21 research outputs found

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    A Kinetic Distance-to-Mean Based Routing Algorithm for Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-hoc Network (VANET) allows vehicles to send information to each other or to roadside equipment in an instant and a wireless manner. It represents a considerable step forward in terms of transportation. Indeed, many applications could benefit from instantly transmitting data such as video and music streaming. Internet connectivity could also be available to the passengers. The main objective and improvement aimed by VANET is a security matter. Warning messages for weather conditions, traffic accidents and fuel consumption instantly transmitted between vehicles would improve road safety. However, one of the critical issues in VANET is the dissemination of messages throughout the network. Indeed, routing algorithms are a key issue because of the high mobility and scalability of VANET compared to other ad-hoc networks. This thesis contributes to the research area by firstly presenting a survey over most of the routing protocol used in VANET and classifying them according to the algorithm used. Secondly, this thesis develops more on the broadcasting algorithm category and particularly on the distance to mean heuristic method that presents good results in terms of reachability and bandwidth consumption. However, distance to mean protocol needs periodic beacons that creates a consequent overhead compared to instant rebroadcasting algorithm. Therefore, this thesis improves this method by reducing overhead using a bio inspired kinetic graph model proposed in the literature. The proposed modified algorithm has been implemented, simulated and evaluated in the network simulator NS3. Results show a lower overhead while preserving a good reachability

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore