2,233 research outputs found

    Share Your Values! Community-Driven Embedding of Ethics in Research

    Get PDF
    Ethically-defensible research requires wide-ranging, holistic, and deep consideration. It is often overseen by Research Ethics Committees, Institutional Research Boards or equivalents but not all organisations have these and where they do, their degree of independence from organisational priorities varies (perhaps leading to research that would create reputational or other difficulties for organisations being left unpublished or unacknowledged). Conflicts of interest can therefore be left unmanaged, participants may be exploited, and society may not benefit. In this paper, we claim that publishing communities (e.g. scholarly conferences) can play a larger role in supporting improved ethical practice by defining and communicating the ethical values of their community’s collective identity and aspirations. This approach is not prescriptive like procedural ethics nor as broad as general research ethics codes (both are important) but offers a tangible way to unify ethics concerns across research contexts

    An overview of decision table literature.

    Get PDF
    The present report contains an overview of the literature on decision tables since its origin. The goal is to analyze the dissemination of decision tables in different areas of knowledge, countries and languages, especially showing these that present the most interest on decision table use. In the first part a description of the scope of the overview is given. Next, the classification results by topic are explained. An abstract and some keywords are included for each reference, normally provided by the authors. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. Other examined topics are the theoretical or practical feature of each document, as well as its origin country and language. Finally, the main body of the paper consists of the ordered list of publications with abstract, classification and comments.

    A Simple Deterministic Distributed MST Algorithm, with Near-Optimal Time and Message Complexities

    Full text link
    Distributed minimum spanning tree (MST) problem is one of the most central and fundamental problems in distributed graph algorithms. Garay et al. \cite{GKP98,KP98} devised an algorithm with running time O(D+nlogn)O(D + \sqrt{n} \cdot \log^* n), where DD is the hop-diameter of the input nn-vertex mm-edge graph, and with message complexity O(m+n3/2)O(m + n^{3/2}). Peleg and Rubinovich \cite{PR99} showed that the running time of the algorithm of \cite{KP98} is essentially tight, and asked if one can achieve near-optimal running time **together with near-optimal message complexity**. In a recent breakthrough, Pandurangan et al. \cite{PRS16} answered this question in the affirmative, and devised a **randomized** algorithm with time O~(D+n)\tilde{O}(D+ \sqrt{n}) and message complexity O~(m)\tilde{O}(m). They asked if such a simultaneous time- and message-optimality can be achieved by a **deterministic** algorithm. In this paper, building upon the work of \cite{PRS16}, we answer this question in the affirmative, and devise a **deterministic** algorithm that computes MST in time O((D+n)logn)O((D + \sqrt{n}) \cdot \log n), using O(mlogn+nlognlogn)O(m \cdot \log n + n \log n \cdot \log^* n) messages. The polylogarithmic factors in the time and message complexities of our algorithm are significantly smaller than the respective factors in the result of \cite{PRS16}. Also, our algorithm and its analysis are very **simple** and self-contained, as opposed to rather complicated previous sublinear-time algorithms \cite{GKP98,KP98,E04b,PRS16}

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlogn)O(n \log n) time algorithm

    A Middleware Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a middleware framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to Middleware 0

    Applied type system

    Full text link
    We present a type system that can effectively facilitate the use of types in capturing invariants in stateful programs that may involve (sophisticated) pointer manipulation. With its root in a recently developed framework Applied Type System (ATS), the type system imposes a level of abstraction on program states by introducing a novel notion of recursive stateful views and then relies on a form of linear logic to reason about such views. We consider the design and then the formalization of the type system to constitute the primary contribution of the paper. In addition, we mention a prototype implementation of the type system and then give a variety of examples that attests to the practicality of programming with recursive stateful views.National Science Foundation (CCR-0224244, CCR-0229480
    corecore