11] D. Dua and C. Graff. UCI machine learning repository, 2017.

[12] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of
classifiers to solve real world classification problems? The journal of machine learning
research, 15(1):3133–3181, 2014.

10

[13] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten. Using model trees for classification.
Machine learning, 32(1):63–76, 1998.

[14] J. H. Friedman. A recursive partitioning decision rule for nonparametric classification. IEEE
Transactions on Computers, C-26(4):404–408, 1977.

[15] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. In Brazilian
symposium on artificial intelligence, pages 286–295. Springer, 2004.

[16] R. Gens and P. Domingos. Learning the Structure of Sum-Product Networks. In Proceedings of
the 30th International Conference on Machine Learning, volume 28, pages 229–264, 2013.

[17] L. Gordon and R. A. Olshen. Asymptotically efficient solutions to the classification problem.
The Annals of Statistics, pages 515–533, 1978.

[18] A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational
tractability. In Proceedings of the 2003 SIAM International Conference on Data Mining, pages
203–211. SIAM, 2003.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, 2009.

[20] Kaggle. Kaggle’s State of Data Science and Machine Learning 2019. Technical report, 2019.
[21] P. Khosravi, A. Vergari, Y. Choi, Y. Liang, and G. V. d. Broeck. Handling missing data in

decision trees: A probabilistic approach. arXiv:2006.16341, 2020.
[22] H. Kim and W.-Y. Loh. Classification trees with bivariate linear discriminant node models.

Journal of Computational and Graphical Statistics, 12(3):512–530, 2003.
[23] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference

on Learning Representations, ICLR, 2014. arXiv:1312.6114.
[24] D. Kisa, G. V. den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision diagrams.

In Knowledge Representation and Reasoning Conference, 2014.
[25] R. Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid. In

Knowledge Discovery and Data Mining (KDD), pages 202–2017, 1996.
[26] N. Landwehr, M. Hall, and E. Frank. Logistic model trees. Machine learning, 59(1-2):161–205,

2005.
[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[28] R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume 793. John Wiley &

Sons, 2019.
[29] W.-Y. Loh. Improving the precision of classification trees. The Annals of Applied Statistics,

pages 1710–1737, 2009.
[30] G. Lugosi, A. Nobel, et al. Consistency of data-driven histogram methods for density estimation

and classification. The Annals of Statistics, 24(2):687–706, 1996.
[31] R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. In IJCAI, pages

224–229, 2005.
[32] J. Mingers. Expert systems—rule induction with statistical data. Journal of the operational

research society, 38(1):39–47, 1987.
[33] S. Moro, R. Laureano, and P. Cortez. Using data mining for bank direct marketing: An

application of the crisp-dm methodology. In Proceedings of European Simulation and Modelling
Conference-ESM’2011, pages 117–121. EUROSIS-ETI, 2011.

[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in nat-
ural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[35] R. Peharz, R. Gens, and P. Domingos. Learning selective sum-product networks. Proceedings
of the 31st International Conference on Machine Learning, 32, 2014.

[36] R. Peharz, R. Gens, F. Pernkopf, and P. Domingos. On the latent variable interpretation
in sum-product networks. IEEE transactions on pattern analysis and machine intelligence,
39(10):2030–2044, 2016.

11

[37] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos. On theoretical properties of sum-
product networks. In Artificial Intelligence and Statistics, pages 744–752, 2015.

[38] H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Proceedings of
UAI, pages 337–346, 2011.

[39] P. Probst and A. L. Boulesteix. To tune or not to tune the number of trees in random forest.
Journal of Machine Learning Research, 18:1–8, 2018.

[40] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[41] J. R. Quinlan. Decision trees as probabilistic classifiers. In Proceedings of the Fourth Interna-

tional Workshop on Machine Learning, pages 31–37. Elsevier, 1987.
[42] J. R. Quinlan. Simplifying decision trees. International journal of man-machine studies,

27(3):221–234, 1987.
[43] J. R. Quinlan et al. Learning with continuous classes. In 5th Australian joint conference on

artificial intelligence, volume 92, pages 343–348. World Scientific, 1992.
[44] T. Rahman, P. Kothalkar, and V. Gogate. Cutset networks: A simple, tractable, and scalable

approach for improving the accuracy of chow-liu trees. In Joint European conference on
machine learning and knowledge discovery in databases, pages 630–645, 2014.

[45] P. Ram and A. G. Gray. Density estimation trees. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 627–635, 2011.

[46] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proceedings
of ICML, pages 1530–1538, 2015.

[47] P. Smyth, A. Gray, and U. M. Fayyad. Retrofitting Decision Tree Classifiers Using Kernel
Density Estimation. Machine Learning Proceedings, 36:506–514, 1995.

[48] D. J. Stekhoven and P. Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

[49] T. M. Therneau, E. J. Atkinson, et al. An introduction to recursive partitioning using the rpart
routines, 1997.

[50] G. Van den Broeck, N. Di Mauro, and A. Vergari. Tractable probabilistic models: Represen-
tations, algorithms, learning, and applications. http://web.cs.ucla.edu/~guyvdb/
slides/TPMTutorialUAI19.pdf, 2019. Tutorial at UAI 2019.

[51] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013.

[52] E. V. Wolputte, E. Korneva, and H. Blockeel. Mercs: Multi-directional ensembles of regression
and classification trees. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[53] K. Wu, K. Zhang, W. Fan, A. Edwards, and S. Y. Philip. Rs-forest: A rapid density estimator for
streaming anomaly detection. In 2014 IEEE International Conference on Data Mining, pages
600–609. IEEE, 2014.

12

http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf
http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

	Introduction
	Notation and Background
	Generative Decision Trees
	Handling Missing Values
	Related Work
	Experiments
	Conclusion

