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Abstract

In the first part of this dissertation, we consider tracking control of underactuated systems

on the tangent bundle of the six-dimensional Lie group of rigid body motions, SE(3). We

formulate both asymptotically and finite-time stable tracking control schemes for under-

actuated rigid bodies that have one translational and three rotational degrees of freedom

actuated, in discrete time. Rigorous stability analyses of the tracking control schemes

presented here guarantee the nonlinear stability of these schemes. The proposed schemes

here are developed in discrete time as it is more convenient for onboard computer imple-

mentation and ensures stability irrespective of the sampling period. A stable convergence

of translational and rotational tracking errors to the desired trajectory is guaranteed for

both asymptotically and finite-time stable schemes. In the second part, a nonlinear finite-

time stable attitude estimation scheme for a rigid body that does not require knowledge

of the dynamics is developed. The proposed scheme estimates the attitude and constant

angular velocity bias vector from a minimum of two known linearly independent vectors

for attitude, and biased angular velocity measurements made in the body-fixed frame.

The constant bias in angular velocity measurements is also estimated. The estimation

scheme is proven to be almost globally finite time stable in the absence of measurement

errors using a Lyapunov analysis. In addition, the behavior of this estimation scheme is

compared with three state-of-the-art filters for attitude estimation, and the comparison

results are presented.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) are finding an increasing set of applications such as se-

curity, inspection of civilian infrastructure, agriculture and aquaculture, space and under-

water exploration, wildlife tracking, package delivery, and remote sensing, all of which

can benefit from reliable autonomous operations. Autonomous operations, including au-

tonomous trajectory tracking for unmanned vehicles, is a challenging problem that has

attracted the attention of many researchers, especially in applications where it is difficult

or impossible to do remote piloting. The key objective of reliable operations of UAVs is

stable and robust guidance and control, particularly for operations that need safety and

reliability in the presence of external disturbances.

Estimation of rigid body motion is also a long-standing problem of interest for a wide

variety of mechanical systems such as aerial and under-water vehicles, spacecraft, or any

other moving objects in three dimensions. Motion estimation for rigid bodies is chal-

lenging primarily because this motion is described by nonlinear dynamics and the state

space is nonlinear. This nonlinearity arises from the intrinsic nature of rigid body attitude,

which is represented by the special orthogonal group, SO(3). One adverse consequence

of unstable estimation and control schemes is that they end up taking longer to converge
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compared with stable schemes under similar initial conditions and initial transient be-

havior (Izadi, 2015).

In the first phase of this work, which includes Chapters 2 and 3, nonlinearly stable

tracking control schemes are proposed for rigid body motion. The literature on tracking

control of UAVs includes many linear control methods that fail to work for large maneu-

vers due to the nonlinearities in the dynamics. A variety of nonlinear controllers using

methods such as sliding-mode, back-stepping, dynamic inversion (Wang et al., 2013), and

feedback-linearization (Lee, Kim, and Sastry, 2009), have also been proposed as solutions

to this problem. Another important issue in control of rigid body systems is the char-

acterization of the configuration space, and therefore the state space. The configuration

space for a rigid body is not a linear (vector) space. Therefore, the literature on attitude

control can be divided into two categories in the sense of configuration space and atti-

tude representation (Chaturvedi, Sanyal, and McClamroch, 2011). In the first category,

attitude control is studied using representations of attitude in R3 or S3 (the unit hyper-

sphere embedded in R4). For example, commonly used attitude representations for rigid

body rotational dynamics and control are Euler angles on R3 and unit quaternions on

S3 ⊂ R4 . Euler angles are not unique at certain orientations where the angular rates

become unbounded, a phenomenon called “gimbal lock”. Unit quaternions can represent

all possible attitudes, but are known to be ambiguous: an antipodal pair of unit quater-

nions represents a single attitude. This leads to a type of instability called “unwinding” in

continuous state feedback (Bhat and Bernstein, 2000a; Chaturvedi, Sanyal, and McClam-

roch, 2011). The second category avoids the aforementioned drawbacks, by studying

attitude control within a geometric framework as in this research. This framework repre-

sents rigid body attitude or reduced attitude (pointing direction) as an element of SO(3)
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or S2 (an ordinary 2-dimensional sphere in 3-dimensional Euclidean space), respectively.

The set of rigid rotations are uniquely and globally represented by the special orthogonal

matrices of order three, commonly represented as SO(3). The set SO(3) is a matrix man-

ifold and forms a Lie group under the operation of matrix multiplication. Similarly, the

set of rigid body rotations and translations is represented by the Special Euclidean group

SE(3) which is also a Lie group, and a manifold with the semi-direct product structure

SO(3) o R3. An early work using geometric control on Lie groups to treat the trajec-

tory tracking problem for a fully-actuated system on SE(3) was presented in (Bullo and

Murray, 1999), which generalized the classical proportional derivative (PD) control in a

coordinate-free way. Geometric tracking controllers based on the Special Euclidean group

SE(3) that avoid singularities and instabilities of other control laws, were reported in (Shi,

Zhang, and Zhou, 2015; Lee, Leok, and McClamroch, 2010; Mellinger and Kumar, 2011;

Kushleyev et al., 2013; Rudin et al., 2011; Fernando et al., 2011; Lee, Leok, and McClam-

roch, 2012; Lee et al., 2013; Goodarzi, Lee, and Lee, 2015; Invernizzi and Lovera, 2017). It

is worth mentioning that all these controllers are obtained in continuous time.

Absence of nonlinear stability in the presence of perturbations can lead to failure and

crash of even remotely piloted vehicles in LOS (line of sight) operations. A continuous-

time integrated guidance and feedback tracking control scheme is presented in (Prab-

hakaran, Sanyal, and Samiei, 2018; Prabhakaran, Sanyal, and Izadi, 2017) as a solution

to this problem, and the continuous equations of motion are discretized in the form of a

Lie Group Variational Integrator (LGVI) for computer implementation, by applying the

discrete Lagrange-d’Alembert principle. Prior related research on LGVI discretization

includes (Lee, Leok, and McClamroch, 2005; Nordkvist and Sanyal, 2010; Sanyal, Nord-

kvist, and Chyba, 2011; Marsden and West, 2001; Hussein et al., 2006; Izadi and Sanyal,
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2014; Izadi and Sanyal, 2016). However, implementing a discretization of a continuous-time

stable tracking control scheme does not guarantee the discrete-time stability of the resulting con-

trol. This has been demonstrated convincingly for the case of nonlinear observer design

for attitude dynamics in (Izadi and Sanyal, 2014; Izadi and Sanyal, 2016; Izadi et al.,

2015c). In addition, discrete-time tracking control scheme enables onboard computer im-

plementation with a variety of discrete-time input data frequencies. This problem moti-

vates the research presented here to design discrete-time tracking control schemes.

This work presents a systematic treatment of discrete-time stable geometric control for

tracking position and attitude trajectories of unmanned vehicles that have four indepen-

dent control inputs for the six degrees of freedom of translational and rotational motion

in three dimensional Euclidean space. The control inputs actuate the three degrees of ro-

tational motion and one degree of translational motion in a vehicle body-fixed coordinate

frame. For ease of onboard computer implementation, the trajectory tracking problem

is posed in discrete-time and a discrete-time stable trajectory tracking control algorithm

is obtained for an underactuated vehicle. This actuation model covers a wide range of

unmanned vehicles like fixed-wing and rotorcraft unmanned aerial vehicles, underwater

vehicles, and spacecraft. In this research work, the vehicle’s position and orientation are

represented globally and its dynamics analyzed in the framework of geometric mechan-

ics. The configuration space is the Lie group SE(3), which is the group of translations and

rotations of the vehicle in three-dimensional Euclidean space (Bloch et al., 2003; Bullo

and Lewis, 2004). To the best of our knowledge, a discrete-time stable tracking control

scheme as outlined above for a rigid body with this actuation model on SE(3) has not

been reported in prior literature.
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Discrete-time tracking control with asymptotic stability: In the first part of this re-

search work, a discrete-time tracking control scheme is obtained using discrete-time Lya-

punov analysis that provides stable asymptotic convergence of actual states to desired

states, as in (Haddad and Chellaboina, 2008). It is shown that the total energy-like quan-

tity of the tracking errors for both desired translational and rotational motions is decreas-

ing in discrete time. This leads to discrete-time tracking error dynamics behaving as a

dissipative system; therefore the state tracking errors are dissipated in discrete time. The

stable discrete-time control laws are then obtained from these discrete-time error dynam-

ics equations as well as the LGVI-based discretized dynamics model of the vehicle. This

discrete-time stable tracking control algorithm utilizes the trajectory generation scheme

presented in (Prabhakaran, Sanyal, and Samiei, 2018; Prabhakaran, Sanyal, and Izadi,

2017) and a method that is similar to that of (Lee, Leok, and McClamroch, 2010) that

tracks the given desired trajectory for the translational motion, and the desired trajectory

for the attitude based on the desired thrust direction to achieve the translational motion

trajectory.

