197,167 research outputs found

    Emotion Dynamics of Public Opinions on Twitter

    Full text link
    [EN] Recently, social media has been considered the fastest medium for information broadcasting and sharing. Considering the wide range of applications such as viral marketing, political campaigns, social advertisement, and so on, influencing characteristics of users or tweets have attracted several researchers. It is observed from various studies that influential messages or users create a high impact on a social ecosystem. In this study, we assume that public opinion on a social issue on Twitter carries a certain degree of emotion, and there is an emotion flow underneath the Twitter network. In this article, we investigate social dynamics of emotion present in users' opinions and attempt to understand (i) changing characteristics of users' emotions toward a social issue over time, (ii) influence of public emotions on individuals' emotions, (iii) cause of changing opinion by social factors, and so on. We study users' emotion dynamics over a collection of 17.65M tweets with 69.36K users and observe 63% of the users are likely to change their emotional state against the topic into their subsequent tweets. Tweets were coming from the member community shows higher influencing capability than the other community sources. It is also observed that retweets influence users more than hashtags, mentions, and replies.The work described in this article was carried out in the OSiNT Lab (https://www.iitg.ac.in/cseweb/osint/), Indian Institute of Technology Guwahati, India. The creation of the dataset used in this study was partly supported by the Ministry of Information and Electronic Technology, Government of India.Naskar, D.; Singh, SR.; Kumar, D.; Nandi, S.; Onaindia De La Rivaherrera, E. (2020). Emotion Dynamics of Public Opinions on Twitter. ACM Transactions on Information Systems. 38(2):1-24. https://doi.org/10.1145/3379340124382Ahmed, S., Jaidka, K., & Cho, J. (2016). Tweeting India’s Nirbhaya protest: a study of emotional dynamics in an online social movement. Social Movement Studies, 16(4), 447-465. doi:10.1080/14742837.2016.1192457Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). Machine Learning, 50(1/2), 5-43. doi:10.1023/a:1020281327116Araujo, T., Neijens, P., & Vliegenthart, R. (2016). Getting the word out on Twitter: the role of influentials, information brokers and strong ties in building word-of-mouth for brands. International Journal of Advertising, 36(3), 496-513. doi:10.1080/02650487.2016.1173765Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893. doi:10.1177/0956797611413294Bi, B., Tian, Y., Sismanis, Y., Balmin, A., & Cho, J. (2014). Scalable topic-specific influence analysis on microblogs. Proceedings of the 7th ACM international conference on Web search and data mining. doi:10.1145/2556195.2556229Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. doi:10.1016/j.jocs.2010.12.007Chen, W., Wang, C., & Wang, Y. (2010). Scalable influence maximization for prevalent viral marketing in large-scale social networks. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’10. doi:10.1145/1835804.1835934Ding, Z., Jia, Y., Zhou, B., Zhang, J., Han, Y., & Yu, C. (2013). An Influence Strength Measurement via Time-Aware Probabilistic Generative Model for Microblogs. Lecture Notes in Computer Science, 372-383. doi:10.1007/978-3-642-37401-2_38Ding, Z., Wang, H., Guo, L., Qiao, F., Cao, J., & Shen, D. (2015). Finding Influential Users and Popular Contents on Twitter. Web Information Systems Engineering – WISE 2015, 267-275. doi:10.1007/978-3-319-26187-4_23Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74(4), 967-984. doi:10.1037/0022-3514.74.4.967Ferrara, E., & Yang, Z. (2015). Measuring Emotional Contagion in Social Media. PLOS ONE, 10(11), e0142390. doi:10.1371/journal.pone.0142390Hillmann, R., & Trier, M. (2012). Dissemination Patterns and Associated Network Effects of Sentiments in Social Networks. 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. doi:10.1109/asonam.2012.88Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th international conference on World wide web - WWW ’10. doi:10.1145/1772690.1772751Myers, S. A., Zhu, C., & Leskovec, J. (2012). Information diffusion and external influence in networks. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12. doi:10.1145/2339530.2339540Nguyen, H. T., Ghosh, P., Mayo, M. L., & Dinh, T. N. (2017). Social Influence Spectrum at Scale. ACM Transactions on Information Systems, 36(2), 1-26. doi:10.1145/3086700Pal, A., & Counts, S. (2011). Identifying topical authorities in microblogs. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935843Peng, S., Wang, G., & Xie, D. (2017). Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. IEEE Network, 31(1), 11-17. doi:10.1109/mnet.2016.1500104nmRussell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. doi:10.1037/h0077714Shi, J., Hu, P., Lai, K. K., & Chen, G. (2018). Determinants of users’ information dissemination behavior on social networking sites. Internet Research, 28(2), 393-418. doi:10.1108/intr-01-2017-0038Silva, A., Guimarães, S., Meira, W., & Zaki, M. (2013). ProfileRank. Proceedings of the 7th Workshop on Social Network Mining and Analysis - SNAKDD ’13. doi:10.1145/2501025.2501033Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. Journal of Management Information Systems, 29(4), 217-248. doi:10.2753/mis0742-1222290408Vardasbi, A., Faili, H., & Asadpour, M. (2017). SWIM. ACM Transactions on Information Systems, 36(1), 1-33. doi:10.1145/3072652Wang, Y., Li, Y., Fan, J., & Tan, K.-L. (2018). Location-aware Influence Maximization over Dynamic Social Streams. ACM Transactions on Information Systems, 36(4), 1-35. doi:10.1145/3230871Watts, D. J., & Dodds, P. S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 34(4), 441-458. doi:10.1086/518527Weng, J., Lim, E.-P., Jiang, J., & He, Q. (2010). TwitterRank. Proceedings of the third ACM international conference on Web search and data mining - WSDM ’10. doi:10.1145/1718487.1718520Wolfsfeld, G., Segev, E., & Sheafer, T. (2013). Social Media and the Arab Spring. The International Journal of Press/Politics, 18(2), 115-137. doi:10.1177/1940161212471716Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77(3), 600-619. doi:10.1037/0022-3514.77.3.600Zhang, J., Zhang, R., Sun, J., Zhang, Y., & Zhang, C. (2016). TrueTop: A Sybil-Resilient System for User Influence Measurement on Twitter. IEEE/ACM Transactions on Networking, 24(5), 2834-2846. doi:10.1109/tnet.2015.2494059Zhang, Y., Moe, W. W., & Schweidel, D. A. (2017). Modeling the role of message content and influencers in social media rebroadcasting. International Journal of Research in Marketing, 34(1), 100-119. doi:10.1016/j.ijresmar.2016.07.003Ziegler, C.-N., & Lausen, G. (2005). Propagation Models for Trust and Distrust in Social Networks. Information Systems Frontiers, 7(4-5), 337-358. doi:10.1007/s10796-005-4807-

