
SVITE: A Spike-Based VITE Neuro-Inspired
Robot Controller

Fernando Perez-Peña1,, Arturo Morgado-Estevez1, Alejandro Linares-Barranco2,
Manuel Jesus Dominguez-Morales2, and Angel Jimenez-Fernandez2

1 Applied Robotics Research Lab, University of Cadiz, Spain
{fernandoperez.pena,arturo.morgado}@uca.es

2 Robotic and Technology of Computers Lab, University of Seville, Spain
{alinares,mdominguez,ajimenez}@atc.us.es

Abstract. This paper presents an implementation of a neuro-inspired algorithm
called VITE (Vector Integration To End Point) in FPGA in the spikes domain.
VITE aims to generate a non-planned trajectory for reaching tasks in robots.
The algorithm has been adapted to work completely in the spike domain under
Simulink simulations. The FPGA implementation consists in 4 VITE in parallel
for controlling a 4-degree-of-freedom stereo-vision robot. This work represents
the main layer of a complex spike-based architecture for robot neuro-inspired
reaching tasks in FPGAs. It has been implemented in two Xilinx FPGA
families: Virtex-5 and Spartan-6. Resources consumption comparative between
both devices is presented. Results obtained for Spartan device could allow
controlling complex robotic structures with up to 96 degrees of freedom per
FPGA, providing, in parallel, high speed connectivity with other neuromorphic
systems sending movement references. An exponential and gamma distribution
test over the inter spike interval has been performed to proof the approach to the
neural code proposed.

Keywords: Spike systems, Motor control, VITE, Address Event Representation,
Neuro-inspired, Poisson, Neuromorphic engineering, Anthropomorphic robots.

1 Introduction

The implementation presented belongs to the Neuromorphic engineer field. The main
goal of this discipline is to develop artificial systems which emulate the biological
systems. The biological systems, such as: vision and audio systems, speech recognition
and control of complex movements, carry out with their tasks with a large efficiency
still unknown in the artificial systems. The neuromorphic engineer community use as
many features as possible of the human nerve system to reach their goal. Inside this
group, engineers try to build up a complete net of neurons in any device.

* This work was supported by the Spanish grant (with support from the European Regional
Development Fund) BIOSENSE (TEC2012-37868-C04-02).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/288002543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One problem to face with is the way of designing and implementing those
neuromorphic systems. If we look through the literature, we can find sensors like
retinas and cochleas based on VLSI chips [1] and [2] and spike-based control
architectures based on FPGA [3], [4] and [5] and also on chips [6]. These neural
controllers are based on the third generation of artificial neural networks (ANN): the
spiking neural networks (SNN). The main advantages of the FPGA implementations
are the reconfigurability and the low cost. In this work we use a FPGA for our
purpose and architecture based on blocks which mimic the neural behavior by using
spikes to carry out the spatial-temporal information.

Other important issue is about the neural code [7]. From past experiments it is known
that neurons do not have the same response to identical stimulus at any time [7]. Thus,
they follow a distribution and the most popular one is the Poisson [8], although there are
others, like Rate-coded [9], more typical in VLSI or renewal process [8]. The system
presented has a deterministic spike source (Rate-coded) which is in front of the neuronal
principles. But, due to the way of the translation performed it is achievable a gamma
distribution for the inter spike interval at the output of the system. This point has been
checked by a comparative with theoretical expected.

Nevertheless, since neurons communicate in a point-to-point manner and it is possible
to integrate several thousands of artificial neurons into the same electronic device (VLSI
chip or FPGA), new communication strategies has been taken, as the Address-Event-
Representation (AER) protocol [10]. AER map each neuron with a fixed address which
is transmitted through the interconnected neuron system. By using AER protocol, all
neurons are continuously sending information about their excitation level to the central
system and it could be processed in real time by a higher layer.

AER is based on the concept which mimics the structure and information coding of
the brain. Thus AER let us process the information in real time. That’s one of the
reasons of using it: the provided speed. Other one is the scalability that allows it by
parallel connections.

The entire architecture consists of an AER retina [1], two layers: processing and
actuation one (FPGA implemented) and finally a robotic platform. This paper is
focused on the processing layer where is implemented the VITE (Vector Integration
To Endpoint) algorithm [11]. The translation into spikes paradigm takes a step
forward a complete spike-based processing architecture: from the retina to the robot.

In the next section, the algorithm and its translation are described. Also, details of
the blocks are presented. Then in section three we describe both families from Xilinx
used; the advantages and disadvantages are enumerated. In section four the results are
presented: a comparative between both FPGA models in terms of hardware resources
consumption with a brief description of the robotic platform and the test to check the
neural code. Finally, to sum up, a discussion about the results achieved is presented.