Discrete-time tracking control with finite-time stability: Finite-time stable control

has the advantage of providing guaranteed convergence to a desired state (or trajectory)

in finite time, as well as being more robust to bounded temporary and persistent dis-

turbances than asymptotic stability (Bhat and Bernstein, 2000b). Furthermore, low-level

persistent disturbances are better rejected by a finite-time stable system in comparison

to an asymptotically stable system, because the ultimate bound on the state is of higher

order than the bound on the disturbance (Sanyal and Bohn, 2015). A finite-time stable

control scheme for simple mechanical systems in generalized coordinates is designed
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and presented in (Sanyal and Bohn, 2015). In (Sanyal, Bohn, and Bloch, 2013), contin-

uous finite-time stable control (FTS) schemes are shown to be effective especially when

there are bounded disturbance inputs. Continuous FTS control systems have been an-

alyzed in (Shi, Zhang, and Zhou, 2015; Bhat and Bernstein, 1998; Bhat and Bernstein,

2000b; Dorato, 2006; Haddad, Nersesov, and Du, 2008; Yan et al., 2015; Harshavarthini,

Rathinasamy, and Ahn, 2019). An almost global finite time stabilization of rigid body

attitude motion to a desired attitude is studied in (Sanyal, Bohn, and Bloch, 2013; Bohn

and Sanyal, 2015). Continuous-time FTS integrated guidance and feedback tracking con-

trol schemes for pose tracking of rigid bodies were reported in (Prabhakaran, Sanyal, and

Samiei, 2018; Prabhakaran, Sanyal, and Izadi, 2017; Prabhakaran, Sanyal, and Warier,

2017), which ensure finite-time stability of the overall feedback system. In these papers,

the continuous equations of motion were discretized in the form of LGVI by applying

the discrete Lagrange-d’Alembert principle, and the continuous-time control scheme was

sampled at a constant sampling rate for computer implementation. Prior related research

on LGVI discretization of rigid body dynamics includes (Lee, Leok, and McClamroch,

2005; Nordkvist and Sanyal, 2010; Sanyal, Nordkvist, and Chyba, 2011; Marsden and

West, 2001; Hussein et al., 2006; Izadi and Sanyal, 2014; Izadi and Sanyal, 2016).

The second phase of this treatise (including Chapters 4 and 5) focuses on estimation

of attitude motion of a rigid body in three-dimensional Euclidean space, which is vital

for a number of applications including unmanned aerial vehicles, spacecraft and under-

water vehicles. The set of possible rotations of a rigid body is again given by the set of

3× 3 real orthogonal matrices of determinant 1, the Special Orthogonal group SO(3). The

nonlinear nature of the configuration space SO(3), makes the problem of attitude estima-

tion an inherently nonlinear problem. As the attitude of the rigid body cannot be directly
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measured, the objective of an attitude estimator is to compute the orientation of the rigid

body from vector measurements obtained from sensors mounted on the rigid body.

Attitude estimation schemes have a long history with early work, such as (Black, 1964;

Wahba, 1965), proposing static attitude estimation schemes. The performance of the static

determination schemes are often unsatisfactory in the presence of noise and bias compo-

nents in measurements. Often, estimation schemes like modified Kalman Filter (Shuster,

1990; Choukroun, Bar-Itzhack, and Oshman, 2006) and Multiplicative Extended Kalman

Filter (Markley, 1988) are used for attitude estimation. However, the implicit linearization

in the Kalman filter-like schemes may cause poor performance (Crassidis, Markley, and

Cheng, 2007). More recent approaches have focused on nonlinear estimation schemes

such as (Bonnabel, Martin, and Rouchon, 2009; Mahony, Hamel, and Pflimlin, 2008; Vas-

concelos et al., 2010) where the attitude estimate evolves on the nonlinear state space

SO(3) (or its tangent bundle TSO(3), if angular velocity is also being estimated). Other

prior work on nonlinear deterministic estimation schemes on SO(3) include (Rehbinder

and Ghosh, 2003; Markley, 2006; Sanyal, 2006; Aguiar and Hespanha, 2006; Bonnabel,

Martin, and Rouchon, 2009; Lageman, Trumpf, and Mahony, 2010; Vasconcelos et al.,

2010; Moutinho, Figueirôa, and Azinheira, 2015; Barrau and Bonnabel, 2017; Mahony

and Hamel, 2017) and (Hashim, Brown, and Mcisaac, 2019). Recent work on attitude ob-

server on SO(3) with exponential stability are (Gamagedara, Lee, and Chang, 2019), in

which the observer is developed with time varying reference directions, and (Reis et al.,

2018) that proposed an attitude observer based on single body-vector measurement. At-

titude estimation schemes based on the Lagrange-d’Alembert principle from variational

mechanics were first introduced in (Izadi and Sanyal, 2014) and subsequently developed

in (Izadi et al., 2015a; Izadi et al., 2015b).
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As mentioned before, due to the topological properties of the manifold SO(3), no con-

tinuous attitude observer defined on the tangent space of SO(3) can guarantee conver-

gence of the attitude estimation error to identity from all initial attitude and angular ve-

locity estimation errors. This is shown in prior work like (Bhat and Bernstein, 2000a) and

(Chaturvedi, Sanyal, and McClamroch, 2011). A continuous observer at best can be al-

most global in terms of the region of attraction. For an attitude estimator, almost global

stability means that the attitude estimate stabilizes to the actual attitude from almost all

values of initial attitude estimate except those in a set of zero measure in the tangent

space of SO(3). An attitude estimation scheme presented in (Izadi et al., 2016) follows the

variational framework of the estimation scheme reported in (Izadi and Sanyal, 2014) but

includes bias in angular velocity measurements and estimates a constant bias vector. It

is also shown that the proposed scheme is almost globally asymptotically stable, like the

variational attitude estimator for the bias-free case.

In practice, the measured value of angular velocity often has bias. In the literature,

separate schemes for bias estimation are employed to compensate for this bias. For exam-

ple, in the estimation schemes provided in (Mahony, Hamel, and Pflimlin, 2008; Tayebi,

Roberts, and Benallegue, 2011; Izadi et al., 2016), an unknown constant bias is estimated

along with the attitude. However, most of the proposed attitude estimation schemes

and the bias estimation schemes are only asymptotically stable. There are advantages in

having finite time stable estimation schemes: they have been shown to be more robust

to disturbances and noise, and provide faster convergence than an asymptotically stable

scheme with similar initial transience. Additionally, a finite time stable estimation scheme

makes the case for a “separation principle” easier in case that estimated state variables are

used for control. Finite time estimation schemes in the absence of bias using sliding mode
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controller and neural networks are proposed in (Li et al., 2015), which are not continuous.

Prior work by (Bohn and Sanyal, 2014) and (Sanyal, Izadi, and Bohn, 2014) proposed an

almost global finite time stable attitude observer. However, the exact dynamical model

including the moment of inertia is assumed to be available for estimation and the angu-

lar velocity bias was not considered. The algorithm in (Warier, Sanyal, and Prabhakaran,

2019) provides finite time stable attitude estimation in the absence of bias without requir-

ing the dynamics model of the rigid body.

The contributions in this dissertation have been submitted or published in the follow-

ing conference proceedings and journals.

• R. Hamrah and A. K. Sanyal, “Finite-time stable tracking control for an underactu-

ated system in SE(3) in discrete time,” to appear in International Journal of Control,

2020.

• R. Hamrah, A. K. Sanyal, and S. P. Viswanathan, “Discrete finite-time stable atti-

tude tracking control of unmanned vehicles on SO(3),” in 2020 American Control

Conference (ACC), Denver, CO, USA, July 1-3, 2020.

• R. Hamrah, R. Warier, and A. K. Sanyal, “Finite-time stable estimator for attitude

motion in the presence of bias in angular velocity measurements,” Submitted in

Automatica, 2019 (under 2nd review)

• R. Hamrah, A. K. Sanyal, and S. P. Viswanathan, “Discrete finite-time stable position

tracking control of unmanned vehicles,” in 58th IEEE Conference on Decision and

Control (CDC), Nice, France, December 11-13, 2019.
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• A. K. Sanyal, R. R. Warier, and R. Hamrah, “Finite time stable attitude and angular

velocity bias estimation for rigid bodies with unknown dynamics,” in 18th Euro-

pean Control Conference (ECC), June 2019, pp. 4047–4052.

• R. Hamrah, R. R. Warier, and A. K. Sanyal, “Discrete-time stable tracking control of

underactuated rigid body systems on SE(3),” in 57th IEEE Conference on Decision

and Control, CDC 2018, Miami, FL, USA, December 17-19, 2018, pp. 2932–2937.

The remainder of this dissertation is structured as follows. Chapter 2 gives problem

formulations and some mathematical preliminaries, and also presents a discrete-time sta-

ble tracking control scheme for an underactuated vehicle modeled as a rigid body that

guarantees asymptotically discrete-time stability of the feedback system. Chapter 3 deals

with a finite-time stable tracking control scheme for underactuated systems that is de-

veloped in discrete time. This scheme is based on our recently developed theory for

finite-time stability for discrete-time systems using discrete Lyapunov analysis. In Chap-

ter 4, we design a nonlinear finite-time stable attitude estimation scheme for a rigid body

with unknown dynamics. Attitude is estimated from a minimum of two linearly indepen-

dent known vectors measured in the body-fixed frame, and the angular velocity vector

is assumed to have a constant bias in addition to measurement errors. Furthermore, the

advantages of finite-time stabilization in discrete time over finite-time stabilization of a

sampled continuous-time tracking control system is addressed in this chapter. In Chapter

5, we derive and analyze the stability and robustness of the proposed, nonlinear geo-

metric estimator presented in Chapter 4, and the behavior of this estimation scheme is

compared with three state-of-the-art filters for attitude estimation. Chapter 6 describes

the details of experimental verification of the discrete finite-time stable tracking control
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presented in Chapter 3. Finally, Chapter 7 concludes the dissertation and outlines possi-

ble future directions.
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Chapter 2

Discrete-Time Stable Tracking Control

with Asymptotic Convergence

This chapter is adapted from the paper (Hamrah, Warier, and Sanyal, 2018) published in

Proceeding of the 57th IEEE Conference on Decision and Control (CDC 2018) . The author

gratefully acknowledges Dr. Amit Sanyal for his participation.