    Advances in Real-Time Database Systems Research Special Section on RTDBS of ACM SIGMOD Record 25(1), March 1996.

    Full text link
    A Real-Time DataBase System (RTDBS) can be viewed as an amalgamation of a conventional DataBase Management System (DBMS) and a real-time system. Like a DBMS, it has to process transactions and guarantee ACID database properties. Furthermore, it has to operate in real-time, satisfying time constraints imposed on transaction commitments. A RTDBS may exist as a stand-alone system or as an embedded component in a larger multidatabase system. The publication in 1988 of a special issue of ACM SIGMOD Record on Real-Time DataBases signaled the birth of the RTDBS research area -- an area that brings together researchers from both the database and real-time systems communities. Today, almost eight years later, I am pleased to present in this special section of ACM SIGMOD Record a review of recent advances in RTDBS research. There were 18 submissions to this special section, of which eight papers were selected for inclusion to provide the readers of ACM SIGMOD Record with an overview of current and future research directions within the RTDBS community. In this paper [below], I summarize these directions and provide the reader with pointers to other publications for further information. -Azer Bestavros, Guest Edito

    Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook

    Full text link
    [EN] Enterprise Modeling is a central activity in Enterprise Engineering and can facilitate Production Management activities. This state-of-the-art paper first recalls definitions and fundamental principles of enterprise modelling, which goes far beyond process modeling. The CIMOSA modeling framework, which is based on an event-driven process-based modeling language suitable for enterprise system analysis and model enactment, is used as a reference conceptual framework because of its generality. Next, the focus is on new features of enterprise modeling languages including risk, value, competency modeling and service orientation. Extensions for modeling collaborative aspects of networked organizations are suggested as research outlook. Major approaches used in enterprise modeling are recalled before concluding.Vernadat, F. (2014). Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook. International Journal of Production Management and Engineering. 2(2):57-73. doi:10.4995/ijpme.2014.2326SWORD577322AMICE. (1993). CIMOSA: Open System Architecture for CIM, 2nd revised and extended edition. Berlin: Springer-Verlag. 234 pages.Camarinha-Matos, L. M., & Afsarmanesh, H. (2007). A comprehensive modeling framework for collaborative networked organizations. Journal of Intelligent Manufacturing, 18(5), 529-542. doi:10.1007/s10845-007-0063-3Camarinha-Matos, L. M., Afsarmanesh, H., Galeano, N., & Molina, A. (2009). Collaborative networked organizations – Concepts and practice in manufacturing enterprises. Computers & Industrial Engineering, 57(1), 46-60. doi:10.1016/j.cie.2008.11.024Chakravarthy, S. (1989). Rule management and evaluation: an active DBMS perspective. ACM SIGMOD Record, 18(3), 20-28. doi:10.1145/71031.71034Chen, H. (2010). Editorial. ACM Transactions on Management Information Systems, 1(1), 1-5. doi:10.1145/1877725.1877726Clivillé, V., Berrah, L., & Mauris, G. (2007). Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. International Journal of Production Economics, 105(1), 171-189. doi:10.1016/j.ijpe.2006.03.002Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Communications of the ACM, 35(9), 75-90. doi:10.1145/130994.130998Dalal, N. P., Kamath, M., Kolarik, W. J., & Sivaraman, E. (2004). Toward an integrated framework for modeling enterprise processes. Communications of the ACM, 47(3), 83-87. doi:10.1145/971617.971620Doumeingts, G., & Vallespir, B. (1995). A methodology supporting design and implementation of CIM systems including economic evaluation. In P. Brandimarte & A. Villa, Eds. Optimization Models and Concepts in Produc-tion Management (pp. 307-331). New-York, NY: Gordon and Breach Science Publishers.Doumeingts, G., & Ducq, Y. (2001). Enterprise modelling techniques to improve efficiency of enterprises. Production Planning & Control, 12(2), 146-163. doi:10.1080/09537280150501257Harzallah, M., Berio, G., & Vernadat, F. (2006). Analysis and modeling of individual competencies: toward better management of human resources. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(1), 187-207. doi:10.1109/tsmca.2005.859093Jagdev, H. S., & Thoben, K.-D. (2001). Anatomy of enterprise collaborations. Production Planning & Control, 12(5), 437-451. doi:10.1080/09537280110042675JORYSZ, H. R., & VERNADAT, F. B. (1990). CIM-OSA Part 1: total enterprise modelling and function view. International Journal of Computer Integrated Manufacturing, 3(3-4), 144-156. doi:10.1080/09511929008944444Khalaf, R., Curbera, F., Nagy, W.A., Mukhi, N., Tai, S., & Duftler, M. (2005). Understanding Web Services. In M. Singh, Ed. Practical Handbook of Internet Computing (Chap. 27). Boca Raton, FL: Chapman & Hall/CRC Press.Kosanke, K., & Nell, J. G. (Eds.). (1997). Enterprise Engineering and Integration. doi:10.1007/978-3-642-60889-6Kosanke, K., Vernadat, F.B., & Zelm, M. (2014). Means to enable Enterprise Interoperation: CIMOSA Object Capa-bility Profiles and CIMOSA Collaboration View, Proc. of the 19th World Congress of the IFAC, Cape Town, South Africa, 24-19 August 2014.Larson, N., & Kusiak, A. (1996). Managing design processes: a risk assessment approach. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(6), 749-759. doi:10.1109/3468.541335Li, Q., Wang, Z., Li, W., Li, J., Wang, C., & Du, R. (2013). Applications integration in a hybrid cloud computing environment: modelling and platform. Enterprise Information Systems, 7(3), 237-271. doi:10.1080/17517575.2012.677479Owen, S., & Walker, Z. (2013). Enterprise Modelling and Architecture. New Dehli, India: Ocean Media Pvt. Ltd.Roboam, M., Zanettin, M., & Pun, L. (1989). GRAI-IDEF0-Merise (GIM): Integrated methodology to analyse and design manufacturing systems. Computer Integrated Manufacturing Systems, 2(2), 82-98. doi:10.1016/0951-5240(89)90021-9Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6-15. doi:10.1109/tse.1977.229899Shah, L.A., Etienne, A., Siadat, A., & Vernadat, F. (2014). Decision-making in the manufacturing environment using a value-risk graph. Journal of Intelligent Manufacturing, 25, 2.Scheer, A.-W. (1992). Architecture of Integrated Information Systems. doi:10.1007/978-3-642-97389-5Scheer, A.-W. (1999). ARIS — Business Process Modeling. doi:10.1007/978-3-642-97998-9Vernadat, F.B. (1996). Enterprise Modeling and Integration: Principles and Applications. London: Chapman & Hall. 528 pages.Vernadat, F. B. (2007). Interoperable enterprise systems: Principles, concepts, and methods. Annual Reviews in Control, 31(1), 137-145. doi:10.1016/j.arcontrol.2007.03.00

