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Abstract. This paper presents an implementation of a neuro-inspired algorithm 
called VITE (Vector Integration To End Point) in FPGA in the spikes domain. 
VITE aims to generate a non-planned trajectory for reaching tasks in robots. 
The algorithm has been adapted to work completely in the spike domain under 
Simulink simulations. The FPGA implementation consists in 4 VITE in parallel 
for controlling a 4-degree-of-freedom stereo-vision robot. This work represents 
the main layer of a complex spike-based architecture for robot neuro-inspired 
reaching tasks in FPGAs. It has been implemented in two Xilinx FPGA 
families: Virtex-5 and Spartan-6. Resources consumption comparative between 
both devices is presented. Results obtained for Spartan device could allow 
controlling complex robotic structures with up to 96 degrees of freedom per 
FPGA, providing, in parallel, high speed connectivity with other neuromorphic 
systems sending movement references. An exponential and gamma distribution 
test over the inter spike interval has been performed to proof the approach to the 
neural code proposed.  
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1 Introduction 

The implementation presented belongs to the Neuromorphic engineer field. The main 
goal of this discipline is to develop artificial systems which emulate the biological 
systems. The biological systems, such as: vision and audio systems, speech recognition 
and control of complex movements, carry out with their tasks with a large efficiency 
still unknown in the artificial systems. The neuromorphic engineer community use as 
many features as possible of the human nerve system to reach their goal. Inside this 
group, engineers try to build up a complete net of neurons in any device.  

* This work was supported by the Spanish grant (with support from the European Regional
Development Fund) BIOSENSE (TEC2012-37868-C04-02).
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One problem to face with is the way of designing and implementing those 
neuromorphic systems. If we look through the literature, we can find sensors like 
retinas and cochleas based on VLSI chips [1] and [2] and spike-based control 
architectures based on FPGA [3], [4] and [5] and also on chips [6]. These neural 
controllers are based on the third generation of artificial neural networks (ANN): the 
spiking neural networks (SNN). The main advantages of the FPGA implementations 
are the reconfigurability and the low cost. In this work we use a FPGA for our 
purpose and architecture based on blocks which mimic the neural behavior by using 
spikes to carry out the spatial-temporal information. 

Other important issue is about the neural code [7]. From past experiments it is known 
that neurons do not have the same response to identical stimulus at any time [7]. Thus, 
they follow a distribution and the most popular one is the Poisson [8], although there are 
others, like Rate-coded [9], more typical in VLSI or renewal process [8]. The system 
presented has a deterministic spike source (Rate-coded) which is in front of the neuronal 
principles. But, due to the way of the translation performed it is achievable a gamma 
distribution for the inter spike interval at the output of the system. This point has been 
checked by a comparative with theoretical expected.  

Nevertheless, since neurons communicate in a point-to-point manner and it is possible 
to integrate several thousands of artificial neurons into the same electronic device (VLSI 
chip or FPGA), new communication strategies has been taken, as the Address-Event- 
Representation (AER) protocol [10]. AER map each neuron with a fixed address which 
is transmitted through the interconnected neuron system. By using AER protocol, all 
neurons are continuously sending information about their excitation level to the central 
system and it could be processed in real time by a higher layer. 

AER is based on the concept which mimics the structure and information coding of 
the brain. Thus AER let us process the information in real time. That’s one of the 
reasons of using it: the provided speed. Other one is the scalability that allows it by 
parallel connections. 

The entire architecture consists of an AER retina [1], two layers: processing and 
actuation one (FPGA implemented) and finally a robotic platform. This paper is 
focused on the processing layer where is implemented the VITE (Vector Integration 
To Endpoint) algorithm [11]. The translation into spikes paradigm takes a step 
forward a complete spike-based processing architecture: from the retina to the robot. 

In the next section, the algorithm and its translation are described. Also, details of 
the blocks are presented. Then in section three we describe both families from Xilinx 
used; the advantages and disadvantages are enumerated. In section four the results are 
presented: a comparative between both FPGA models in terms of hardware resources 
consumption with a brief description of the robotic platform and the test to check the 
neural code. Finally, to sum up, a discussion about the results achieved is presented. 

2 VITE Algorithm 

This neuro-inspired algorithm [11] is used for calculating a non-planned trajectory. It 
computes the difference between the target and the present position. It models 



planned human arm movements. In contrast to approaches which require the 
stipulation of the desired individual joint positions, this trajectory generator operates 
with desired coordinates of the end vector and generates the individual joint driving 
functions in real-time employing geometric constraints which characterize the 
manipulator. 

In Fig. 1 the block diagram of the algorithm and the translation into spikes domain 
are shown.  

The target position will be supplied by the AER retina [1] to the processing layer 
(the first one of the architecture). With a mapping function, this layer will generate 
the spikes according to the reaching target. As was previously noted, this source is 
deterministic at its firing rate. 