Abstract This chapter presents a discrete-time stable tracking control scheme for an

underactuated vehicle modeled as a rigid body. This energy-based control scheme guar-

antees discrete-time asymptotic stability of the feedback system. The underactuated ve-

hicle is characterized by four control inputs for the six degrees of freedom of rigid body

motion. These control inputs actuate the three degrees of freedom (DOF) of rotational

motion and one degree of freedom of translational motion in a vehicle body-fixed coordi-

nate frame. The actuated translational DOF corresponds to a body-fixed thrust direction.

The stability analysis of translational and rotational motion of the vehicle are addressed

separately, and it is shown that the total energy-like quantity of the system is decreas-

ing in discrete time. This leads to discrete-time control laws that achieve asymptotically
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stable tracking of desired position and attitude trajectories.

2.1 Coordinate Frame Definition

We denote the set of real numbers by R and the set of natural numbers by N. The set

of all possible attitudes of a rigid body is the set of 3× 3 real orthogonal matrices with

determinant 1, commonly referred to as the special orthogonal group SO(3) (Murray,

2017). This is a Lie group represented in matrix form as follows:

SO(3) =
{

R ∈ R3×3|RTR = RRT = I, det(R) = 1
}

.

The Lie algebra (tangent space at identity) of SO(3) is denoted as so(3) and defined as,

so(3) =
{

S ∈ R3×3 | S = −ST}.

The configuration of an unmanned vehicle modeled as a rigid body is given by its position

and orientation, which are together referred to as its pose. To define the pose of the

vehicle, we fix a coordinate frame B to its body and another coordinate frame I that is

fixed in space and takes the role of an inertial coordinate frame. Let b ∈ R3 denote the

position vector of the origin of frame B with respect to frame I represented in frame I .

Let R ∈ SO(3) denote the orientation, defined as the rotation matrix from frame B to

frame I . The pose of the vehicle can be represented in matrix form as follows:

g =

R b

0 1

 ∈ SE(3), (2.1)
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where SE(3) is the six-dimensional Lie group of rigid body motions (translational and

rotational) that is obtained as the semi-direct product of R3 with SO(3) (Varadarajan,

1984). A conceptual diagram of guidance on SE(3) through a set of waypoints is given in

Fig. 2.1.

Inertial frame,

I := fX; Y; Zg

Body-fixed frame,

B := fa1; a2; a3g

bg

g1 g2

g3

bn

gn

f1

f2

f3

f4

a2

a1

a3

FIGURE 2.1: Guidance through a set of finite waypoints between initial and
final configurations on SE(3).
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2.1.1 Trajectory Generation for Underactuated Vehicle

The trajectory generation problem consists of creating an appropriately smooth position

trajectory that is continuous and twice differentiable (i.e., bd(t) = C2(R, R3)), where bd(t)

gives the desired position trajectory on R3. Such a time trajectory for the position through

given waypoints could be generated using one of several techniques (Lee, Leok, and Mc-

Clamroch, 2010; Mellinger, Michael, and Kumar, 2012). Once the desired position trajec-

tory over time has been generated for the underactuated vehicle with body-fixed thrust

direction, a desired attitude trajectory Rd(t) is generated such that the position trajectory

is tracked.

Let gd(t) ∈ SE(3) be the desired pose (position and attitude) generated by the guid-

ance scheme (Prabhakaran, Sanyal, and Izadi, 2017; Prabhakaran, Sanyal, and Samiei,

2018). Then the desired velocities (translational and rotational) are given by ξd(t) that

satisfies the kinematics

ġd(t) = gd(t)ξd(t)∨, with (ξd)∨ =

(Ωd)× νd

0 0

 ∈ se(3) ⊂ R4×4

for ξd =

Ωd

νd

 ∈ R6. (2.2)

Here νd, Ωd are the body’s desired translational and angular velocities respectively, and

(·)× : R3 → so(3) ⊂ R3×3 is the skew-symmetric cross-product operator giving the
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vector space isomorphism between R3 and so(3):

x× =


x1

x2

x3


×

=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2.3)

In addition to the desired waypoints, the vehicle has to satisfy its known dynamics. Con-

sider the “nominal" model of the dynamics for the underactuated vehicle as given by

Iξ̇ = ad∗ξIξ + ϕ(g, ξ) + Bu, u ∈ C ⊂ R4, B ∈ R6×4, (2.4)

where I denotes the mass (m) and inertia (J) properties of the vehicle given as

I =

 J 0

0 mI3

 ∈ R6×6, (2.5)

and I3 is the 3× 3 identity matrix. The vector of known (modeled) moments and forces is

denoted ϕ(g, ξ) ∈ R6; usually this is obtained from a known model. Note that the vehicle

has four inputs for the six degrees of freedom of translational and rotational motion, as

given by the control influence matrix B, which can be expressed in block matrix form as

follows:

B =

 I4

02×4

 ,
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where I4 is the 4× 4 identity matrix. The co-adjoint operator (ad∗ξ ) is defined in matrix

form as

ad∗ξ = (adξ)
T =

−Ω× −ν×

0 −Ω×

 , (2.6)

where Ω, ν ∈ R3 denote the rotational and translational velocities of the underactuated

vehicle, respectively, in frame B. The vector of control inputs u ∈ C ⊂ R4 has to be

in the set of admissible controls C and directly actuates the three degrees of rotational

motion and one degree of translational motion. This actuation model is applicable to

aerial, space and underwater vehicles and it is known that a rigid body is controllable

with such actuation (Prabhakaran, Sanyal, and Samiei, 2018).

2.1.2 Tracking errors expressed in inertial and body frames

Define pose and desired pose of the vehicle on SE(3) as follows

g =

R b

0 1

 , gd =

Rd bd

0 1

 . (2.7)

Tracking error on SE(3) is given by

h = (gd)−1g =

Q x

0 1

 , (2.8)

where Q = (Rd)T R is the attitude tracking error, and x = (Rd)T(b− bd) = (Rd)Tb̃ is the

position tracking error, both in body fixed frame. Therefore, the kinematics for the pose
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tracking error is:

ḣ = hξ̄∨, (2.9)

where

ξ̄∨ =

ω× υ

0 0

 , (2.10)

and ω = Ω−QTΩd is the angular velocity tracking error, and υ = ν−QT(νd + (Ωd)×x)

is the translational velocity tracking error expressed in the body frame. The tracking

errors for translational motion are expressed with respect to inertial frame as b̃ := b− bd

and ṽ := v− vd, which are position and velocity tracking errors, respectively.

2.2 Discrete-time Stable Position Tracking Control on R3

For onboard computer implementation, the continuous time stable tracking control scheme

(Prabhakaran, Sanyal, and Samiei, 2018) has to be discretized such that discrete-time sta-

bility of the resulting control is guaranteed. Consider tracking a known trajectory bd(t),

and vd(t) = ḃd in interval of time [t0, t f ] ∈ R+ divided into N equal-length subintervals

[tk, tk+1] for k = 0, 1, ..., N, with tN = t f and tk+1 − tk = ∆t where ∆t is the time step size.

Define the trace inner product on Rn1×n2 as

〈A1, A2〉 := trace(AT
1 A2). (2.11)

Theorem 2.2.1. Let Ek denote a total energy-like quantity for the desired translational motion at
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instant k as the sum of kinetic and potential energy-like terms that are quadratic in velocity and

position tracking errors, respectively. The total energy function is expressed as

Ek = Tk + Uk,

where

Tk =
1
2
〈mṽk, ṽk〉 and Uk =

1
2
〈Pb̃k, b̃k〉,

where P ∈ R3×3 is a positive definite control gain matrix. Then the position and velocity tracking

errors are dissipated in discrete time, and the following discrete-time control law guarantees the

stability of translational motion tracking,

ϕk =
m
∆t

{
∆t g e3 + vk − vd

k+1

− (M + D +
∆t2

4
P)−1[(M− D− ∆t2

4
P)ṽk − ∆tPb̃k

]}
. (2.12)

where where e3 = [0 0 1]T is one of the standard basis vectors of R3, D ∈ R3×3 is a positive

definite control gain matrix, and M = mI3.