    Introduction to the ACM TIST Special Issue on Intelligent Healthcare Informatics

    Get PDF
    Healthcare Informatics is a research area dealing with the study and application of computer science and information and communication technology to face both theoretical/methodological and practical issues in healthcare, public health, and everyday wellness. Intelligent Healthcare Informatics may be defined as the specific area focusing on the use of artificial intelligence (AI) theories and techniques to offer important services (such as a component of complex systems) to allow integrated systems to perceive, reason, learn, and act intelligently in the healthcare arena. One of the many peculiarities of healthcare is that decision support systems need to be integrated with several heterogeneous systems supporting both collaborative work and process coordination and the management and analysis of a huge amount of clinical and health data, to compose intelligent, process-aware health information systems. After some pioneering work focusing explicitly on specific medical aspects and providing some efficient, even ad hoc, solutions, in recent years, AI in healthcare has been faced by researchers with different backgrounds and interests, taking into consideration the main results obtained in the more general and theoretical/methodological area of intelligent systems. Moreover, from a focus on reasoning strategies and deep knowledge representation, research in healthcare intelligent systems moved to data-intensive clinical tasks, where there is the need for supporting healthcare decision making in the presence of overwhelming amounts of clinical data. Significant solutions have been provided through a multidisciplinary combination of the results from the different research areas and their associated cultures, ranging from algorithms, to information systems and databases, to human-computer interaction, to medical informatics. To this regard, it is interesting to observe that, from one side, medical informaticians benefited by the general solutions coming from the generic computer science area, tailoring them to specific medical domains, while from the other side, computer scientists found several (still open) challenges in the medical and, more generally, health domains. This ACM Transactions on Intelligent Systems and Technology (ACM TIST) special issue contains articles discussing fundamental principles, algorithms, or applications for process-aware health information systems. Such articles are a sound answer to the research challenges for novel techniques, combinations of tools, and so forth to build effective ways to manage and deal in an integrated way with healthcare processes and data

    Inconsistency-tolerant business rules in distributed information systems

    Full text link
    The final publication is available at Springer via http://10.1007/978-3-642-41033-8_41Business rules enhance the integrity of information systems. However, their maintenance does not scale up easily to distributed systems with concurrent transactions. To a large extent, that is due to two problematic exigencies: the postulates of total and isolated business rule satisfaction. For overcoming these problems, we outline a measure-based inconsistency-tolerant approach to business rules maintenance.Supported by ERDF/FEDER and MEC grants TIN2009-14460-C03, TIN2010-17139, TIN2012-37719-C03-01.Decker, H.; Muñoz Escoí, FD. (2013). Inconsistency-tolerant business rules in distributed information systems. En On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Springer Verlag (Germany). 8186:322-331. https://doi.org/10.1007/978-3-642-41033-8_41S3223318186Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI SQL isolation levels. In: Proc. SIGMOD 1995, pp. 1–10. ACM Press (1995)Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Butleris, R., Kapocius, K.: The Business Rules Repository for Information Systems Design. In: Proc. 6th ADBIS, vol. 2, pp. 64–77. Slovak Univ. of Technology, Bratislava (2002)Davis, C.T.: Data Processing sphere of control. IBM Systems Journal 17(2), 179–198 (1978)Decker, H.: Partial Repairs that Tolerante Inconsistency. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 389–400. Springer, Heidelberg (2011)Decker, H.: Causes of the violation of integrity constraints for supporting the quality of databases. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 283–292. Springer, Heidelberg (2011)Decker, H.: New measures for maintaining the quality of databases. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 170–185. Springer, Heidelberg (2012)Decker, H.: Controlling the Consistency of the Evolution of Database Systems. In: Proc. 24th ICSSEA, Paris (2012)Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. IEEE Transactions on Knowledge and Data Engineering 23(2), 218–234 (2011)Decker, H., Muñoz-Escoí, F.D.: Revisiting and Improving a Result on Integrity Preservation by Concurrent Transactions. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010 Workshops. LNCS, vol. 6428, pp. 297–306. Springer, Heidelberg (2010)Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The Notions of Consistency and Predicate Locks in a Database System. CACM 19(11), 624–633 (1976)Gilbert, S., Lynch, N.: Brewer’s Conjecture and the feasibility of Consistent, Available, Partition-tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)Ibrahim, H.: Checking Integrity Constraints - How it Differs in Centralized, Distributed and Parallel Databases. In: Proc. 17th DEXA Workshops, pp. 563–568. IEEE (2006)Lynch, N., Blaustein, B., Siegel, M.: Correctness Conditions for Highly Available Replicated Databases. In: Proc. 5th PODC, pp. 11–28. ACM Press (1986)Martinenghi, D., Christiansen, H.: Transaction Management with Integrity Checking. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 606–615. Springer, Heidelberg (2005)Christiansen, H., Decker, H.: Integrity checking and maintenance in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent Databases: Technologies and Applications, pp. 238–285. Idea Group (2006)Morgan, T.: Business Rules and Information Systems - Aligning IT with Business Goals. Addison-Wesley (2002)Muñoz-Escoí, F.D., Ruiz-Fuertes, M.I., Decker, H., Armendáriz-Íñigo, J.E., de Mendívil, J.R.G.: Extending Middleware Protocols for Database Replication with Integrity Support. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 607–624. Springer, Heidelberg (2008)Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)Novakovic, I., Deletic, V.: Structuring of Business Rules in Information System Design and Architecture. Facta Universitatis Nis, Ser. Elec. Energ. 22(3), 305–312 (2009)Pipino, L., Lee, Y., Yang, R.: Data Quality Assessment. CACM 45(4), 211–218 (2002)Stonebraker, M.: Errors in Database Systems, Eventual Consistency, and the CAP Theorem (2010), http://cacm.acm.org/blog/blog-cacm/83396-errors-in-database-systems-eventual-consistency-and-the-cap-theoremStonebraker, M.: In search of database consistency. CACM 53(10), 8–9 (2010)Stonebraker, M.: Technical perspective - One size fits all: an idea whose time has come and gone. Commun. ACM 51(12), 76 (2008)Taveter, K.: Business Rules’ Approach to the Modelling, Design and Implementation of Agent-Oriented Information Systems. In: Proc. CAiSE workshop AOIS, Heidelberg (1999)Vidyasankar, K.: Serializability. In: Liu, L., Özu, T. (eds.) Encyclopedia of Database Systems, pp. 2626–2632. Springer (2009)Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann (2002)Vogels, W.: Eventually Consistent. ACM Queue 6(6), 14–19 (2008)Pereira Ziwich, P., Procpio Duarte, E., Pessoa Albini, L.: Distributed Integrity Checking for Systems with Replicated Data. In: Proc. ICPADS, vol. 1, pp. 363–369. IEEE CSP (2005

