14 research outputs found

    Predictive Second Order Sliding Control of Constrained Linear Systems with Application to Automotive Control Systems

    Full text link
    This paper presents a new predictive second order sliding controller (PSSC) formulation for setpoint tracking of constrained linear systems. The PSSC scheme is developed by combining the concepts of model predictive control (MPC) and second order discrete sliding mode control. In order to guarantee the feasibility of the PSSC during setpoint changes, a virtual reference variable is added to the PSSC cost function to calculate the closest admissible set point. The states of the system are then driven asymptotically to this admissible setpoint by the control action of the PSSC. The performance of the proposed PSSC is evaluated for an advanced automotive engine case study, where a high fidelity physics-based model of a reactivity controlled compression ignition (RCCI) engine is utilized to serve as the virtual test-bed for the simulations. Considering the hard physical constraints on the RCCI engine states and control inputs, simultaneous tracking of engine load and optimal combustion phasing is a challenging objective to achieve. The simulation results of testing the proposed PSSC on the high fidelity RCCI model show that the developed predictive controller is able to track desired engine load and combustion phasing setpoints, with minimum steady state error, and no overshoot. Moreover, the simulation results confirm the robust tracking performance of the PSSC during transient operations, in the presence of engine cyclic variability.Comment: 6 pages, 5 figures, 2018 American Control Conferance (ACC), June 27-29, 2018, Milwaukee, WI, USA. [Accepted in Jan. 2018

    Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction

    Full text link
    We show that, for any spatially discretized system of reaction-diffusion, the approximate solution given by the explicit Euler time-discretization scheme converges to the exact time-continuous solution, provided that diffusion coefficient be sufficiently large. By "sufficiently large", we mean that the diffusion coefficient value makes the one-sided Lipschitz constant of the reaction-diffusion system negative. We apply this result to solve a finite horizon control problem for a 1D reaction-diffusion example. We also explain how to perform model reduction in order to improve the efficiency of the method

    Traffic control via moving bottleneck of coordinated vehicles

    Get PDF
    International audienceThe possibility of properly controlling a moving bottleneck to improve the traffic flow is here considered. The traffic is represented by means of a macroscopic model able to take into account the interactions with the bottleneck. This latter interacts with the surrounding flow modifying the traffic density and the flow speed profiles. An optimal control problem is stated by using the speed of the moving bottleneck as control variable. Specifically in this paper the MPC (Model Predictive Control) approach is used in order to get a fuel consumption reduction when the traffic is congested due to the presence of a fixed bottleneck on the highway. In addition we have demonstrated that no increase of the travel time is caused by the control application. The concept illustrated in this paper suggests a future innovative traffic control approach. Indeed the prospective of exploiting special vehicles with manipulable speed to control the traffic flow is particularly attractive given the expected increasing penetration rate of autonomous vehicles in traffic networks in future years

    Discrete-time Stable Geometric Controller and Observer Designs for Unmanned Vehicles

    Get PDF
    In the first part of this dissertation, we consider tracking control of underactuated systems on the tangent bundle of the six-dimensional Lie group of rigid body motions, SE(3). We formulate both asymptotically and finite-time stable tracking control schemes for underactuated rigid bodies that have one translational and three rotational degrees of freedom actuated, in discrete time. Rigorous stability analyses of the tracking control schemes presented here guarantee the nonlinear stability of these schemes. The proposed schemes here are developed in discrete time as it is more convenient for onboard computer implementation and ensures stability irrespective of the sampling period. A stable convergence of translational and rotational tracking errors to the desired trajectory is guaranteed for both asymptotically and finite-time stable schemes. In the second part, a nonlinear finite-time stable attitude estimation scheme for a rigid body that does not require knowledge of the dynamics is developed. The proposed scheme estimates the attitude and constant angular velocity bias vector from a minimum of two known linearly independent vectors for attitude, and biased angular velocity measurements made in the body-fixed frame. The constant bias in angular velocity measurements is also estimated. The estimation scheme is proven to be almost globally finite-time stable in the absence of measurement errors using a Lyapunov analysis. In addition, the behavior of this estimation scheme is compared with three state-of-the-art filters for attitude estimation, and the comparison results are presented
    corecore