Then, the difference between present position and the received from the retina at 
each time is calculated. The output of the algorithm will be supplied to the second 
layer of the architecture: the actuation layer. Thus, the FPGA design should include 
an input and output port in order to carry out with the communication protocol. 

Taking a closer look at the translated blocks:  

• The Spike Hold & Fire block performed the subtraction between the present
position and the target position; both signals are spike streams. The block has two
decreasing counters to storage the number of spikes at the input and a
combinational circuit to manage these counters and the output.

• The Spikes Integrate & Generate block allows us to integrate the DV (Difference
Vector) signal (again a spike stream). This block is composed by a spike counter
and a spike generator. The latter uses a parameter called IG_FD (Integrate &
Generate_FrequencyDivider) to divide the clock signal and generate the output
stream according to this division.

• The Low Pass Filter consists of a Hold & Fire block and an Integrate & Generate
block. The output of this second block feed the second input of the hold & fire. The
other input comes from previous block in the diagram.

Fig. 1. Top: block diagram of the VITE algorithm. Bottom: block diagram generated from 
existing spikes processing blocks in [12][13]. 
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• The GO block will be present at the Integrate & Generate block input to put on
speed the DV signal. This block copies the task of the multiplier present in the
classic algorithm. But if we look through the neuromorphic’s engineer point of
view, a multiplication is not present in the human nerve system. So, it
accomplishes the task injecting spikes according with the desired speed at each
time. To do so, it has a counter to generate the number of spikes that should be
injected. This block is the key to achieve a Poisson distribution.

These blocks are described in depth in [12] and [13]. 
At the final design, for each algorithm synthetized in the FPGA a FIFO memory is 

included to prevent spike loosing problems. The memory receives the spikes 
produced by the algorithm and delivers to the output interface. So it is very important 
the total capacity in the device selection. 

3 Implementation 

Two different FPGA has been used to implement the system using a commercial 
Xilinx PCB (Virtex5 platform) and the AER-node board (Spartan-6), that has been 
developed by authors’ lab under the Spainsh Research Project VULCANO. 

The Virtex-5 device used is the XC5VFX30T which was designed to hold high 
performance embedded systems. It has two slices per CLB, reaching a total of 5,120 
slices and 20,480 flip-flops available. The RAM capacity for this device is up to 2,448 
Kb within blocks of 18 Kb. The prototyping board used is AES-V5FXT-EVL30-G 
from Avnet and it is based on the device described. To achieve the requirements of 
input/output ports a daughter card was used. 

The Spartan-6 device used is the XC6SLX150T which was designed to hold high 
volume applications at a low cost device. Also it provides high speed serial 
connectivity. It has two slices per CLB too, reaching a total of 23,038 slices and 
184,304 flip-flops available. The RAM capacity for this device is up to 4,824 Kb 
within blocks of 18 Kb.   

The AER Node platform used can be connected in a mesh (using high-speed serial 
LVDS links) allowing any 2D neuromorphic architecture.    

The board has four 2.5Gbps serial ports (SATA connectors) in order to 
communicate with other neuromorphic chips. These ports take advantage of the eight 
GTP transceiver ports available in the device.  

Furthermore, the board includes two parallel ports of 30-bit to use the standard 
parallel spike-based AER protocol, both directly and through specialized daughter 
boards that increase the functionality.  

In order to deliver to the FPGA the data necessary for the algorithm execution, a 
daughter board (plug-in) is connected. It consists of a microcontroller connected to 
the FPGA through SPI (Serial Peripheral Interface) protocol. The data delivered are 
configuration parameters for each block. Also the target used as input is delivered. 

Figure 2 shows both hardware platforms. 



4 Results  

We have made two comparisons. On the one hand hardware resources consumption 
comparative and on the other hand a power consumption comparative between both 
devices.  

4.1 Hardware Resources Consumption 

In general, to measure the hardware consumption in a FPGA, two points should be 
considered: the dedicated resources included to build up complex devices such as 
multipliers and the configurable logic blocks (CLBs) for general purpose. 

The algorithm does not use any complex structure. It just needs counters and 
hardware to carry out simple arithmetic operations. Therefore the measurements are 
focused into the available slices at the FPGA. 

We have synthesized the algorithm, including the spikes generator and other 
options like the spikes monitor and the interface with other neuromorphic chips. Table 
one and two present the data for both devices with the reports obtained. 

In these tables, the first column describes implemented elements for each case. The 
next column shows the amount of slices needed to synthetized the units for each 
FPGA. The following column represents the maximum number of units that could be 
allocated for each FPGA. The final column shows device total capacity for all the 
synthesis performed. 

Results evidenced that with additional elements to the algorithm, the amount of 
slices needed to synthetize is higher. It is remarkable that the interface with other 
neuromorphic chips does not provoke an increment in the hardware resources 
consumption. Consequently the final implementation for a complete architecture will 
consist of the algorithm and the interface. However, the design and test phases need a 
monitor in order to check the right behavior of the algorithm.  