2 VITE Algorithm

This neuro-inspired algorithm [11] is used for calculating a non-planned trajectory. It
computes the difference between the target and the present position. It models

planned human arm movements. In contrast to approaches which require the
stipulation of the desired individual joint positions, this trajectory generator operates
with desired coordinates of the end vector and generates the individual joint driving
functions in real-time employing geometric constraints which characterize the
manipulator.

In Fig. 1 the block diagram of the algorithm and the translation into spikes domain
are shown.

The target position will be supplied by the AER retina [1] to the processing layer
(the first one of the architecture). With a mapping function, this layer will generate
the spikes according to the reaching target. As was previously noted, this source is
deterministic at its firing rate.

Then, the difference between present position and the received from the retina at
each time is calculated. The output of the algorithm will be supplied to the second
layer of the architecture: the actuation layer. Thus, the FPGA design should include
an input and output port in order to carry out with the communication protocol.

Taking a closer look at the translated blocks:

• The Spike Hold & Fire block performed the subtraction between the present
position and the target position; both signals are spike streams. The block has two
decreasing counters to storage the number of spikes at the input and a
combinational circuit to manage these counters and the output.

• The Spikes Integrate & Generate block allows us to integrate the DV (Difference
Vector) signal (again a spike stream). This block is composed by a spike counter
and a spike generator. The latter uses a parameter called IG_FD (Integrate &
Generate_FrequencyDivider) to divide the clock signal and generate the output
stream according to this division.

• The Low Pass Filter consists of a Hold & Fire block and an Integrate & Generate
block. The output of this second block feed the second input of the hold & fire. The
other input comes from previous block in the diagram.

Fig. 1. Top: block diagram of the VITE algorithm. Bottom: block diagram generated from
existing spikes processing blocks in [12][13].

Hold &
Fire

 LPF Integrate
and Generate

Target
Position

(TP)

Difference
Vector
(DV)

Presen
t Position
(PP)

GO

GO

• The GO block will be present at the Integrate & Generate block input to put on
speed the DV signal. This block copies the task of the multiplier present in the
classic algorithm. But if we look through the neuromorphic’s engineer point of
view, a multiplication is not present in the human nerve system. So, it
accomplishes the task injecting spikes according with the desired speed at each
time. To do so, it has a counter to generate the number of spikes that should be
injected. This block is the key to achieve a Poisson distribution.

These blocks are described in depth in [12] and [13].
At the final design, for each algorithm synthetized in the FPGA a FIFO memory is

included to prevent spike loosing problems. The memory receives the spikes
produced by the algorithm and delivers to the output interface. So it is very important
the total capacity in the device selection.

3 Implementation

Two different FPGA has been used to implement the system using a commercial
Xilinx PCB (Virtex5 platform) and the AER-node board (Spartan-6), that has been
developed by authors’ lab under the Spainsh Research Project VULCANO.

The Virtex-5 device used is the XC5VFX30T which was designed to hold high
performance embedded systems. It has two slices per CLB, reaching a total of 5,120
slices and 20,480 flip-flops available. The RAM capacity for this device is up to 2,448
Kb within blocks of 18 Kb. The prototyping board used is AES-V5FXT-EVL30-G
from Avnet and it is based on the device described. To achieve the requirements of
input/output ports a daughter card was used.

The Spartan-6 device used is the XC6SLX150T which was designed to hold high
volume applications at a low cost device. Also it provides high speed serial
connectivity. It has two slices per CLB too, reaching a total of 23,038 slices and
184,304 flip-flops available. The RAM capacity for this device is up to 4,824 Kb
within blocks of 18 Kb.

The AER Node platform used can be connected in a mesh (using high-speed serial
LVDS links) allowing any 2D neuromorphic architecture.

The board has four 2.5Gbps serial ports (SATA connectors) in order to
communicate with other neuromorphic chips. These ports take advantage of the eight
GTP transceiver ports available in the device.

Furthermore, the board includes two parallel ports of 30-bit to use the standard
parallel spike-based AER protocol, both directly and through specialized daughter
boards that increase the functionality.

In order to deliver to the FPGA the data necessary for the algorithm execution, a
daughter board (plug-in) is connected. It consists of a microcontroller connected to
the FPGA through SPI (Serial Peripheral Interface) protocol. The data delivered are
configuration parameters for each block. Also the target used as input is delivered.

Figure 2 shows both hardware platforms.

4 Results

We have made two comparisons. On the one hand hardware resources consumption
comparative and on the other hand a power consumption comparative between both
devices.