Proof. Since a natural candidate Lyapunov function is obtained from the total energy of a

system, one can write the candidate Lyapunov function for translational position tracking

as

Vtr
k (b̃k, ṽk) = Ek =

1
2
〈mṽk, ṽk〉+

1
2
〈Pb̃k, b̃k〉. (2.13)

As mentioned in section 2.1.2, b̃k and ṽk are the position and velocity tracking errors in
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inertial frame I , respectively. By looking at how the energy-like function Vtr changes

over time, one can conclude the condition for the stability of the system. Define ∆Vtr
k =

∆Tk + ∆Uk, where

∆Tk = Tk+1 − Tk

=
1
2
〈mṽk+1, ṽk+1〉 −

1
2
〈mṽk, ṽk〉

=
1
2

m〈(ṽk+1 − ṽk), (ṽk+1 + ṽk)〉, (2.14)

and

∆Uk = Uk+1 −Uk

=
1
2
〈Pb̃k+1, b̃k+1〉 −

1
2
〈Pb̃k, b̃k〉

=
1
2
〈P(b̃k+1 − b̃k), (b̃k+1 + b̃k)〉. (2.15)

Therefore, the increment in the Lyapunov function is obtained as

∆Vtr
k =

1
2

m〈(ṽk+1 − ṽk), (ṽk+1 + ṽk)〉

+
1
2
〈P(b̃k+1 − b̃k), (b̃k+1 + b̃k)〉. (2.16)

Now, consider

b̃k+1 ≈ b̃k +
∆t
2
(ṽk + ṽk+1). (2.17)
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Substituting (2.17) into (2.16), one can obtain

∆Vtr
k =

1
2
(ṽk+1 + ṽk)

T[m(ṽk+1 − ṽk) +
∆t
2

P(b̃k+1 + b̃k)
]
. (2.18)

∆Vtr
k has to be a negative semi-definite expression to show that the total energy of the sys-

tem is decreasing and therefore system is stable (Haddad and Chellaboina, 2008; Murray,

2017). Thus, we set

m(ṽk+1 − ṽk) +
∆t
2

P(b̃k+1 + b̃k) = −D(ṽk+1 + ṽk)

to get ∆Vtr
k ≤ 0. As a result, one can obtain the discrete-time dynamics equation of this

dissipative system in terms of position and velocity tracking errors in the inertial frame I
as follows:

(M + D)ṽk+1 = (M− D)ṽk −
∆t
2

P(b̃k+1 + b̃k). (2.19)

Substituting (2.17) in above expression, one obtains

ṽk+1 = (M + D +
∆t2

4
P)−1[(M− D− ∆t2

4
P)ṽk − ∆tPb̃k

]
, (2.20)

which is the velocity tracking error at instant k + 1. Note that

ṽk+1 = vk+1 − vd
k+1, (2.21)
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where vk+1, the velocity in inertial frame I , is given by

vk+1 = Rk+1νk+1. (2.22)

The equations of motion are discretized in the form of a Lie Group Variational Integra-

tor (LGVI). In contrast to general purpose numerical integrators, a LGVI preserves the

structure of the configuration space without parameterization or re-projection. The LGVI

scheme used in this work was first proposed in (Nordkvist and Sanyal, 2010). This in-

tegrator are also used in other research such as (Prabhakaran, Sanyal, and Izadi, 2017;

Izadi and Sanyal, 2016; Karthikeyan, Simha, and Priyadarshan, 2016; Xiang et al., 2015).

Therefore, the velocity in body frame B, νk+1, is obtained in the form of an LGVI-based

discretization of the system’s dynamics as

νk+1 = FT
k νk + ∆t g RT

k+1e3 −
∆t
m

fk e3. (2.23)

where Fk = RT
k Rk+1.

Substituting (2.23) into (2.22) gives the discrete-time velocity vector in inertial frame

vk+1 = vk + ∆t g e3 −
∆t
m

fkRk+1 e3, (2.24)

Therefore, one can obtain the discrete-time control force vector of (3.40) by substituting

(2.20) and (2.24) into (2.21). Note that ϕk = fkr3 can be considered as the control force

vector acting on the body, expressed in inertial frame, where r3 = Rk+1e3 is the third

column vector of the rotation matrix Rk+1 from frame B to frame I , which represents the

true attitude of the body. Therefore, the magnitude of the vector ϕk is the control input
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fk, and is obtained as

fk = eT
3 RT

k+1 ϕk. (2.25)

�

In order to achieve discrete-time stable tracking of the desired translational motion,

the attitude has to be controlled such that it tracks the desired thrust direction r3 = Rk+1e3,

given by (3.40). The trajectory generation scheme will be described in section 2.4, which

is also reported in (Prabhakaran, Sanyal, and Samiei, 2018).

2.3 Discrete-time Asymptotically Stable Attitude Tracking

Control on TSO(3)

In this section, an asymptotically stable attitude control scheme is provided that is discrete-

time and can be implemented with actuators used in unmanned vehicles like rotorcraft

and fixed-wing UAVs. Stability of the attitude tracking control can be analyzed by con-

sidering dynamical systems on the tangent bundle of SO(3), denoted by TSO(3). TSO(3)

consists of all possible orientations and angular velocities.

Theorem 2.3.1. Consider the following total energy-like quantity at time tk as the sum of

kinetic and potential energy-like quantities for the desired rotational motion,

Ek = Uk + Tk, (2.26)
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where

Uk = kp〈I −Qk, K〉, Tk =
1
2
〈Jωk, ωk〉,

〈I − Qk, K〉 is a Morse function on SO(3) (Milnor, 1963), and Tk is a rotational kinetic

energy-like quantity that is quadratic in angular velocity tracking error. K = diag(k1, k2, k3),

where k1 > k2 > k3 and let kp > 1. Then the discrete-time attitude control law

τk =
1

∆t

{
J
(
(J + Lω)

−1[(J − Lω)ωk − ∆t kp SK(Qk)
]

+ QT
k+1Ωd

k+1

)
− FT

k JΩk

}
(2.27)

leads to asymptotically stable tracking of the desired attitude trajectory in discrete time.

Proof. Consider the following candidate Morse-Lyapunov function, which can be inter-

preted as the total energy function that is sum of kinetic and potential energy-like terms

for the desired rotational motion, as follows:

Vrot
k (Qk, ωk) = Ek = kp〈I −Qk, K〉+ 1

2
〈Jωk, ωk〉. (2.28)

The stability of attitude tracking error can be shown by analyzing ∆Vrot
k = ∆Uk + ∆Tk,

where

∆Uk = kp

(
〈I −Qk+1, K〉 − 〈I −Qk, K〉

)
= kp〈Qk −Qk+1, K〉. (2.29)
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and

∆Tk =
1
2
(ωT

k+1 Jωk+1 −ωT
k Jωk)

=
1
2
(ωk+1 −ωk)

T J(ωk+1 + ωk), (2.30)

Therefore, ∆Vrot
k = Vrot

k+1 −Vrot
k is given as

∆Vrot
k =

1
2
(ωk+1 −ωk)

T J(ωk+1 + ωk)

+ kp〈Qk −Qk+1, K〉. (2.31)

The kinematics of the attitude tracking error is discretized as follows:

Qk+1 ≈ Qk
[
I +

∆t
2
(ωk+1 + ωk)

×]
≈ Qk + Qk

∆t
2
(ωk+1 + ωk)

×.

Thus,

Qk+1 −Qk ≈
∆t
2

Qk (ωk+1 + ωk)
×. (2.32)

26



Substituting (2.32) into (2.29), the change in potential energy is obtained as:

kp〈Qk −Qk+1, K〉 = ∆t
2

kp〈−Qk (ωk+1 + ωk)
×, K〉

=
∆t
2

kp〈 (ωk+1 + ωk)
×,−QT

k K〉

=
∆t
2

kp ·
1
2
〈(ωk+1 + ωk)

×, KQk −QT
k K〉

=
∆t
2

kp (ωk+1 + ωk)
T SK(Qk), (2.33)

where

SK(Qk) = vex(KQk −QT
k K)

=
3

∑
i=1

ki(QT
k ei)× ei, (2.34)

and vex(·) : so(3)→ R is the inverse of the (·)× map.

Therefore, the change of the candidate Morse-Lyapunov function will be rewritten as

∆Vrot
k =

1
2
(ωk+1 −ωk)

T J(ωk+1 + ωk)

+
∆t
2

kp〈 (ωk+1 + ωk)
T SK(Qk)

=
1
2
(ωk+1 + ωk)

T
[

J(ωk+1 −ωk) + ∆t kp SK(Qk)
]
. (2.35)

It can be shown that the attitude tracking control system is stable by setting

J(ωk+1 −ωk) + ∆t kp SK(Qk) = −Lω(ωk+1 + ωk), (2.36)
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so that

∆Vrot
k = −1

2
(ωk+1 + ωk)

T Lω(ωk+1 + ωk) ≤ 0,

Where Lω is a positive definite control gain matrix. Therefore, from (2.36) one can find

the discrete-time attitude tracking error dynamics as

ωk+1 = (J + Lω)
−1
[
(J − Lω)ωk − ∆t kp SK(Qk)

]
. (2.37)

From the discretized dynamics equation of rotational motion obtained in the form of

LGVI (Nordkvist and Sanyal, 2010; Prabhakaran, Sanyal, and Samiei, 2018), one finds

that

J Ωk+1 = FT
k JΩk + ∆tτk, (2.38)

where Ωk+1 can be written as

Ωk+1 = ωk+1 + QT
k+1 Ωd

k+1. (2.39)

Substituting (2.37) into (3.72), and then solving (3.76) for the discrete-time control law τk,

one obtains (2.27) for the control input torque for attitude tracking.

A generalization of LaSalle invariance theorem applicable to tracking control is given

by Theorem 8.4 of (Khalil, 2001). A discrete-time version of this result completes the proof

for both translational and attitude tracking schemes and allows us to conclude that the

overall attitude and position tracking control system is asymptotically stable. �
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2.4 Generating desired attitude trajectory

Given the desired control force vector in inertial frame as given by (3.40), one can generate

a desired trajectory for the third column of Rd (the desired attitude) as follows:

r3d =
ϕk

‖ϕk‖
= Rde3. (2.40)

Select an appropriate sd(t) ∈ C2(R3) such that it is transverse to r3d. Now compute

r2d =
r3d × sd

‖r3d × sd‖
= Rde2,

and r1d =r2d × r3d = Rde1.
(2.41)

The desired attitude trajectory is then given by:

Rd = [r2d × r3d r2d r3d] ∈ SO(3). (2.42)

The following statement gives a simpler choice of sd in R3 that is transverse to r3d ∈ R3

for all t > 0. It also gives a vector that is orthogonal to the given unit vector.