All the results presented in this section, avoid using the FIFO memory because it 
uses special architecture presents in both devices.   

Table 1. Hardware resources consumption details by Virtex5 and Spartan 6 devices 

Number of Slices 
Max. blocks in 
the device 

Use  by one 
block (%) 

Virtex Spartan Virtex Spartan Virtex Spartan 

Algorithm  208 238 24 96 4.062 1.033 
Algorithm 

plus monitor 
478 533 10 43 9.33  2.31  

Algorithm 
plus interface 

215 242 23 95 4.2  1.05  

Algorithm 
plus monitor 
and interface 

478 533 10 43 9.33  2.31  



4.2 Robotic Platform 

The algorithm presented has been applied to a fixed robotic platform to check it. Fig.2 
shows the hardware implementation and the result of the position reached when the 
target is fixed at (123,110) in the frame of reference of the retina. 

The robotic platform is a stereo-vision robot with four degrees of freedom powered 
by DC motors. The power supply requirement of the motors is 24 Vdc. The 
manufacturer of the motors is Harmonic Drive and the model is RH-8D6006. The 
structure of the robotic platform is made so that the motors of the y axis are crossed to 
their axis and have a transmission belt to move the arm.  

We propose to use PFM (Pulse Frequency Modulation) to run the motors to take 
advantage of the spikes produced by the algorithm. Also, PFM is the closest one to 
the neural system within motor-neurons.  

Four units of VITE were replicated in order to control each motor with an 
independent way. It allows developing synchronized movements by adjusting GO 
signal in each algorithm.  

The main limitation was due to the motor driver and the opto-coupler present in the 
power stage. These units have a low switching frequency, just 40 Khz and our 
algorithm generates higher spike rates. Thus, we have modified the spikes generator 
in the algorithm to generate 40 Kevents per second as it maximum firing rate.  

Fig. 2. Left: Virtex 5 at the top and Spartan 6 at the bottom. In both pics appear the pro-
gramming tool and a special board to monitor the spikes (input and output) [14]. Right: Angle 
Vs. time reached for both axis with (123,110) input. The retina has 128x128 pixels.   

4.3 Inter-Spikes-Intervals Distribution Analysis 

In this section, we analyze the InterSpike-Interval(ISI) achieved at the output of the 
system. As was previously noted, the spike source is deterministic, i.e. it has a one to 
one mapping between stimulus and response. We are going to compare the inter spike 
interval with the expected one from a Poisson-like source [15]. The expected ISI of a 
Poisson process follows an exponential distribution. Also a gamma approach is 
included in the comparative; it means a renewal process (where the firing probability 



depends on both: the instantaneous firing rate and the time since the most recent 
previous spike) [8].  

To measure how well the observed distribution of ISIs follows the theoretical 
exponential or gamma distribution, a comparative between the histogram of ISI read 
for the speed profile at the input of the integrator superimposed with the theoretical 
ISI density has been done. As long as the firing rate has dependence with time in our 
GO block (spikes are injected increasingly within time) and with previous spike in the 
Hold and Fire block, the ISI follows a gamma distribution. 

Fig. 3. Comparative between the empiric histogram for ISI and the theoretical defined by 
exponential and gamma distribution 

5 Discussion and Conclusions 

We have presented an implementation and a proof of a neuroinspired algorithm in two 
different devices. The results exhibit a huge advantage using the Spartan 6 device and 
a well adjust to a Poisson distribution. A total of 96 algorithms can be fitted at the 
board. The memory requirements are achieved for both devices because we need to 
storage at maximum 2,048 bytes and both of them have higher capacity. Otherwise, 
the power consumption is 789 mW for the Virtex-5 device and is 112 mW for the 
Spartan6 (estimated values with the XPE tool by Xilinx). These values show a big 
difference between both devices due to the resources used for each one as it has been 
presented in previous section. 

Moreover, the achieved results take into account the slices used by the component 
in charge of the (Serial Peripheral Interface bus) SPI communication. So, it is possible 
to avoid that communication and improve the hardware resources consumption.    

However, the Virtex device used for the comparison was not the top of the family 
in contrast with the Spartan 6. With the top Virtex, more algorithms can be fitted but 
it not allows high speed communication in front of Spartan 6 device.  



Also, the proof included to check the neuroinspired features of the algorithm 
implemented within a digital system shows a good approach to a stochastic gamma 
distribution for ISI. It reveals a renewal process for the spike train signal even using a 
deterministic spikes source.  

To sum up, the Spartan 6 device can provide a large number of replicated systems 
in order to control a high number of muscles (mimic by motors) carrying out intended 
movements in a neuroinspired way. It also allows serial and parallel communication 
with other neuromorphic chips. 
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