    Scalable data management in distributed information systems

    Full text link
    [EN] In the era of cloud computing and huge information systems, distributed applications should manage dynamic workloads; i.e., the amount of client requests per time unit may vary frequently and servers should rapidly adapt their computing efforts to those workloads. Cloud systems provide a solid basis for this kind of applications but most of the traditional relational database systems are unprepared to scale up with this kind of distributed systems. This paper surveys different techniques being used in modern SQL, NoSQL and NewSQL systems in order to increase the scalability and adaptability in the management of persistent data. © 2011 Springer-Verlag.This work has been supported by EU FEDER and Spanish MICINN under research grants TIN2009-14460-C03-01 and TIN2010-17193Pallardó Lozoya, MR.; Esparza Peidro, J.; García Escriva, JR.; Decker, H.; Muñoz Escoí, FD. (2011). Scalable data management in distributed information systems. Lecture Notes in Computer Science. 7046:208-217. https://doi.org/10.1007/978-3-642-25126-9_31S2082177046Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: 3rd Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 132–141 (2007)Finkelstein, S., Jacobs, D., Brendle, R.: Principles for inconsistency. In: 4th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA (2009)Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for structured data. In: 7th Symp. on Operat. Syst. Design and Implem. (OSDI), pp. 205–218. USENIX Assoc., Seattle (2006)Cooper, B.F., Baldeschwieler, E., Fonseca, R., Kistler, J.J., Narayan, P.P.S., Neerdaels, C., Negrin, T., Ramakrishnan, R., Silberstein, A., Srivastava, U., Stata, R.: Building a cloud for Yahoo! IEEE Data Eng. Bull. 32, 36–43 (2009)DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: 21st ACM Symp. on Operat. Syst. Princ. (SOSP), Stevenson, Washington, USA, pp. 205–220 (2007)Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The end of an architectural era (it’s time for a complete rewrite). In: 33rd Intnl. Conf. on Very Large Data Bases (VLDB), pp. 1150–1160. ACM Press, Vienna (2007)Lomet, D.B., Fekete, A., Weikum, G., Zwilling, M.J.: Unbundling transaction services in the cloud. In: 4th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA (2009)Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme scale with full SQL language support in Microsoft SQL Azure. In: Intnl. Conf. on Mngmnt. of Data (SIGMOD), pp. 1021–1024. ACM, New York (2010)Levandoski, J.J., Lomet, D., Mokbel, M.F., Zhao, K.K.: Deuteronomy: Transaction support for cloud data. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 123–133 (2011)Helland, P., Campbell, D.: Building on quicksand. In: 4th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA (2009)Muñoz-Escoí, F.D., García-Escrivá, J.R., Pallardó-Lozoya, M.R., Esparza-Peidro, J.: Managing scalable persistent data. Technical Report ITI-SIDI-2011/003, Instituto Tecnológico de Informática, Universitat Politècnica de València, Spain (2011)Agrawal, D., El Abbadi, A., Antony, S., Das, S.: Data management challenges in cloud computing infrastructures. In: 6th Intnl. Wshop. on Databases in Networked Information Systems (DNIS), Aizu-Wakamatsu, Japan, pp. 1–10 (2010)Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9, 4–9 (1986)Alonso, G., Kossmann, D., Roscoe, T.: SwissBox: An architecture for data processing appliances. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 32–37 (2011)Baker, J., Bond, C., Corbett, J.C., Furman, J.J., Khorlin, A., Larson, J., Léon, J.M., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing scalable, highly available storage for interactive services. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 223–234 (2011)Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N.: Relational cloud: A database-as-a-service for the cloud. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 235–240 (2011)Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An elastic transactional data store in the cloud. CoRR abs/1008.3751 (2010)Vogels, W.: Eventually consistent. Commun. ACM 52, 40–44 (2009)Breitbart, Y., Korth, H.F.: Replication and consistency: being lazy helps sometimes. In: 16th ACM Symp. on Princ. of Database Syst., PODS 1997, pp. 173–184. ACM, New York (1997)Brantner, M., Florescu, D., Graf, D.A., Kossmann, D., Kraska, T.: Building a database on S3. In: Intnl. Conf. on Mngmnt. of Data (SIGMOD), pp. 251–264. ACM Press, Vancouver (2008)Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. Operating Systems Review 44, 35–40 (2010)Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In: 7th Symp. on Operat. Syst. Design and Implem. (OSDI), pp. 335–350. USENIX Assoc., Seattle (2006)Junqueira, F.P., Reed, B.: The life and times of a ZooKeeper. In: 28th Annual ACM Symp. on Princ. of Distrib. Comp. (PODC), p. 4. ACM Press, Calgary (2009)MacCormick, J., Murphy, N., Najork, M., Thekkath, C.A., Zhou, L.: Boxwood: Abstractions as the foundation for storage infrastructure. In: 6th Simp. on Operat. Syst. Design and Impl. (OSDI), pp. 105–120. USENIX Assoc., San Francisco (2004)Stonebraker, M., Cattell, R.: Ten rules for scalable performance in ”simple operation” datastores. Commun. ACM 54, 72–80 (2011)Amazon Web Services LLC: Amazon SimpleDB (2011), http://aws.amazon.com/simpledb/Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16, 133–169 (1998)Bernstein, P.A., Reid, C.W., Das, S.: Hyder - a transactional record manager for shared flash. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 9–20 (2011)Bonnet, P., Bouganim, L.: Flash device support for database management. In: 5th Biennial Conf. on Innov. Data Syst. Research (CIDR), Asilomar, CA, USA, pp. 1–8 (2011)Microsoft Corp.: Windows Azure: Microsoft’s cloud services platform (2011), http://www.microsoft.com/windowsazure/VoltDB, Inc.: VoltDB technical overview: Next generation open-source SQL database with ACID for fast-scaling OLTP applications (2010), Downloadable from: http://voltdb.com/_pdf/VoltDBTechnicalOverviewWhitePaper.pd

    The Effects of the Quantification of Faculty Productivity: Perspectives from the Design Science Research Community

    Get PDF
    In recent years, efforts to assess faculty research productivity have focused more on the measurable quantification of academic outcomes. For benchmarking academic performance, researchers have developed different ranking and rating lists that define so-called high-quality research. While many scholars in IS consider lists such as the Senior Scholar’s basket (SSB) to provide good guidance, others who belong to less-mainstream groups in the IS discipline could perceive these lists as constraining. Thus, we analyzed the perceived impact of the SSB on information systems (IS) academics working in design science research (DSR) and, in particular, how it has affected their research behavior. We found the DSR community felt a strong normative influence from the SSB. We conducted a content analysis of the SSB and found evidence that some of its journals have come to accept DSR more. We note the emergence of papers in the SSB that outline the role of theory in DSR and describe DSR methodologies, which indicates that the DSR community has rallied to describe what to expect from a DSR manuscript to the broader IS community and to guide the DSR community on how to organize papers for publication in the SSB

    What Web Template Extractor Should I Use? A Benchmarking and Comparison for Five Template Extractors

