523 research outputs found

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    5g new radio access and core network slicing for next-generation network services and management

    Get PDF
    In recent years, fifth-generation New Radio (5G NR) has attracted much attention owing to its potential in enhancing mobile access networks and enabling better support for heterogeneous services and applications. Network slicing has garnered substantial focus as it promises to offer a higher degree of isolation between subscribers with diverse quality-of-service requirements. Integrating 5G NR technologies, specifically the mmWave waveform and numerology schemes, with network slicing can unlock unparalleled performance so crucial to meeting the demands of high throughput and sub-millisecond latency constraints. While conceding that optimizing next-generation access network performance is extremely important, it needs to be acknowledged that doing so for the core network is equally as significant. This is majorly due to the numerous core network functions that execute control tasks to establish end-to-end user sessions and route access network traffic. Consequently, the core network has a significant impact on the quality-of-experience of the radio access network customers. Currently, the core network lacks true end-to-end slicing isolation and reliability, and thus there is a dire need to examine more stringent configurations that offer the required levels of slicing isolation for the envisioned networking landscape. Considering the factors mentioned above, a sequential approach is adopted starting with the radio access network and progressing to the core network. First, to maximize the downlink average spectral efficiency of an enhanced mobile broadband slice in a time division duplex radio access network while meeting the quality-of-service requirements, an optimization problem is formulated to determine the duplex ratio, numerology scheme, power, and bandwidth allocation. Subsequently, to minimize the uplink transmission power of an ultra-reliable low latency communications slice while satisfying the quality-of-service constraints, a second optimization problem is formulated to determine the above-mentioned parameters and allocations. Because 5G NR supports dual-band transmissions, it also facilitates the usage of different numerology schemes and duplex ratios across bands simultaneously. Both problems, being mixed-integer non-linear programming problems, are relaxed into their respective convex equivalents and subsequently solved. Next, shifting attention to aerial networks, a priority-based 5G NR unmanned aerial vehicle network (UAV) is considered where the enhanced mobile broadband and ultra-reliable low latency communications services are considered as best-effort and high-priority slices, correspondingly. Following the application of a band access policy, an optimization problem is formulated. The goal is to minimize the downlink quality-of-service gap for the best-effort service, while still meeting the quality-of-service constraints of the high-priority service. This involves the allocation of transmission power and assignment of resource blocks. Given that this problem is a mixed-integer nonlinear programming problem, a low-complexity algorithm, PREDICT, i.e., PRiority BasED Resource AllocatIon in Adaptive SliCed NeTwork, which considers the channel quality on each individual resource block over both bands, is designed to solve the problem with a more accurate accounting for high-frequency channel conditions. Transitioning to minimizing the operational latency of the core network, an integer linear programming problem is formulated to instantiate network function instances, assign them to core network servers, assign slices and users to network function instances, and allocate computational resources while maintaining virtual network function isolation and physical separation of the core network control and user planes. The actor-critic method is employed to solve this problem for three proposed core network operation configurations, each offering an added degree of reliability and isolation over the default configuration that is currently standardized by the 3GPP. Looking ahead to potential future research directions, optimizing carrier aggregation-based resource allocation across triple-band sliced access networks emerges as a promising avenue. Additionally, the integration of coordinated multi-point techniques with carrier aggregation in multi-UAV NR aerial networks is especially challenging. The introduction of added carrier frequencies and channel bandwidths, while enhancing flexibility and robustness, complicates band-slice assignments and user-UAV associations. Another layer of intriguing yet complex research involves optimizing handovers in high-mobility UAV networks, where both users and UAVs are mobile. UAV trajectory planning, which is already NP-hard even in static-user scenarios, becomes even more intricate to obtain optimal solutions in high-mobility user cases

    Open Cell-less Network Architecture and Radio Resource Management for Future Wireless Communication Systems