Proposition 2.4.1. Let r3d =

[
a1 a2 a3

]T
∈ S2 ⊂ R3 be a known unit vector as given in

(2.40). The vector

sd =


a2 + a3

a3 − a1

−a1 − a2

 (2.43)

is orthogonal to r3d.
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Proof. This is easily verified by the property of scalar product (orthogonal projection) as

follows:

rT
3dsd = a1(a2 + a3) + a2(a3 − a1) + a3(−a1 − a2)

= a1(a2 + a3 − a2 − a3) + a2(a3 − a3) = 0.

This shows that the vector sd as defined by (2.43) is orthogonal to the given vector r3d. �

2.5 Simulation Results

This section presents numerical simulation results for the discrete-time stable tracking

control schemes for tracking position and attitude trajectories. The numerical simulation

is performed for an UAV quadrotor of mass, m = 4.34kg, and a moment of inertia as

J = diag[0.0820, 0.0845, 0.1377]kgm2,

and for five seconds, t = 5s, with a time step size of h = 0.01, using the LGVI routine

given in (2.23) and (3.76) and discrete-time control laws obtained in (2.25) and (2.27). The

helical desired trajectory and the initial conditions are given as follows

bd
k = bd(tk) =

[
0.4 sin πtk 0.6 cos πtk 0.4 tk

]T
,

b0 =

[
1 0 0

]T
, R0 = I3×3,

v0 = Ω0 =

[
0 0 0

]T
.
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and the gains are selected after trial and error as follows,

P = 48 I3×3 ; D = 0.15 I3×3,

Lω = 0.11 I3×3 ; kp = 3 .

and provide desirable transient response characteristics of the overall control scheme.

The time trajectory of the UAV tracking the desired trajectory is shown in Fig. 2.2 and

it is inferred that the trajectory converges to the desired values and remains stable for all

time, t > 0.
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FIGURE 2.2: Time trajectory of UAV

The results of the numerical simulation for position and velocity tracking response of

discrete-time control law obtained in eq. (2.25) are shown in Fig. 2.3 and Fig. 2.4, respec-

tively. Fig. 2.3 indicates that the position tracking errors converge to zero and therefore
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the discrete-time control scheme presented here is able to track the desired position trajec-

tory and remains stable. It is also shown in Fig. 2.4 that the discrete-time control scheme

guarantees that the UAV tracks the translation velocity too. The graphs of control laws

are plotted in Fig. 2.5 and Fig. 2.6. As shown in Fig. 2.5, The total magnitude of the

thrust force does not exceed 50 N , and Fig. 2.6 depicts the corresponding control torque

inputs, which are within capabilities of the four propellers of the UAV. Moreover, Fig. 2.7

and Fig. 2.8 show that the total energy-like quantities for both desired translational mo-

tion and attitude tracking decrease over the time t, and ensure the stability of the system.

These results show that the discrete-time tracking control scheme presented here takes

the UAV from an initial pose to a desired final pose in SE(3), and the overall system is

stable.
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FIGURE 2.3: Position tracking error
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FIGURE 2.4: Velocity tracking error
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FIGURE 2.5: Total thrust force

FIGURE 2.6: Control torque
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FIGURE 2.8: Total rotational energy

2.6 Conclusion

A discrete-time stable tracking control scheme for a rigid body with one actuated trans-

lational degree of freedom and three actuated rotational degrees of freedom, is presented

in this chapter. This scheme is based on designing a discrete-time energy-based track-

ing control to obtain the desired discrete-time control force vector and control torque to

asymptotically stabilize the desired translational motion and attitude trajectory. Discrete-

time Lyapunov analysis shows that a tracking control scheme obtained provides stable
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asymptotic convergence of actual states to desired states. It is also shown that the to-

tal energy-like quantity is decreasing in discrete time for both desired translational and

desired rotational motions. The stable discrete-time control laws are then obtained from

these discrete-time error dynamics equations as well as the LGVI-based discrete-time dy-

namics model of the vehicle. The overall discrete-time control scheme and trajectory gen-

eration is simulated numerically. Simulation results validate the stable performance of the

overall tracking control scheme as well as discrete-time stability of the resulting control

laws.
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Chapter 3

Discrete Time Stable Tracking Control

with Finite-time Convergence

This chapter is adapted from papers published in Proceedings of the 58th IEEE Conference

on Decision and Control (CDC 2019) (Hamrah, Sanyal, and Prabhakaran, 2019), the 2020

American Control Conference (ACC 2020) (Hamrah, Sanyal, and Prabhakaran, 2020), and

a journal paper accepted to be published in International Journal of Control (Hamrah and

Sanyal, 2020). The author gratefully acknowledges Dr. Amit Sanyal, and Dr. Sasi Prab-

hakaran for their participation.

Abstract We consider tracking control of a rigid body system with its three rotational

degrees of freedom and one of its translational degrees of freedom actuated. This is an

underactuated system on the tangent bundle of the six-dimensional Lie group of rigid

body motions, SE(3). We formulate a finite-time stable tracking control scheme for this

underactuated system in discrete time. This scheme is based on our recently developed

theory for finite-time stability for discrete-time systems using discrete Lyapunov analy-

sis. The proposed scheme here is developed in discrete time as it is more convenient for
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onboard computer implementation and ensures stability irrespective of the sampling pe-

riod. This tracking control scheme guarantees a stable convergence of translational and

rotational tracking errors to the desired trajectory in finite time. Furthermore, the advan-

tages of finite-time stabilization in discrete time over finite-time stabilization of a sampled

continuous-time tracking control system is addressed in this Chapter through a numerical

comparison. This comparison is performed using numerical simulations on continuous

and discrete FTS tracking control schemes applied to an unmanned aerial vehicle model.

3.1 Problem Formulation

The coordinate frame definition and trajectory generation technique used in this research

work is same as presented in Chapter 2. Tracking error kinematics and dynamics in con-

tinuous time are also as given in 2.1.2, where

Q = (Rd)T R (3.1)

is the attitude tracking error in the desired body fixed frame, and

ω = Ω−QTΩd (3.2)

is the angular velocity tracking error, and υ = ν− QT(νd + (Ωd)×x) is the translational

velocity tracking error expressed in the body frame. The tracking errors for translational

motion are expressed with respect to inertial frame as b̃ := b− bd and ṽ := v− vd, which

are position and velocity tracking errors, respectively.
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Therefore, in inertial frame I , the translational error dynamics are expressed as

˙̃b = ṽ = v− vd, (3.3)

m ˙̃v = m g e3 − (ϕ + ϕD)− vd, (3.4)

where ϕ is the control force vector, and ϕD is the disturbance force vector acting on the

body, expressed in inertial frame. The magnitude of this vector is the control input f ,

which is designed as a feedback control law, and e3 = [0 0 1]T is the third standard basis

of R3. The position trajectory control law gives a desired thrust direction, which is then

used to generate a desired attitude trajectory, as described in (Prabhakaran, Sanyal, and

Samiei, 2018). Let J denote inertia of a rigid body. The rotational dynamics of the rigid

body is given by:

Ṙ = R Ω×, (3.5)

JΩ̇ = JΩ×Ω + τ + τD. (3.6)

where τ is the input torque, and τD is an unknown bounded disturbance torque. There-

fore, the dynamics for the attitude tracking error is

Jω̇ = τ + J(ω×QTΩd −QTΩ̇d)− (ω + QTΩd)× J(ω + QTΩd). (3.7)

Since the translational error dynamics is expressed in the inertial frame, the rotational

error dynamics is decoupled from the translational error dynamics such that the transla-

tion control force, f , is obtained in the inertial frame followed by the appropriate attitude

control, τ, in body frame to track the desired trajectory, bd.
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Consider tracking a desired pose gd(t) in a time interval [t0, t f ] ∈ R+ separated into

N equal-length sub-intervals [tk, tk+1] for k = 0, 1, ..., N, with tN = t f and tk+1 − tk = ∆t

where ∆t is the time step size. Therefore, one can express the discrete-time pose error

kinematics and dynamics of an underactuated vehicle in the form of LGVI presented in

(Nordkvist and Sanyal, 2010; Hamrah, Warier, and Sanyal, 2018) as



b̃k+1 − b̃k = ṽk∆t,

mṽk+1 = m vk + ∆t m g e3 − (ϕ̄k + ϕ̄D
k )−mvd

k+1,

Rk+1 = Rk Fk,

J Ωk+1 = FT
k JΩk + uk + uD

k ,

(3.8)

where vk+1 = ṽk+1 + vd
k+1, ϕ̄k = ∆tϕk is the force control input, ϕ̄D

k is the disturbance

force, uk = ∆tτk is the torque control input, uD
k is the disturbance moment in addition

to the control torque uk, and Fk ≈ exp(∆t Ω×k ) ∈ SO(3) guarantees that Rk evolves on

SO(3). Using the discretized rotational kinematics equation given in (3.8) and attitude

racking error of (3.1) in discrete form, one can write

Qk+1 = (Rd
k+1)

TRk+1 = (Rd
k+1)

TRk Fk, (3.9)

where Rd
k+1 = Rd

k Fd
k . Then,

Qk+1 = (Fd
k )

T(Rd
k)

TRk Fk

= (Fd
k )

TQk Fk. (3.10)
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Using the definitions for Fk and Fd
k given earlier into the above expression and carrying

out some algebraic simplifications, one obtains

Qk+1 ≈ Qk
[
I + ∆t (Ωk −QT

k Ωd
k)
×]

= Qk(I + vk
×), (3.11)

where vk = ∆t ωk, and ωk is the angular velocity tracking error at time instant tk.