    Full text link
    "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL 13, ISS 2, (APR 2019)} http://doi.acm.org/10.1145/3316810"[EN] A Web template is a resource that implements the structure and format of a website, making it ready for plugging content into already formatted and prepared pages. For this reason, templates are one of the main development resources for website engineers, because they increase productivity. Templates are also useful for the final user, because they provide uniformity and a common look and feel for all webpages. However, from the point of view of crawlers and indexers, templates are an important problem, because templates usually contain irrelevant information, such as advertisements, menus, and banners. Processing and storing this information leads to a waste of resources (storage space, bandwidth, etc.). It has been measured that templates represent between 40% and 50% of data on the Web. Therefore, identifying templates is essential for indexing tasks. There exist many techniques and tools for template extraction, but, unfortunately, it is not clear at all which template extractor should a user/system use, because they have never been compared, and because they present different (complementary) features such as precision, recall, and efficiency. In this work, we compare the most advanced template extractors. We implemented and evaluated five of the most advanced template extractors in the literature. To compare all of them, we implemented a workbench, where they have been integrated and evaluated. Thanks to this workbench, we can provide a fair empirical comparison of all methods using the same benchmarks, technology, implementation language, and evaluation criteria.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Ciencia, Innovacion y Universidades/AEI under grant TIN2016-76843-C4-1-R and by the Generalitat Valenciana under grants PROMETEO-II/2015/013 (SmartLogic) and Prometeo/2019/098 (DeepTrust).Alarte, J.; Silva, J.; Tamarit Muñoz, S. (2019). What Web Template Extractor Should I Use? A Benchmarking and Comparison for Five Template Extractors. ACM Transactions on the Web. 13(2):9:1-9:19. https://doi.org/10.1145/3316810S9:19:19132Alarte, J., Insa, D., Silva, J., & Tamarit, S. (2015). TeMex. Proceedings of the 24th International Conference on World Wide Web - WWW ’15 Companion. doi:10.1145/2740908.2742835Julián Alarte David Insa Josep Silva and Salvador Tamarit. 2016. Site-Level Web Template Extraction Based on DOM Analysis. Springer International Publishing Cham 36--49. Julián Alarte David Insa Josep Silva and Salvador Tamarit. 2016. Site-Level Web Template Extraction Based on DOM Analysis. Springer International Publishing Cham 36--49.Alassi, D., & Alhajj, R. (2013). Effectiveness of template detection on noise reduction and websites summarization. Information Sciences, 219, 41-72. doi:10.1016/j.ins.2012.07.022Bar-Yossef, Z., & Rajagopalan, S. (2002). Template detection via data mining and its applications. Proceedings of the eleventh international conference on World Wide Web - WWW ’02. doi:10.1145/511446.511522Chakrabarti, D., Kumar, R., & Punera, K. (2007). Page-level template detection via isotonic smoothing. Proceedings of the 16th international conference on World Wide Web - WWW ’07. doi:10.1145/1242572.1242582Chen, L., Ye, S., & Li, X. (2006). Template detection for large scale search engines. Proceedings of the 2006 ACM symposium on Applied computing - SAC ’06. doi:10.1145/1141277.1141534Gibson, D., Punera, K., & Tomkins, A. (2005). The volume and evolution of web page templates. Special interest tracks and posters of the 14th international conference on World Wide Web - WWW ’05. doi:10.1145/1062745.1062763Kim, C., & Shim, K. (2011). TEXT: Automatic Template Extraction from Heterogeneous Web Pages. IEEE Transactions on Knowledge and Data Engineering, 23(4), 612-626. doi:10.1109/tkde.2010.140Barbara Ann Kitchenham David Budgen and Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic Reviews. Chapman 8 Hall/CRC. Barbara Ann Kitchenham David Budgen and Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic Reviews. Chapman 8 Hall/CRC.Kołcz, A., & Yih, W. (s. f.). Site-Independent Template-Block Detection. Lecture Notes in Computer Science, 152-163. doi:10.1007/978-3-540-74976-9_17Kohlschütter, C. (2009). A densitometric analysis of web template content. Proceedings of the 18th international conference on World wide web - WWW ’09. doi:10.1145/1526709.1526909Jing Li and C. I. Ezeife. 2006. Cleaning web pages for effective web content mining. In Database and Expert Systems Applications Stéphane Bressan Josef Küng and Roland Wagner (Eds.). Springer Berlin 560--571. 10.1007/11827405_55 Jing Li and C. I. Ezeife. 