    Get PDF
    In recent times, the immense growth of wireless traffic data generated from massive mobile devices, services, and applications results in an ever-increasing demand for huge bandwidth and very low latency, with the future networks going in the direction of achieving extreme system capacity and ultra reliable low latency communication (URLLC). Several consortia comprising major international mobile operators, infrastructure manufacturers, and academic institutions are working to develop and evolve the current generation of wireless communication systems, i.e., fifth generation (5G) towards a sixth generation (6G) to support improved data rates, reliability, and latency. Existing 5G networks are facing the latency challenges in a high-density and high-load scenario for an URLLC network which may coexist with enhanced mobile broadband (eMBB) services. At the same time, the evolution of mobile communications faces the important challenge of increased network power consumption. Thus, energy efficient solutions are expected to be deployed in the network in order to reduce power consumption while fulfilling user demands for various user densities. Moreover, the network architecture should be dynamic according to the new use cases and applications. Also, there are network migration challenges for the multi-architecture coexistence networks. Recently, the open radio access network (O-RAN) alliance was formed to evolve RANs with its core principles being intelligence and openness. It aims to drive the mobile industry towards an ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with reduced cost, improved performance and greater agility. However, this is not standardized yet and still lacks interoperability. On the other hand, the cell-less radio access network (RAN) was introduced to boost the system performance required for the new services. However, the concept of cell-less RAN is still under consideration from the deployment point of view with the legacy cellular networks. The virtualization, centralization and cooperative communication which enables the cell-less RAN can further benefit from O-RAN based architecture. This thesis addresses the research challenges facing 5G and beyond networks towards 6G networks in regard to new architectures, spectral efficiency, latency, and energy efficiency. Different system models are stated according to the problem and several solution schemes are proposed and developed to overcome these challenges. This thesis contributes as follows. Firstly, the cell-less technology is proposed to be implemented through an Open RAN architecture, which could be supervised with the near real-time RAN intelligent controller (near-RT-RIC). The cooperation is enabled for intelligent and smart resource allocation for the entire RAN. Secondly, an efficient radio resource optimization mechanism is proposed for the cell-less architecture to improve the system capacity of the future 6G networks. Thirdly, an optimized and novel resource scheduling scheme is presented that reduces latency for the URLLC users in an efficient resource utilization manner to support scenarios with high user density. At the same time, this radio resource management (RRM) scheme, while minimizing the latency, also overcomes another important challenge of eMBB users, namely the throughput of those who coexist in such a highly loaded scenario with URLLC users. Fourthly, a novel energy-efficiency enhancement scheme, i.e., (3 × E) is designed to increase the transmission rate per energy unit, with stable performance within the cell-less RAN architecture. Our proposed (3 × E) scheme activates two-step sleep modes (i.e., certain phase and conditional phase) through the intelligent interference management for temporarily switching access points (APs) to sleep, optimizing the network energy efficiency (EE) in highly loaded scenarios, as well as in scenarios with lower load. Finally, a multi-architecture coexistence (MACO) network model is proposed to enable inter-connection of different architectures through coexistence and cooperation logical switches in order to enable smooth deployment of a cell-less architecture within the legacy networks. The research presented in this thesis therefore contributes new knowledge in the cellless RAN architecture domain of the future generation wireless networks and makes important contributions to this field by investigating different system models and proposing solutions to significant issues.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: Matilde Pilar Sánchez Fernández.- Secretario: Alberto Álvarez Polegre.- Vocal: José Francisco Monserrat del Rí