4.1 Hardware Resources Consumption

In general, to measure the hardware consumption in a FPGA, two points should be
considered: the dedicated resources included to build up complex devices such as
multipliers and the configurable logic blocks (CLBs) for general purpose.

The algorithm does not use any complex structure. It just needs counters and
hardware to carry out simple arithmetic operations. Therefore the measurements are
focused into the available slices at the FPGA.

We have synthesized the algorithm, including the spikes generator and other
options like the spikes monitor and the interface with other neuromorphic chips. Table
one and two present the data for both devices with the reports obtained.

In these tables, the first column describes implemented elements for each case. The
next column shows the amount of slices needed to synthetized the units for each
FPGA. The following column represents the maximum number of units that could be
allocated for each FPGA. The final column shows device total capacity for all the
synthesis performed.

Results evidenced that with additional elements to the algorithm, the amount of
slices needed to synthetize is higher. It is remarkable that the interface with other
neuromorphic chips does not provoke an increment in the hardware resources
consumption. Consequently the final implementation for a complete architecture will
consist of the algorithm and the interface. However, the design and test phases need a
monitor in order to check the right behavior of the algorithm.

All the results presented in this section, avoid using the FIFO memory because it
uses special architecture presents in both devices.

Table 1. Hardware resources consumption details by Virtex5 and Spartan 6 devices

Number of Slices
Max. blocks in
the device

Use by one
block (%)

Virtex Spartan Virtex Spartan Virtex Spartan

Algorithm 208 238 24 96 4.062 1.033
Algorithm

plus monitor
478 533 10 43 9.33 2.31

Algorithm
plus interface

215 242 23 95 4.2 1.05

Algorithm
plus monitor
and interface

478 533 10 43 9.33 2.31

4.2 Robotic Platform

The algorithm presented has been applied to a fixed robotic platform to check it. Fig.2
shows the hardware implementation and the result of the position reached when the
target is fixed at (123,110) in the frame of reference of the retina.

The robotic platform is a stereo-vision robot with four degrees of freedom powered
by DC motors. The power supply requirement of the motors is 24 Vdc. The
manufacturer of the motors is Harmonic Drive and the model is RH-8D6006. The
structure of the robotic platform is made so that the motors of the y axis are crossed to
their axis and have a transmission belt to move the arm.

We propose to use PFM (Pulse Frequency Modulation) to run the motors to take
advantage of the spikes produced by the algorithm. Also, PFM is the closest one to
the neural system within motor-neurons.

Four units of VITE were replicated in order to control each motor with an
independent way. It allows developing synchronized movements by adjusting GO
signal in each algorithm.

The main limitation was due to the motor driver and the opto-coupler present in the
power stage. These units have a low switching frequency, just 40 Khz and our
algorithm generates higher spike rates. Thus, we have modified the spikes generator
in the algorithm to generate 40 Kevents per second as it maximum firing rate.

Fig. 2. Left: Virtex 5 at the top and Spartan 6 at the bottom. In both pics appear the pro-
gramming tool and a special board to monitor the spikes (input and output) [14]. Right: Angle
Vs. time reached for both axis with (123,110) input. The retina has 128x128 pixels.

4.3 Inter-Spikes-Intervals Distribution Analysis

In this section, we analyze the InterSpike-Interval(ISI) achieved at the output of the
system. As was previously noted, the spike source is deterministic, i.e. it has a one to
one mapping between stimulus and response. We are going to compare the inter spike
interval with the expected one from a Poisson-like source [15]. The expected ISI of a
Poisson process follows an exponential distribution. Also a gamma approach is
included in the comparative; it means a renewal process (where the firing probability

depends on both: the instantaneous firing rate and the time since the most recent
previous spike) [8].

To measure how well the observed distribution of ISIs follows the theoretical
exponential or gamma distribution, a comparative between the histogram of ISI read
for the speed profile at the input of the integrator superimposed with the theoretical
ISI density has been done. As long as the firing rate has dependence with time in our
GO block (spikes are injected increasingly within time) and with previous spike in the
Hold and Fire block, the ISI follows a gamma distribution.

Fig. 3. Comparative between the empiric histogram for ISI and the theoretical defined by
exponential and gamma distribution

5 Discussion and Conclusions

We have presented an implementation and a proof of a neuroinspired algorithm in two
different devices. The results exhibit a huge advantage using the Spartan 6 device and
a well adjust to a Poisson distribution. A total of 96 algorithms can be fitted at the
board. The memory requirements are achieved for both devices because we need to
storage at maximum 2,048 bytes and both of them have higher capacity. Otherwise,
the power consumption is 789 mW for the Virtex-5 device and is 112 mW for the
Spartan6 (estimated values with the XPE tool by Xilinx). These values show a big
difference between both devices due to the resources used for each one as it has been
presented in previous section.

