4,693 research outputs found

    Generation and Calibration of Linear Models of Aircraft with Highly Coupled Aeroelastic and Flight Dynamics

    Get PDF
    This presentation is a refinement of an earlier presentation describing the methods of generating models used for designing control laws for use in vehicles with significant structural effects

    Next Generation NASA Hazard Detection System Development

    Get PDF
    The SPLICE project is continuing NASAs efforts to develop precision landing GN&C technologies for future lander missions. One of those technologies is the next generation Hazard Detection (HD) System, which consists of a new HD Lidar and HD Algorithms. The HD System is a modular system that will be adapted to meet specific mission needs in the future. This paper presents the design approach, the nominal concept of operations for which the first prototype is being designed, and the expected performance of the system

    A Machine Learning Approach to Jet-Surface Interaction Noise Modeling

    Get PDF
    This paper investigates using machine learning to rapidly develop empirical models suitable for system-level aircraft noise studies. In particular, machine learning is used to train a neural network to predict the noise spectra produced by a round jet near a surface over a range of surface lengths, surface standoff distances, jet Mach numbers, and observer angles. These spectra include two sources, jet-mixing noise and jet-surface interaction (JSI) noise, with different scale factors as well as surface shielding and reflection effects to create a multi- dimensional problem. A second model is then trained using data from three rectangular nozzles to include nozzle aspect ratio in the spectral prediction. The training and validation data are from an extensive jet-surface interaction noise database acquired at the NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory. Although the number of training and validation points is small compared a typical machine learning application, the results of this investigation show that this approach is viable if the underlying data are well behaved

    Supersonic Technology Concept Aeroplanes for Environmental Studies

    Get PDF
    The International Civil Aviation Organization is considering new environmental standards for future supersonic civil aircraft. NASA is supporting this effort by analyzing several notional, near-term supersonic transports. NASAs performance, noise, and exhaust emission predictions for these transports are being used to inform a larger study that will determine the global environmental and economic impact of adding supersonic aircraft to the fleet beginning this decade. A supersonic business jet with a maximum takeoff gross weight of 55 tonnes is the focus of this paper. A smaller business jet weighing 45 tonnes is also discussed. Both airplanes use supersonic engines derived from a common contemporary commercial subsonic turbofan core. Aircraft performance, airport-vicinity noise, and exhaust emissions are predicted using NASA tools. Also investigated are some of the anticipated behaviors and requirements of these aircraft in the commercial airspace. The sensitivity of noise to system uncertainties is presented and alternative engine studies are discussed

    Performance Enhancement of the Flexible Transonic Truss-Braced Wing Aircraft Using Variable-Camber Continuous Trailing-Edge Flaps

    Get PDF
    Aircraft designers are to a growing extent using vehicle flexibility to optimize performance with objectives such as gust load alleviation and drag minimization. More complex aerodynamically optimized configurations may also require dynamic loads and perhaps eventually flutter suppression. This paper considers an aerodynamically optimized truss-braced wing aircraft designed for a Mach 0.745 cruise. The variable camber continuous trailing edge flap concept with a feedback control system is used to enhance aeroelastic stability. A linearized reduced order aerodynamic model is developed from unsteady Reynolds averaged Navier-Stokes simulations. A static output feedback controller is developed from that model. Closed-loop simulations using the reduced order aerodynamic model show that the controller is effective in stabilizing the vehicle dynamics

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase

    Pilot Sensitivity to Simulator Flight Dynamics Model Formulation for Stall Training

    Get PDF
    A piloted simulation study was performed in the Cockpit Motion Facility at the National Aeronautics and Space Administration Langley Research Center. The research was motivated by the desire to reduce the commercial transport airplane fatal accident rate due to in-flight loss of control. The purpose of this study, which focused on a generic T-tail transport airplane, was to assess pilot sensitivity to flight dynamics model formulation used during a simulator stall recognition and recovery training/demonstration profile. To accomplish this, the flight dynamics model was designed with many configuration options. The model options were based on recently acquired static and dynamic stability and control data from sources that included wind tunnel, water tunnel, and computational fluid dynamics. The results, which are specific to a transport airplane stall recognition and recovery guided demonstration scenario, showed the two most important aerodynamic effects (other than stick pusher) to model were stall roll- off and the longitudinal static stability characteristic associated with the pitch break

    Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload

    Boundary Layer Stability and Laminar-Turbulent Transition Analysis with Thermochemical Nonequilibrium Applied to Martian Atmospheric Entry

    Get PDF
    As Martian atmospheric entry vehicles increase in size to accommodate larger payloads, transitional ow may need to be taken into account in the design of the heat shield in order to reduce heat shield mass. The mass of the Thermal Protection System (TPS) comprises a significant portion of the vehicle mass, and a reduction of this mass would result in fuel savings. The current techniques used to design entry shields generally assume fully turbulent flow when the vehicle is large enough to expect transitional flow, and while this worst-case scenario provides a greater factor of safety it may also result in overdesigned TPS and unnecessarily high vehicle mass. Greater accuracy in the prediction of transition would also reduce uncertainty in the thermal and aerodynamic loads. Stability analysis, using e(sup N) -based methods including Linear Stability Theory (LST) and the Parabolized Stability Equations (PSE), offers a physics-based method of transition prediction that has been thoroughly studied and applied in perfect gas flows, and to a more limited extent in reacting and nonequilibrium flows. These methods predict the amplification of a known disturbance frequency and allow identification of the most unstable frequency. Transition is predicted to occur at a critical amplification or N Factor, frequently determined through experiment and empirical correlations. The LAngley Stability and TRansition Analysis Code (LASTRAC), with modifications for thermochemically reacting flows and arbitrary gas mixtures, will be presented with LST results on a simulation of a high enthalpy CO2 gas wind tunnel test relevant to Martian atmospheric entry. The results indicate transition caused by modified Tollmien-Schlichting waves on the leeward side, which are predicted to be more stable and cause transition slightly downstream when thermochemical nonequilibrium is included in the stability analysis for the same mean flow solution
    • …
    corecore