    Gestion flexible des ressources dans les réseaux de nouvelle génération avec SDN

    Get PDF
    Abstract : 5G and beyond-5G/6G are expected to shape the future economic growth of multiple vertical industries by providing the network infrastructure required to enable innovation and new business models. They have the potential to offer a wide spectrum of services, namely higher data rates, ultra-low latency, and high reliability. To achieve their promises, 5G and beyond-5G/6G rely on software-defined networking (SDN), edge computing, and radio access network (RAN) slicing technologies. In this thesis, we aim to use SDN as a key enabler to enhance resource management in next-generation networks. SDN allows programmable management of edge computing resources and dynamic orchestration of RAN slicing. However, achieving efficient performance based on SDN capabilities is a challenging task due to the permanent fluctuations of traffic in next-generation networks and the diversified quality of service requirements of emerging applications. Toward our objective, we address the load balancing problem in distributed SDN architectures, and we optimize the RAN slicing of communication and computation resources in the edge of the network. In the first part of this thesis, we present a proactive approach to balance the load in a distributed SDN control plane using the data plane component migration mechanism. First, we propose prediction models that forecast the load of SDN controllers in the long term. By using these models, we can preemptively detect whether the load will be unbalanced in the control plane and, thus, schedule migration operations in advance. Second, we improve the migration operation performance by optimizing the tradeoff between a load balancing factor and the cost of migration operations. This proactive load balancing approach not only avoids SDN controllers from being overloaded, but also allows a judicious selection of which data plane component should be migrated and where the migration should happen. In the second part of this thesis, we propose two RAN slicing schemes that efficiently allocate the communication and the computation resources in the edge of the network. The first RAN slicing scheme performs the allocation of radio resource blocks (RBs) to end-users in two time-scales, namely in a large time-scale and in a small time-scale. In the large time-scale, an SDN controller allocates to each base station a number of RBs from a shared radio RBs pool, according to its requirements in terms of delay and data rate. In the short time-scale, each base station assigns its available resources to its end-users and requests, if needed, additional resources from adjacent base stations. The second RAN slicing scheme jointly allocates the RBs and computation resources available in edge computing servers based on an open RAN architecture. We develop, for the proposed RAN slicing schemes, reinforcement learning and deep reinforcement learning algorithms to dynamically allocate RAN resources.La 5G et au-delà de la 5G/6G sont censées dessiner la future croissance économique de multiples industries verticales en fournissant l'infrastructure réseau nécessaire pour permettre l'innovation et la création de nouveaux modèles économiques. Elles permettent d'offrir un large spectre de services, à savoir des débits de données plus élevés, une latence ultra-faible et une fiabilité élevée. Pour tenir leurs promesses, la 5G et au-delà de la-5G/6G s'appuient sur le réseau défini par logiciel (SDN), l’informatique en périphérie et le découpage du réseau d'accès (RAN). Dans cette thèse, nous visons à utiliser le SDN en tant qu'outil clé pour améliorer la gestion des ressources dans les réseaux de nouvelle génération. Le SDN permet une gestion programmable des ressources informatiques en périphérie et une orchestration dynamique de découpage du RAN. Cependant, atteindre une performance efficace en se basant sur le SDN est une tâche difficile due aux fluctuations permanentes du trafic dans les réseaux de nouvelle génération et aux exigences de qualité de service diversifiées des applications émergentes. Pour atteindre notre objectif, nous abordons le problème de l'équilibrage de charge dans les architectures SDN distribuées, et nous optimisons le découpage du RAN des ressources de communication et de calcul à la périphérie du réseau. Dans la première partie de cette thèse, nous présentons une approche proactive pour équilibrer la charge dans un plan de contrôle SDN distribué en utilisant le mécanisme de migration des composants du plan de données. Tout d'abord, nous proposons des modèles pour prédire la charge des contrôleurs SDN à long terme. En utilisant ces modèles, nous pouvons détecter de manière préemptive si la charge sera déséquilibrée dans le plan de contrôle et, ainsi, programmer des opérations de migration à l'avance. Ensuite, nous améliorons les performances des opérations de migration en optimisant le compromis entre un facteur d'équilibrage de charge et le coût des opérations de migration. Cette approche proactive d'équilibrage de charge permet non seulement d'éviter la surcharge des contrôleurs SDN, mais aussi de choisir judicieusement le composant du plan de données à migrer et l'endroit où la migration devrait avoir lieu. Dans la deuxième partie de cette thèse, nous proposons deux mécanismes de découpage du RAN qui allouent efficacement les ressources de communication et de calcul à la périphérie des réseaux. Le premier mécanisme de découpage du RAN effectue l'allocation des blocs de ressources radio (RBs) aux utilisateurs finaux en deux échelles de temps, à savoir dans une échelle de temps large et dans une échelle de temps courte. Dans l’échelle de temps large, un contrôleur SDN attribue à chaque station de base un certain nombre de RB à partir d'un pool de RB radio partagé, en fonction de ses besoins en termes de délai et de débit. Dans l’échelle de temps courte, chaque station de base attribue ses ressources disponibles à ses utilisateurs finaux et demande, si nécessaire, des ressources supplémentaires aux stations de base adjacentes. Le deuxième mécanisme de découpage du RAN alloue conjointement les RB et les ressources de calcul disponibles dans les serveurs de l’informatique en périphérie en se basant sur une architecture RAN ouverte. Nous développons, pour les mécanismes de découpage du RAN proposés, des algorithmes d'apprentissage par renforcement et d'apprentissage par renforcement profond pour allouer dynamiquement les ressources du RAN

    Side Channel Attack-Aware Resource Allocation for URLLC and eMBB Slices in 5G RAN

    Get PDF
    Network slicing is a key enabling technology to realize the provisioning of customized services in 5G paradigm. Due to logical isolation instead of physical isolation, network slicing is facing a series of security issues. Side Channel Attack (SCA) is a typical attack for slices that share resources in the same hardware. Considering the risk of SCA among slices, this paper investigates how to effectively allocate heterogeneous resources for the slices under their different security requirements. Then, a SCA-aware Resource Allocation (SCA-RA) algorithm is proposed for Ultra-reliable and Low-latency Communications (URLLC) and Enhanced Mobile Broadband (eMBB) slices in 5G RAN. The objective is to maximize the number of slices accommodated in 5G RAN. With dynamic slice requests, simulation is conducted to evaluate the performance of the proposed algorithm in two different network scenarios. Simulation results indicate that compared with benchmark, SCA-RA algorithm can effectively reduce blocking probability of slice requests. In addition, the usage of IT and transport resources is also optimized

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo
    corecore