Moreover, the achieved results take into account the slices used by the component
in charge of the (Serial Peripheral Interface bus) SPI communication. So, it is possible
to avoid that communication and improve the hardware resources consumption.

However, the Virtex device used for the comparison was not the top of the family
in contrast with the Spartan 6. With the top Virtex, more algorithms can be fitted but
it not allows high speed communication in front of Spartan 6 device.

Also, the proof included to check the neuroinspired features of the algorithm
implemented within a digital system shows a good approach to a stochastic gamma
distribution for ISI. It reveals a renewal process for the spike train signal even using a
deterministic spikes source.

To sum up, the Spartan 6 device can provide a large number of replicated systems
in order to control a high number of muscles (mimic by motors) carrying out intended
movements in a neuroinspired way. It also allows serial and parallel communication
with other neuromorphic chips.

References

1. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 dB 15 μs latency asynchronous
temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)

2. Hafliger, P.: Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE
Trans. Neural Netw. 18, 551–572 (2007)

3. Linares-Barranco, A., Paz-Vicente, et al.: AER neuro-inspired interface to anthropomorphic
robotic hand. In: Proceedings of IJCNN, Vancouver, pp. 1497–1504 (2006)

4. Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T.,
Lichtensteiner, P.: Using FPGA for visuo-motor control with a silicon retina and a
humanoid robot. In: Proceedings of ISCAS 2007, pp. 1192–1195. IEEE Press, New
Orleans (2007)

5. Pearson, M.J., Pipe, A.G., Mitchinson, B., Gurney, K., et al.: Implementing Spiking Neural
Networks for Real-Time Signal-Processing and Control Applications: A Model-Validated
FPGA Approach. IEEE Trans. Neural Networks 18, 1472–1487 (2007)

6. Xiuqing, W., Zeng-Guang, H., Anmin, Z., Min, T., Long, C.: A behavior controller based
on spiking neural networks for mobile robots. Neurocomputing 71, 655–666 (2008)

7. Rieke, F., Warland, D., Steveninck, R., Bialek, W.: Spikes Exploring the neural code. MIT
Press, Cambridge (1999)

8. Dayan, P., Abbot, L.: Theoretical Neuroscience. MIT Press, Cambridge (2001)
9. Linares-Barranco, A., Jimenez-Moreno, G., Linares-Barranco, B., Civit-Ballcels, A.: On

algorithmic rate-coded AER generation. IEEE Transactions on Neural Networks 17(3),
771–788 (2006)

10. Sivilotti, M.: Wiring Considerations in Analog VLSI Systems with Application to Field-
Programmable Networks, Ph.D. Thesis, California Institute of Technology, Pasadena CA
(1991)

11. Bullock, D., Grossberg, S.: The VITE model: A neural command circuit for generating
arm and articulator trajectories. In: Kelso, J.A.S., Mandell, A.J., Shlesinger, M.F. (eds.)
Dynamic Patterns in Complex Systems, pp. 305–326. World Scientific Publishers,
Singapore (1988)

12. Jimenez-Fernandez, A., Jimenez-Moreno, G., et al.: A Neuro-Inspired Spike-Based PID
Motor Controller for Multi-Motor Robots with Low Cost FPGAs. Sensors 12(4), 3831–
3856 (2012)

13. Perez-Peña, F., Morgado-Estevez, A., Linares-Barranco, A., et al.: Towards AER VITE:
building spike gate signal. In: 19th ICECS, Seville, pp. 881–884 (2012)

14. Berner, R., Delbruck, T., Civit-Balcells, A., et al.: A 5 Meps $100 USB2.0 Address-Event
Monitor-Sequencer Interface. In: ISCAS, New Orleans, LA, pp. 2451–2454 (2007)

15. Linares-Barranco, A., Osterb, M., Cascado, D., Jiménez, G., et al.: Inter-spike-intervals
analysis of AER Poisson-like generator hardware. Neurocomputing 70, 2692–2700 (2007)

	SVITE: A Spike-Based VITE Neuro-Inspired Robot Controller
	1 Introduction
	2 VITE Algorithm
	3 Implementation
	4 Results
	4.1 Hardware Resources Consumption
	4.2 Robotic Platform
	4.3 Inter-Spikes-Intervals Distribution Analysis

	5 Discussion and Conclusions
	References