2006. Cleaning web pages for effective web content mining. In Database and Expert Systems Applications Stéphane Bressan Josef Küng and Roland Wagner (Eds.). Springer Berlin 560--571. 10.1007/11827405_55Bing Liu. 2006. Web Data Mining: Exploring Hyperlinks Contents and Usage Data (Data-Centric Systems and Applications). Springer-Verlag New York Inc. Secaucus NJ. Bing Liu. 2006. Web Data Mining: Exploring Hyperlinks Contents and Usage Data (Data-Centric Systems and Applications). Springer-Verlag New York Inc. Secaucus NJ.Liu, L., Han, W., Buttler, D., Pu, C., & Tang, W. (1999). An XJML-based wrapper generator for Web information extraction. Proceedings of the 1999 ACM SIGMOD international conference on Management of data - SIGMOD ’99. doi:10.1145/304182.304570Ma, L., Goharian, N., Chowdhury, A., & Chung, M. (2003). Extracting unstructured data from template generated web documents. Proceedings of the twelfth international conference on Information and knowledge management - CIKM ’03. doi:10.1145/956863.956961Manjula, R., & Chilambuchelvan, A. (2013). Extracting templates from Web pages. 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE). doi:10.1109/icgce.2013.6823541Christopher D. Manning Prabhakar Raghavan and Hinrich SchÃijtze. 2008. Introduction to Information Retrieval. Cambridge University Press New York NY. Christopher D. Manning Prabhakar Raghavan and Hinrich SchÃijtze. 2008. Introduction to Information Retrieval. Cambridge University Press New York NY.Meng, X., Hu, D., & Li, C. (2003). Schema-guided wrapper maintenance for web-data extraction. Proceedings of the fifth ACM international workshop on Web information and data management - WIDM ’03. doi:10.1145/956699.956701Nguyen, D. Q., Nguyen, D. Q., Pham, S. B., & Bui, T. D. (2009). A Fast Template-Based Approach to Automatically Identify Primary Text Content of a Web Page. 2009 International Conference on Knowledge and Systems Engineering. doi:10.1109/kse.2009.39Schäfer, R. (2016). Accurate and efficient general-purpose boilerplate detection for crawled web corpora. Language Resources and Evaluation, 51(3), 873-889. doi:10.1007/s10579-016-9359-2Sivakumar, P. (2015). Effectual Web Content Mining using Noise Removal from Web Pages. Wireless Personal Communications, 84(1), 99-121. doi:10.1007/s11277-015-2596-7Song, D., Sun, F., & Liao, L. (2013). A hybrid approach for content extraction with text density and visual importance of DOM nodes. Knowledge and Information Systems, 42(1), 75-96. doi:10.1007/s10115-013-0687-xR. Uma and B. Latha. 2018. Noise elimination from web pages for efficacious information retrieval. Cluster Comput. (Mar. 2018). https://link.springer.com/article/10.1007/s10586-018-2366-x#citeas. R. Uma and B. Latha. 2018. Noise elimination from web pages for efficacious information retrieval. Cluster Comput. (Mar. 2018). https://link.springer.com/article/10.1007/s10586-018-2366-x#citeas.Uzun, E., Agun, H. V., & Yerlikaya, T. (2013). A hybrid approach for extracting informative content from web pages. Information Processing & Management, 49(4), 928-944. doi:10.1016/j.ipm.2013.02.005Vieira, K., da Costa Carvalho, A. L., Berlt, K., de Moura, E. S., da Silva, A. S., & Freire, J. (2009). On Finding Templates on Web Collections. World Wide Web, 12(2), 171-211. doi:10.1007/s11280-009-0059-3Vieira, K., da Silva, A. S., Pinto, N., de Moura, E. S., Cavalcanti, J. M. B., & Freire, J. (2006). A fast and robust method for web page template detection and removal. Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM ’06. doi:10.1145/1183614.1183654Thijs Vogels Octavian-Eugen Ganea and Carsten Eickhoff. 2018. Web2Text: Deep structured boilerplate removal. CoRR abs/1801.02607 (2018). Retrieved from http://arxiv.org/abs/1801.02607. Thijs Vogels Octavian-Eugen Ganea and Carsten Eickhoff. 2018. Web2Text: Deep structured boilerplate removal. CoRR abs/1801.02607 (2018). Retrieved from http://arxiv.org/abs/1801.02607.Wang, Y., Fang, B., Cheng, X., Guo, L., & Xu, H. (2008). Incremental web page template detection. Proceeding of the 17th international conference on World Wide Web - WWW ’08. doi:10.1145/1367497.1367749Yi, L., Liu, B., & Li, X. (2003). Eliminating noisy information in Web pages for data mining. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03. doi:10.1145/956750.956785Zheng, S., Song, R., Wen, J.-R., & Giles, C. L. (2009). Efficient record-level wrapper induction. Proceeding of the 18th ACM conference on Information and knowledge management - CIKM ’09. doi:10.1145/1645953.1645962Zheng, S., Song, R., Wen, J.-R., & Wu, D. (2007). Joint optimization of wrapper generation and template detection. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’07. doi:10.1145/1281192.128128
    corecore