637,302 research outputs found

    Is Amino-Acid Homochirality Due To Asymmetric Photolysis In Space?

    Get PDF
    Amino acids occurring in proteins are, with rare exceptions, exclusively of the L-configuration. Among the many scenarios put forward to explain the origin of this chiral homogeneity (i.e., homochirality), one involves the asymmetric photolysis of amino acids present in space, triggered by circularly polarized UV radiation. The recent observation of circularly polarized light (CPL) in the Orion OMC-1 star-forming region (Bailey et al. 1998, Science 281, 672) has been presented as providing a strong validation of this scenario. The present paper reviews the situation. It is stressed for example that one important condition for the asymmetric photolysis by CPL to be at the origin of the terrestrial homochirality of natural amino acids is generally overlooked, namely, the asymmetric photolysis should favour the L-enantiomer for ALL the primordial amino acids involved in the genesis of life (i.e., biogenic amino acids). Although this condition is probably satisfied for aliphatic amino acids, some non-aliphatic amino acids like tryptophan and proline may violate the condition and thus invalidate the asymmetric photolysis scenario, assuming they were among the primordial amino acids. Alternatively, if CPL photolysis in space is indeed the source of homochirality of amino acids, then tryptophan and proline may be crossed out from the list of biogenic amino acids.Comment: To appear in Space Science Reviews, 11 pages, 1 figure (LaTeX

    The Effect of Removing Synthetic Amino Acids from the Poultry Ration on the Final Live and Dressed Weight of Birds from the Sheepdrove Organic Farm Organic Silvo-Poultry System

    Get PDF
    Organic standards and aspirations are moving towards the removal of synthetic amino acids from organic poultry rations. Sheepdrove Organic Farm has already removed synthetic amino acids from the rations fed to its chickens. Data was collected on live and dressed weight of processed birds, before, during and after the removal of synthetic amino acids from the ration. There does appear to be a detrimental effect on the final weight (both live and dressed) of birds raised without synthetic amino acids although this loss of weight has been overcome with the increase in production time from 10 to 11 weeks

    Synthesis and reactivity of 4-oxo-5-trimethylsilanyl derived α-amino acids

    Get PDF
    A Lewis-acid promoted one-carbon homologation of an aspartic acid semialdehyde with trimethylsilyldiazomethane has led to the efficient synthesis of two silicon-containing α-amino acids. The use of trimethylaluminium or catalytic tin(II) chloride gave novel 4-oxo-5-trimethylsilanyl derived amino acids in yields of 71–88%. An investigation into the reactivity of these highly functional α-amino acids showed that selective cleavage of the C–Si bond could be achieved under mild basic conditions to give a protected derivative of the naturally occurring amino acid, 4-oxo-l-norvaline. Alternatively, Peterson olefination with aryl or alkyl aldehydes resulted in the formation of E-enone derived α-amino acids

    A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code

    Full text link
    Of the twenty amino acids used in proteins, ten were formed in Miller's atmospheric discharge experiments. The two other major proposed sources of prebiotic amino acid synthesis include formation in hydrothermal vents and delivery to Earth via meteorites. We combine observational and experimental data of amino acid frequencies formed by these diverse mechanisms and show that, regardless of the source, these ten early amino acids can be ranked in order of decreasing abundance in prebiotic contexts. This order can be predicted by thermodynamics. The relative abundances of the early amino acids were most likely reflected in the composition of the first proteins at the time the genetic code originated. The remaining amino acids were incorporated into proteins after pathways for their biochemical synthesis evolved. This is consistent with theories of the evolution of the genetic code by stepwise addition of new amino acids. These are hints that key aspects of early biochemistry may be universal.Comment: 16 pages, 2 tables, 4 figures. Accepted for publication in Astrobiolog
    • …
    corecore