3.2 Finite-time Stability of Discrete-time Systems

The following result is a basic result on finite-time stability and convergence for discrete-

time systems, and it was first reported in (Sanyal, 2019; Hamrah, Sanyal, and Prab-

hakaran, 2019).

Lemma 3.2.1. Consider a discrete-time system with inputs uk ∈ Rm and outputs yk ∈ Rl.

Define a corresponding positive definite (Lyapunov) function V : Rl → R and let Vk = V(yk).

Let α be a constant as 0 < α < 1, η ∈ R+ a constant, and let γk := γ(Vk) where γ : R+
0 → R+

0

is a positive definite function of Vk. Let γk satisfy the condition:

γk ≥ η for all Vk ≥ ε, (3.12)

for some (possibly small) constant ε ∈ R+. Then, if Vk satisfies the relation

Vk+1 −Vk ≤ −γkVα
k , (3.13)

41



the discrete system is (Lyapunov) stable at y = 0 and yk converges to y = 0 for k > N, where

N ∈W is finite.

Proof. The proof of this Lemma is given in (Hamrah, Sanyal, and Prabhakaran, 2019;

Sanyal, 2019), and omitted here for brevity.

�

The following statement presents the conditions under which a discrete-time system

is finite-time stable using a Lyapunov function that is quadratic in terms of states.

Lemma 3.2.2. Consider the discrete-time system

xk+1 = B(xk)xk, (3.14)

where xk ∈ Rn and B : Rn → R is a Co function. Define Vk := V(xk) as follows:

Vk := V(xk) = xT
k Pxk, P = PT > 0, (3.15)

and denote Bk := B(xk). The system (3.14) is finite-time stable under following conditions:


B2

k ≤ 1− γk

V1−α
k

,

Vk ≥ ε = η
1

1−α ,

(3.16)

where Vk, γk, and η are as defined in Lemma 3.2.1.
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Proof. Evaluating the first finite difference of Vk, one obtains

V(1)
k := Vk+1 −Vk = (xk+1 − xk)

TP(xk + xk+1)

= xT
k (Bk + 1)P(Bk − 1)xk

= (B2
k − 1)xT

k Pxk

= (B2
k − 1)Vk. (3.17)

According to Lemma 3.2.1, finite-time stability of system (3.14) requires that

Vk+1 −Vk ≤ −γkVα
k for 0 < α < 1,

where γk is defined as in Lemma 3.2.1 and satisfies the condition (3.12). From (3.13) and

(3.17), we have

Vk+1 −Vk ≤ −γkVα
k ⇔ (B2

k − 1)Vk ≤ −γkVα
k

⇔ B2
k ≤ 1− γk

V1−α
k

. (3.18)

Noting that B2 ≥ 0, we conclude from (3.18) that

V1−α
k ≥ γk = γ(Vk). (3.19)

It is also clear from above that if inequality (3.19) is reversed, i.e., if γk ≥ V1−α
k for finite

k, then that would lead to a contradiction of (3.18) whereby B2
k ≤ 0, which can only

happen if Bk = 0. This, in turn, would result in finite-time stability of system (3.14) as

xk+1 = Bkxk = 0. This leads us to the conclusion that if γk satisfies condition (3.12) in
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Lemma 3.2.1, then system (3.14) will be finite-time stable. �

Note that inequality (3.18) can be used to design Bk if, for example, it is evaluated

as an equality with a γk = γ(Vk) designed to meet the above requirement. In fact, γ(.)

can be positive definite function (not-necessary class-K) that meets this requirement, i.e.,

γk ≥ η for all Vk ≥ η
1

1−α , η > 0. Following Lemma presents a design for γ which satisfies

the conditions given in 3.16.

Lemma 3.2.3. Consider the conditions (3.16), under which the system (3.14) is shown that is

finite-time stable. One possible design for γk and Bk as a function of Vk can be as

γk = 4c
( V1−α

k

V1−α
k + c

)2
, (3.20)

and

Bk =
V1−α

k − c

V1−α
k + c

, (3.21)

where c ≥ 0 is a constant, and γk and Bk satisfy both conditions in (3.16).

Proof. Consider

γk = f (Vk).
( V1−α

k

V1−α
k + c

)2
, (3.22)

where f (Vk) is a positive and bounded function. Then, to satisfy the condition (3.19), it is

required to have

V1−α
k ≥ f (Vk).

( V1−α
k

V1−α
k + c

)2
. (3.23)
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One can find f (Vk) such that above inequality as well as (3.18) hold for the designed γk,

and then the best expression for Bk will be determined accordingly.

Substituting (3.22) into (3.18), one finds

B2
k ≤ 1− f (Vk).

V1−α
k

(V1−α
k + c)2

≤ (V1−α
k + c)2 − f (Vk).V1−α

k

(V1−α
k + c)2

≤ (V1−α
k )2 + 2c V1−α

k − f (Vk).V1−α
k + c2

(V1−α
k + c)2

.

(3.24)

As noted in Lemma 3.2.2, B2 ≥ 0 leads to V1−α
k ≥ γk, and satisfies the condition (3.22).

Therefore, for B2 ≥ 0, it is required to have

(
f (Vk)− 2c

)
V1−α

k ≤ (V1−α
k )2 + c2. (3.25)

One solution to the above inequality is

(
f (Vk)− 2c

)
V1−α

k = ±2c V1−α
k , (3.26)

which gives f (Vk) = 0 , 4c. Since γk is a positive definite function by definition, f (Vk) =

4c would be the acceptable answer. Therefore, one obtains expressions for γk and Bk as


γk = 4c

( V1−α
k

V1−α
k + c

)2
,

Bk =
V1−α

k − c

V1−α
k + c

,
(3.27)
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which satisfy the conditions given in (3.16) and guarantee the stability of the system (3.14).

�

3.3 Discrete-time Stable Position Tracking Control

Defining the discrete-time Lyapunov function quadratic in position tracking error as

V(b̃k) = Vk =
1
2

b̃T
k Pb̃k, (3.28)

where P = PT ∈ R3×3 is a positive definite control gain matrix. The total time difference

of this discrete Lyapunov function in the time interval [tk, tk+1] for k = 0, 1, ..., N is then

obtained as

∆Vk = Vk+1 −Vk =
1
2

b̃T
k+1Pb̃k+1 −

1
2

b̃T
k Pb̃k (3.29)

=
1
2
(b̃k+1 − b̃k)

TP(b̃k + b̃k+1).

A constructive method to obtain FTS position tracking control scheme in discrete time is

provided here, which has two steps. In the first step, we develop a discrete vector-valued

function of the position and velocity tracking errors that ensures that when this function

converges to zero, the errors converge to zero as well. The following statement presents

the first step of this method.

Lemma 3.3.1. Define l(b̃k, ṽk) as

l(b̃k, ṽk) := ṽk∆t +
β(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

, (3.30)
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for the dynamics given in (3.8), where β > 0, 1 < p < 2 and ṽk = (b̃k+1 − b̃k)/∆t. Let

b̃k+1 = B(b̃k)b̃k, where

B(b̃k) :=
(b̃T

k Pb̃k)
1−1/p − β

(b̃T
k Pb̃k)1−1/p + β

.
(3.31)

Then the tracking errors (b̃k, ṽk) converge to zero in finite time when l(b̃k, ṽk) = 0.

Proof. One can rewrite (3.31) as

b̃k+1 = b̃k
(b̃T

k Pb̃k)
1−1/p − β

(b̃T
k Pb̃k)1−1/p + β

. (3.32)

Hence, it can be simplified to

b̃k+1 − b̃k = −
β(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

. (3.33)

Note that this can be re-expressed as

− β(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

= ṽk∆t, (3.34)

which holds when l(b̃k, ṽk) = 0.

Consider the discrete-time Lyapunov function Vk defined by (3.28). The difference

between the values of this function at successive discrete instants is given by (3.29). From

(3.33), substituting b̃k+1 − b̃k into (3.29), one gets

Vk+1 −Vk = −
β

2
(b̃k+1 + b̃k)

TP(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

. (3.35)
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Note that b̃k+1 + b̃k =
(
1 +B(b̃k)

)
b̃k, and the right side of expression (3.35) is zero if only

if

b̃k+1 = −b̃k,

which is possible if and only if B(b̃k) = −1 according to (3.31). From the expression for

B(b̃k) in (3.31), one can see that B(b̃k) = −1 if and only if b̃k = 0. Therefore, we conclude

that

Vk+1 −Vk = 0 ⇔ b̃k = 0.

