48 research outputs found

    IEEE Access Special Section Editorial: Energy Management in Buildings

    Get PDF
    Energy usage in buildings has become a critical concern globally, and with that, the concept of energy management in buildings has emerged to help tackle these challenges. The energy management system provides a new opportunity for the building's energy requirements, and is an essential method for energy service, i.e., energy saving, consumption,

    Scheduling of Multiple Energy Consumption in The Smart Buildings with Peak Demand Management

    Get PDF
    The global energy crisis and the depletion of fossil fuels have become pressing concerns, leading experts to search for alternative solutions. This paper presents an analysis of the day-ahead operation of the multi-carrier energy system (MCES) with the aim of minimizing operational costs, reducing pollution emissions, and maximizing consumers' comfort. The authors propose an optimal scheduling strategy called energy demand curtailment (EDCS), which aims at efficiently managing electrical energy consumption. Additionally, they consider an on-site generation strategy (OGS) for consumers to operate their own energy storages. Both EDCS and OGS are modeled based on demand-side management (DSM). To optimize these strategies and achieve their objectives, fuzzy logic is employed as an optimization approach along with objective functions. Finally, two scenarios are examined through numerical simulations to illustrate the effectiveness of this approach in optimizing energy utilization in MCE

    Scheduling of Multiple Energy Consumption in The Smart Buildings with Peak Demand Management

    Get PDF
    The global energy crisis and the depletion of fossil fuels have become pressing concerns, leading experts to search for alternative solutions. This paper presents an analysis of the day-ahead operation of the multi-carrier energy system (MCES) with the aim of minimizing operational costs, reducing pollution emissions, and maximizing consumers' comfort. The authors propose an optimal scheduling strategy called energy demand curtailment (EDCS), which aims at efficiently managing electrical energy consumption. Additionally, they consider an on-site generation strategy (OGS) for consumers to operate their own energy storages. Both EDCS and OGS are modeled based on demand-side management (DSM). To optimize these strategies and achieve their objectives, fuzzy logic is employed as an optimization approach along with objective functions. Finally, two scenarios are examined through numerical simulations to illustrate the effectiveness of this approach in optimizing energy utilization in MCE

    Decentralized and stable matching in Peer-to-Peer energy trading

    Full text link
    In peer-to-peer (P2P) energy trading, a secured infrastructure is required to manage trade and record monetary transactions. A central server/authority can be used for this. But there is a risk of central authority influencing the energy price. So blockchain technology is being preferred as a secured infrastructure in P2P trading. Blockchain provides a distributed repository along with smart contracts for trade management. This reduces the influence of central authority in trading. However, these blockchain-based systems still rely on a central authority to pair/match sellers with consumers for trading energy. The central authority can interfere with the matching process to profit a selected set of users. Further, a centralized authority also charges for its services, thereby increasing the cost of energy. We propose two distributed mechanisms to match sellers with consumers. The first mechanism doesn't allow for price negotiations between sellers and consumers, whereas the second does. We also calculate the time complexity and the stability of the matching process for both mechanisms. Using simulation, we compare the influence of centralized control and energy prices between the proposed and the existing mechanisms. The overall work strives to promote the free market and reduce energy prices

    What Is Energy Internet? Concepts, Technologies, and Future Directions

    Get PDF
    corecore