54 research outputs found

    AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-02Ministerio de Ciencia y Tecnología TIC2000-0406-P4- 0

    An AER-Based Actuator Interface for Controlling an Anthropomorphic Robotic Hand

    Get PDF
    Bio-Inspired and Neuro-Inspired systems or circuits are a relatively novel approaches to solve real problems by mimicking the biology in its efficient solutions. Robotic also tries to mimic the biology and more particularly the human body structure and efficiency of the muscles, bones, articulations, etc. Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    A FPGA Spike-Based Robot Controlled with Neuro-inspired VITE

    Get PDF
    This paper presents a spike-based control system applied to a fixed robotic platform. Our aim is to take a step forward to a future complete spikes processing architecture, from vision to direct motor actuation. This paper covers the processing and actuation layer over an anthropomorphic robot. In this way, the processing layer uses the neuro-inspired VITE algorithm, for reaching a target, based on PFM taking advantage of spike system information: its frequency. Thus, all the blocks of the system are based on spikes. Each layer is implemented within a FPGA board and spikes communication is codified under the AER protocol. The results show an accurate behavior of the robotic platform with 6-bit resolution for a 130º range per joint, and an automatic speed control of the algorithm. Up to 96 motor controllers could be integrated in the same FPGA, allowing the positioning and object grasping by more complex anthropomorphic robots.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    AER-based robotic closed-loop control system

    Get PDF
    Address-Event-Representation (AER) is an asynchronous protocol for transferring the information of spiking neuro-inspired systems. Actually AER systems are able to see, to ear, to process information, and to learn. Regarding to the actuation step, the AER has been used for implementing Central Pattern Generator algorithms, but not for controlling the actuators in a closed-loop spike-based way. In this paper we analyze an AER based model for a real-time neuro-inspired closed-loop control system. We demonstrate it into a differential control system for a two-wheel vehicle using feedback AER information. PFM modulation has been used to power the DC motors of the vehicle and translation into AER of encoder information is also presented for the close-loop. A codesign platform (called AER-Robot), based into a Xilinx Spartan 3 FPGA and an 8051 USB microcontroller, with power stages for four DC motors has been used for the demonstrator.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Spike-based control monitoring and analysis with Address Event Representation

    Get PDF
    Neuromorphic engineering tries to mimic biological information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different chips. We present a new way to drive robotic platforms using spiking neurons. We have simulated spiking control models for DC motors, and developed a mobile robot (Eddie) controlled only by spikes. We apply AER to the robot control, monitoring and measuring the spike activity inside the robot. The mobile robot is controlled by the AER-Robot tool, and the AER information is sent to a PC using the USBAERmini2 interface.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    SVITE: A Spike-Based VITE Neuro-Inspired Robot Controller

    Get PDF
    This paper presents an implementation of a neuro-inspired algorithm called VITE (Vector Integration To End Point) in FPGA in the spikes domain. VITE aims to generate a non-planned trajectory for reaching tasks in robots. The algorithm has been adapted to work completely in the spike domain under Simulink simulations. The FPGA implementation consists in 4 VITE in parallel for controlling a 4-degree-of-freedom stereo-vision robot. This work represents the main layer of a complex spike-based architecture for robot neuro-inspired reaching tasks in FPGAs. It has been implemented in two Xilinx FPGA families: Virtex-5 and Spartan-6. Resources consumption comparative between both devices is presented. Results obtained for Spartan device could allow controlling complex robotic structures with up to 96 degrees of freedom per FPGA, providing, in parallel, high speed connectivity with other neuromorphic systems sending movement references. An exponential and gamma distribution test over the inter spike interval has been performed to proof the approach to the neural code proposed.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    An AER to CAN Bridge for Spike-Based Robot Control

    Get PDF
    Address-Event-Representation (AER) is a bio-inspired communication protocol between chips. A set of AER sensors (retina and cochleas), processors (convolvers, WTA, mappers, …) and actuators can be found in the literature that have been specifically designed for mimicking the communication principle in the brain: spikes. The problem when developing complex robots based on AER (or spikes) is to command actuators (motors) directly with spikes. Commercial robots are usually based on commercial standards (CAN) that do not allow powering actuators directly with spikes. This paper presents a co-design FPGA and embedded computer system that implements a bridge between these two protocols: CAN and AER. The bridge has been analyzed under the Spanish project VULCANO1 with an arm robot and a Shadow anthropomorphic hand.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Towards AER VITE: building spike gate signal

    Get PDF
    Neuromorphic engineers aim to mimic the precise and efficient mechanisms of the nervous system to process information using spikes from sensors to actuators. There are many available works that sense and process information in a spike-based way. But there are still several gaps in the actuation and motor control field in a spike-based way. Spike-based Proportional-Integrative-Derivative controllers (PID) are present in the literature. On the other hand, neuro-inspired control models as VITE (Vector Integration To End point) and FLETE (Factorization of muscle Length and muscle Tension) are also present in the literature. This paper presents another step toward the spike implementation of those neuro-inspired models. We present a spike-based ramp multiplier. VITE algorithm generates the way to achieve a final position targeted by a mobile robotic arm. The block presented is used as a gate for the way involved and it also puts the incoming movement on speed with a variable slope profile. Only spikes for information representation were used and the process is in real time. The software simulation based on Simulink and Xilinx System Generator shows the accurate adjust to the traditional processing for short time periods and the hardware tests confirm and extend the previous simulated results for any time. We have implemented the spikes generator, the ramp multiplier and the low pass filter into the Virtex-5 FPGA and connected this with an USB-AER (Address Event Representation) board to monitor the spikes.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    From Vision Sensor to Actuators, Spike Based Robot Control through Address-Event-Representation

    Get PDF
    One field of the neuroscience is the neuroinformatic whose aim is to develop auto-reconfigurable systems that mimic the human body and brain. In this paper we present a neuro-inspired spike based mobile robot. From commercial cheap vision sensors converted into spike information, through spike filtering for object recognition, to spike based motor control models. A two wheel mobile robot powered by DC motors can be autonomously controlled to follow a line drown in the floor. This spike system has been developed around the well-known Address-Event-Representation mechanism to communicate the different neuro-inspired layers of the system. RTC lab has developed all the components presented in this work, from the vision sensor, to the robot platform and the FPGA based platforms for AER processing.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    Synthetic retina for AER systems development

    Get PDF
    Neuromorphic engineering tries to mimic biology in information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different layers. AER bio-inspired image sensor are called “retina”. This kind of sensors measure visual information not based on frames from real life and generates corresponding events. In this paper we provide an alternative, based on cheap FPGA, to this image sensors that takes images provided by an analog video source (video composite signal), digitalizes it and generates AER streams for testing purposes.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0
    corecore