7 research outputs found

    Power Scaling and Antenna Selection Techniques for Hybrid Beamforming in mmWave Massive MIMO Systems

    Get PDF
    With the advent of massive MIMO and mmWave, Antenna selection is the new frontier in hybrid beamforming employed in 5G base stations. Tele-operators are reworking on the components while upgrading to 5G where the antenna is a last-mile device. The burden on the physical layer not only demands smart and adaptive antennas but also an intelligent antenna selection mechanism to reduce power consumption and improve system capacity while degrading the hardware cost and complexity. This work focuses on reducing the power consumption and finding the optimal number of RF chains for a given millimeter wave massive MIMO system. At first, we investigate the power scaling method for both perfect Channel State Information (CSI) and imperfect CSI where the power is reduced by 1/number of antennas and 1/square root (number of antennas) respectively. We further propose to reduce the power consumption by emphasizing on the subdued resolution of Analog-to-Digital Converters (ADCs) with quantization awareness. The proposed algorithm selects the optimal number of antenna elements based on the resolution of ADCs without compromising on the quality of reception. The performance of the proposed algorithm shows significant improvement when compared with conventional and random antenna selection methods

    Power Scaling and Antenna Selection Techniques for Hybrid Beamforming in mmWave Massive MIMO Systems

    Get PDF
    With the advent of massive MIMO and mmWave, Antenna selection is the new frontier in hybrid beamforming employed in 5G base stations. Tele-operators are reworking on the components while upgrading to 5G where the antenna is a last-mile device. The burden on the physical layer not only demands smart and adaptive antennas but also an intelligent antenna selection mechanism to reduce power consumption and improve system capacity while degrading the hardware cost and complexity. This work focuses on reducing the power consumption and finding the optimal number of RF chains for a given millimeter wave massive MIMO system. At first, we investigate the power scaling method for both perfect Channel State Information (CSI) and imperfect CSI where the power is reduced by 1/number of antennas and 1/square root (number of antennas) respectively. We further propose to reduce the power consumption by emphasizing on the subdued resolution of Analog-to-Digital Converters (ADCs) with quantization awareness. The proposed algorithm selects the optimal number of antenna elements based on the resolution of ADCs without compromising on the quality of reception. The performance of the proposed algorithm shows significant improvement when compared with conventional and random antenna selection methods

    Multipair Massive MIMO Relaying Systems with One-Bit ADCs and DACs

    Full text link
    This paper considers a multipair amplify-and-forward massive MIMO relaying system with one-bit ADCs and one-bit DACs at the relay. The channel state information is estimated via pilot training, and then utilized by the relay to perform simple maximum-ratio combining/maximum-ratio transmission processing. Leveraging on the Bussgang decomposition, an exact achievable rate is derived for the system with correlated quantization noise. Based on this, a closed-form asymptotic approximation for the achievable rate is presented, thereby enabling efficient evaluation of the impact of key parameters on the system performance. Furthermore, power scaling laws are characterized to study the potential energy efficiency associated with deploying massive one-bit antenna arrays at the relay. In addition, a power allocation strategy is designed to compensate for the rate degradation caused by the coarse quantization. Our results suggest that the quality of the channel estimates depends on the specific orthogonal pilot sequences that are used, contrary to unquantized systems where any set of orthogonal pilot sequences gives the same result. Moreover, the sum rate gap between the double-quantized relay system and an ideal non-quantized system is a moderate factor of 4/π24/\pi^2 in the low power regime.Comment: 14 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    ADC bit allocation under a power constraint for mmWave massive MIMO communication receivers

    No full text
    Millimeter wave (mmWave) systems operating over a wide bandwidth and using a large number of antennas impose a heavy burden on power consumption. In a massive multiple-input multiple-output (MIMO) uplink, analog-to-digital converters (ADCs) would be the primary consumer of power in the base station receiver. This paper proposes a bit allocation (BA) method for mmWave multi-user (MU) massive MIMO systems under a power constraint. We apply ADCs to the outputs of an analog phased array for beamspace projection to exploit mmWave channel sparsity. We relax a mean square quantization error (MSQE) minimization problem and map the closed-form solution to non-negative integer bits at each ADC. In link-level simulations, the proposed method gives better communication performance than conventional low-resolution ADCs for the same or less power. Our contribution is a near optimal low-complexity BA method that minimizes total MSQE under a power constraint. ?? 2017 IEEE
    corecore