Now substituting (3.32) into (3.35) and noting that b̃T
k Pb̃k = 2Vk, one obtains

Vk+1 −Vk = −γk(Vk)
1/p, (3.36)

where

γk = 4β
21−1/p(Vk)

2−2/p(
(2Vk)1−1/p + β

)2 . (3.37)

Clearly, γk as given by eq. (3.37) is a class-K function of Vk. From eqs. (3.36) and (3.37),

one can see that Vk is monotonously decreasing if γk > 0 and

0 < γk <
4β

21−1/p for 0 < 2Vk < ∞.

Therefore γk would lead to finite-time stability of tracking control system. Also from

(3.37), one obtains the ratio:

ak :=
γk
γ0

=
(Vk)

2−2/p

(V0)2−2/p

(
(2V0)

1−1/p + β
)2(

(2Vk)1−1/p + β
)2 . (3.38)
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This ratio in eq. (3.38) is bounded below by a positive number in the open interval (0, 1)

for non-zero Vk and V0. This guarantees the existence of ε ∈ (0, 1) and 0 < χ < (V0)
1−1/p

that satisfy the condition (3.12) in the statement of Lemma 3.2.1 for Vk. Therefore, (3.36)

guarantees that Vk converges to zero for k > N for some finite N ∈ N, and this ensures

the finite-time stable convergence of tracking errors to zero. �

In the second step of finding the FTS position tracking scheme in discrete time, one can

create a control force for the error dynamics given in (3.8) that ensures convergence of the

function l(b̃k, ṽk) derived in the first step to zero in finite time. This will, in turn, ensure

that (b̃k, ṽk) converges to (0, 0) in finite time. In order to fulfill this objective, a positive

definite Lyapunov function in terms of the obtained vector-valued l(b̃k, ṽk) is constructed

as

V (b̃k, ṽk) =
1
2

l(b̃k, ṽk)
Tl(b̃k, ṽk), (3.39)

which can be used to obtain the FTS tracking control scheme in discrete time. The follow-

ing statement provides the main result on a finite-time stable position tracking control

scheme.
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Theorem 3.3.1. Consider the translational kinematics and dynamics given by (3.8). Then, the

discrete-time force control law given by

ϕ̄k =m
(
vk + ∆t g e3 − ṽd

k+1
)

(3.40)

− m
∆t

[
(1 +

κ

(lTk lk)1−1/p
)(1 +

β

(b̃T
k+1Pb̃k+1)1−1/p

)

]−1

·
{(

1− κ

(lTk lk)1−1/p

)
ṽk∆t− 2β

(b̃T
k+1Pb̃k+1)1−1/p

(
1 +

κ

(lTk lk)1−1/p

)
b̃k+1

+
β(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

(
1− κ

(lTk lk)1−1/p

)}
.

where κ > 0, and p and β are as defined in Lemma 3.3.1, stabilizes the translational error dynamics

in finite time.

Proof. Consider the Lyapunov function (3.39) quadratic in l(b̃k, ṽk) as constructed in (3.30).

Therefore, the time difference of this discrete-time Lyapunov function can be evaluated

as follows:

Vk+1 − Vk =
1
2
(lk+1 + lk)T(lk+1 − lk). (3.41)

Similar to the definition for b̃k+1 in Lemma 3.3.1, one can consider

lk+1 = L(b̃k, ṽk) lk, (3.42)

where

L(b̃k, ṽk) =
(lTk lk)1−1/p − κ

(lTk lk)1−1/p + κ
, (3.43)
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Substituting (3.43) in (3.42) gives

(lk+1 − lk) = −
κ

(lTk lk)1−1/p
(lk+1 + lk). (3.44)

Then according to Lemma 3.3.1, one can prove similarly that

Vk+1 − Vk = −λkV
1/p

k , (3.45)

where

λk = 4κ
21−1/p(Vk)

2−2/p(
(2Vk)1−1/p + κ

)2 (3.46)

is a class-K function of Vk. Also, from (3.45) and (3.46), one can see that

0 < λk <
4κ

21−1/p for 0 < 2Vk < ∞.

Therefore, λk would lead to finite-time stability of tracking control system.

Now, by substituting l(b̃k, ṽk) given in (3.30) into (3.44), one can obtain

(ṽk+1 − ṽk)∆t + β
[ (b̃k+2 + b̃k+1)

(b̃T
k+1Pb̃k+1)1−1/p

− (b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

]
(3.47)

= − κ

(lTk lk)1−1/p

{
(ṽk+1 + ṽk)∆t + β

[ (b̃k+2 + b̃k+1)

(b̃T
k+1Pb̃k+1)1−1/p

+
(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

]}
.
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Noting that (b̃k+2 − b̃k+1)/∆t = ṽk+1, one can solve above expression for ṽk+1 to obtain

the discrete-time translational error dynamics equation as

ṽk+1 = F (b̃k, b̃k+1, ṽk, lk) = (3.48)

1
∆t

[
(1 +

κ

(lTk lk)1−1/p
)(1 +

β

(b̃T
k+1Pb̃k+1)1−1/p

)

]−1

·
{(

1− κ

(lTk lk)1−1/p

)
ṽk∆t− 2β

(b̃T
k+1Pb̃k+1)1−1/p

(
1 +

κ

(lTk lk)1−1/p

)
b̃k+1

+
β(b̃k+1 + b̃k)

(b̃T
k Pb̃k)1−1/p

(
1− κ

(lTk lk)1−1/p

)}
,

Then, noting that ṽk+1 = vk+1− vd
k+1, one can obtain the discrete-time control force vector

given by (3.40) after substituting (3.48) in the second equation of (3.8). The discrete-time

control force vector so obtained, guarantees the finite-time stability of the position track-

ing control. �

The following section provides a finite-time stable feedback control law in discrete

time to stabilize the attitude error dynamics (3.8).

3.4 Discrete Finite-time Stable Attitude Tracking Control

In this section, a finite-time stable attitude tracking control scheme in discrete time is

provided. The following two Lemmas are also used to prove the main result.

Lemma 3.4.1. Let x and y be non-negative real numbers and let p as defined in 3.3.1. Then

x(1/p) + y(1/p) ≥ (x + y)(1/p). (3.49)
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Moreover the above inequality is a strict inequality if both x and y are non-zero.

Lemma 3.4.2. Let K = diag(k1, k2, k3), where k1 > k2 > k3 ≥ 1. Define

sK(Q) =
3

∑
i=1

ki(QTei)× ei, (3.50)

such that d
dt 〈K, I −Q〉 = ωTsK(Q). Here 〈A, B〉 = tr(ATB), which makes 〈K, I −Q〉 a Morse

function defined on SO(3). Let S ⊂ SO(3) be a closed subset containing the identity in its

interior, defined by

S =
{

Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0 ∀i, j ∈ {1, 2, 3}, i 6= j
}

. (3.51)

Then for Q ∈ S , we have

sK(Q)TsK(Q) ≥ tr(K− KQ). (3.52)

Proof. The proof of this Lemma is given in (Bohn and Sanyal, 2015), and omitted here for

brevity. �

The discrete finite-time attitude tracking control scheme and its proof of stability and

domain of convergence are given as follows.

Theorem 3.4.1. Consider the discretized rotational error kinematics and the real dynamics of an

underactuated vehicle given in (3.8), with sK(Qk) as defined in (3.50). Define

zK(Qk) =
sK(Qk)(

sT
K(Qk)sK(Qk)

)1−1/p , (3.53)

53



where p is as defined in Lemma 3.4.1, and let kl be a constant in the interval (0, 1]. Then, the

discrete-time control law given by

uk = J

([ (ψT
k Jψk)

1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

](
ωk + klzK(Qk)

)
− klzK(Qk+1) + QT

k+1 Ωd
k+1

)
− FT

k JΩk, (3.54)

stabilizes the rotational error dynamics

ωk+1 =

[
(ψT

k Jψk)
1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

]
ψk(ωk, Qk)− klzK(Qk+1) (3.55)

in finite time, where ψk(ωk, Qk) is defined as

ψk(ωk, Qk) = ωk + klzK(Qk). (3.56)

Proof. Consider ωk = −klzK(Qk) and discretized error kinematics given in (3.8) and de-

fine the discrete-time Morse function Uk = kp 〈I −Qk, K〉 on SO(3) where kp > 1. Then

the first time difference of this discrete-time Morse function along the attitude kinematics
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is given by

Uk+1 −Uk = kp 〈Qk −Qk+1, K〉

= kp〈−Qk v×k , K〉

= kp〈 v×k ,−QT
k K〉

=
1
2

kp〈v×k , KQk −QT
k K〉

= kp vT
k SK(Qk). (3.57)

Substituting vk = ∆t ωk in (3.57), one finds

kp vT
k SK(Qk) = −∆t kp kl zK(Qk)

TsK(Qk)

= −kp kl ∆t
(
sK(Qk)

TsK(Qk)
)1/p

≤ −kp kl ∆t
(
〈I −Qk, K〉

)1/p

≤ −kl ∆t
(
kp 〈I −Qk, K〉

)1/p. (3.58)

where we employed inequality (4.38) in Lemma 3.4.2. Therefore, when ψk = 0, one can

conclude that 〈I − Qk, K〉 → 0 in finite time for all initial Qk in the subset S ⊂ SO(3)

defined in Lemma 3.4.1, which yields Qk → I in finite time once Qk ∈ S . Moreover,

as ∆Uk = Uk+1 −Uk is negative definite when ψk = 0, it keeps decreasing in time and

therefore Qk will reach S in finite time. Therefore, Qk → I in finite time.

The control law is then designed to ensure that ψk(ωk, Qk) → 0 in finite time. Define

the Lyapunov function

Vk(ωk, Qk) =
1
2

ψk(ωk, Qk)
Tψk(ωk, Qk) + kp 〈I −Qk, K〉 . (3.59)
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The time difference of this discrete-time Lyapunov function can be evaluated as follows:

Vk+1 − Vk =
1
2

ψT
k+1 Jψk+1 −

1
2

ψT
k Jψk + kp 〈Qk −Qk+1, K〉

=
1
2
(ψk+1 + ψk)

T J(ψk+1 − ψk) + kp 〈Qk −Qk+1, K〉 . (3.60)

One can consider

ψk+1 = Ψ(ωk, Qk)ψk, (3.61)

where

Ψ(ωk, Qk) =
(ψT

k Jψk)
1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

, (3.62)

and let Γ > 0.

Substituting (3.62) in (3.61) gives

(ψk+1 − ψk) = −
Γ

(ψT
k Jψk)1−1/p

(ψk+1 + ψk). (3.63)

Therefore, one can rewrite (3.60) as

Vk+1 − Vk = −
Γ
2
(ψk+1 + ψk)

T J(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

+ kp vT
k SK(Qk). (3.64)

Note that the first term on the right-hand side of expression (3.64) is zero if and only if

ψk+1 = −ψk,
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which is possible if and only if Ψ(ωk, Qk) = −1 according to (3.61). From (3.62), one

can see that Ψ(ωk, Qk) = −1 if and only if ψk = 0. Therefore, from (3.61) and (3.62) we

conclude that

−Γ
2
(ψk+1 + ψk)

T J(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

= 0 ⇔ ψk = 0.

Therefore, the first term on the right side of expression (3.64) can be simplified as follows:

−Γ
2
(ψk+1 + ψk)

T J(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

= −ρk (ψ
T
k Jψk)

1/p, (3.65)

where

ρk = 4Γ
(0.5)1−1/p(ψT

k Jψk)
2−2/p(

(ψT
k Jψk)1−1/p + Γ

)2 . (3.66)

From equations (3.65) and (3.66), one can see that the first term on the right side of ex-

pression (3.64) is monotonously decreasing if

0 < ρk <
4Γ

21−1/p for 0 < ψT
k Jψk < ∞,

Therefore, using (3.58) and (3.65), the expression (3.64) is evaluated as follows:

∆Vk = −ρk(ψ
T
k Jψk)

1/p − kpkl∆t
(
sK(Qk)

TsK(Qk)
)1/p

≤ −(ψT
k Jψk)

1/p − kl ∆t
(
kp 〈I −Qk, K〉

)1/p

≤ −kl ∆t
(
(ψT

k Jψk)
1/p +

(
kp 〈I −Qk, K〉

)1/p
)

. (3.67)
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for (Qk, ωk) ∈ S ×R3. Finally, using inequality (4.36) in Lemma 3.4.1, one obtains

∆Vk ≤ −kl ∆t
(

ψT
k Jψk + kp 〈I −Qk, K〉

)1/p

≤ −kl ∆t V1/p
k , (3.68)

where kp > 0, and 0 < kl ≤ 1. Therefore, all initial states of the feedback attitude system,

which start in the domain of attraction of the equilibrium (I, 0) and for which the value of

the Lyapunov function V is finite, converge to (I, 0) in finite time. Now, by substituting

ψk(ωk, Qk) given in (3.56) into (3.61), one can obtain

ωk+1 = Ψ(ωk, Qk)
(
ωk + klzK(Qk)

)
− klzK(Qk+1), (3.69)

or

ωk+1 =

[
(ψT

k Jψk)
1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

]
ψk(ωk, Qk)− klzK(Qk+1). (3.70)

From the discretized dynamics equation of rotational motion obtained in the form of a

LGVI given in (3.8) as

J Ωk+1 = FT
k JΩk + uk, (3.71)

where

Ωk+1 = ωk+1 + QT
k+1 Ωd

k+1, (3.72)
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one can find the discrete-time control law uk that guarantees the stability of the attitude

tracking control in a finite time, as follows:

uk = J

([ (ψT
k Jψk)

1−1/p − Γ

(ψT
k Jψk)1−1/p + Γ

](
ωk + klzK(Qk)

)
− klzK(Qk+1) + QT

k+1 Ωd
k+1

)
− FT

k JΩk.

(3.73)

�

Remark 3.4.1. (Almost global domain of attraction of the control scheme) Analyzing

the time difference of the Morse-Lyapunov function (3.59) showed that this function

satisfies the sufficient condition for finite-time stability. From prior research on almost

global asymptotic attitude stabilization and tracking in (Chaturvedi, Sanyal, and Mc-

Clamroch, 2011; Sanyal, Nordkvist, and Chyba, 2011; Sanyal and Chaturvedi, 2008), we

know that the subset of SO(3) where sK(Qk) = 0, which is also the set of critical points

for 〈I −Qk, K〉, is

C , {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)} ⊂ SO(3).

Therefore, the subset of the state space where Vk+1 − Vk = 0 is {(Qk, ωk) : Qk ∈ C and

ωk = 0} ⊂ SO(3) ×R3 ' TSO(3). This subset is also the set of equilibria for tracking

errors in the feedback attitude system, and its largest invariant set. Among the four equi-

libria in this set, the equilibrium (Qk, ωk) = (I, 0) is attractive as it corresponds to the

minimum value of Vk(Qk, ωk). Other three equilibria are unstable equilibria. All trajec-

tories that do not start on the stable manifolds of the other three equilibria converge to

the stable equilibrium (I, 0). The Lyapunov function along a state trajectory on any of

59



these stable manifolds increases in value when going backwards in time. A state trajec-

tory on a stable manifold of any of these unstable equlibria cannot approach itself outside

of a closed neighborhood containing the equilibrium. Therefore, the stable manifolds of

these unstable equilibria form nowhere dense subsets of SO(3)×R3. Denote the union of

these stable manifolds of the unstable equilibria as M. The complement of M is therefore

dense and open in TSO(3) ' SO(3) ×R3. All initial states that are in the complement

SO(3)×R3/M converge to the stable equilibrium (I, 0), which makes its domain of at-

traction almost global.

3.5 Robustness Analysis of discrete-time FTS attitude track-

ing control scheme

The finite-time stability property of the attitude tracking control law given in Theorem

3.4.1 results in guaranteed convergence of almost any initial attitude state to the desired

state, given by the tracking errors (Q, ω) = (I, 0), in finite time in the absence of any dis-

turbances to the discretized dynamics model. In the presence of a bounded disturbance

control input uD
k in the dynamics, all attitude tracking errors will converge to a bounded

neighborhood of (I, 0) as well. The following result gives a conservative statement relat-

ing the bound of tracking errors that can be tolerated and bounds on the neighborhood

of (I, 0).

Corollary 3.5.1. Consider the discretized feedback system given by the attitude kinematics and

dynamics in the last two equations (3.8), and the control law (3.73). Let N ⊂ S×R3, where S is

60



as defined in equation (4.37), be a closed neighborhood of (I, 0) defined by

N :=
{
(Qk, ωk) : ‖sK(Qk)‖ ≤ smax and ‖ψk‖ ≤ Ψmax < 1

}
, (3.74)

If the norm of the disturbance in control input, uD
k , satisfies the following inequality,

∥∥∥uD
k

∥∥∥ ≤ kl ∆t
(

Ψ(2/p)
max + s(2/p)

max

)
Ψmax

, (3.75)

then, the tracking errors (Q, ω) converge to the neighborhood N in finite time.

Proof. Consider the discretized attitude dynamics of a rigid body in LGVI form given in

(3.8) disturbed by a control input uD
k ,

J Ωk+1 = FT
k JΩk + uk + uD

k (3.76)

which has an additional term (uD
k ) due to the disturbance control input, and noting that

ωk+1 = Ωk+1 −QT
k+1 Ωd

k+1,

and

ψk(ωk, Qk) = ωk + klzK(Qk),
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then, we can write

ψk+1 − ψk = Ωk+1 −QT
k+1 Ωd

k+1 −Ωk + QT
k Ωd

k + kl

(
zK(Qk+1)− zK(Qk)

)
= J−1FT

k JΩk + J−1uk + J−1uD
k −QT

k+1 Ωd
k+1

−Ωk + QT
k Ωd

k + kl

(
zK(Qk+1)− zK(Qk)

)
= − Γ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

+ J−1u. (3.77)

Substituting (3.77) into the time difference of discrete-time Lyapunov function given in

(3.60) and simplifying, we get

Vk+1 − Vk =
1
2
(ψk+1 + ψk)

T J

[
− Γ(ψk+1 + ψk)

(ψT
k Jψk)1−1/p

+ J−1uD
k

]
+ kp 〈Qk −Qk+1, K〉

= −ρk (ψ
T
k Jψk)

1/p − kp kl ∆t
(
sK(Qk)

TsK(Qk)
)1/p

+
1
2
(ψk+1 + ψk)

TuD
k .

(3.78)

Now, since ‖ψk+1 + ψk‖ ≤ ‖ψk+1‖+ ‖ψk‖ ≤ 2Ψmax, the last term on the right side of the

above equation is upper bounded as follows:

1
2
(ψk+1 + ψk)uD

k ≤
1
2
‖ψk+1 + ψk‖

∥∥∥uD
k

∥∥∥ ≤ Ψmax

∥∥∥uD
k

∥∥∥ , (3.79)
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From AB ≤ ‖A‖ . ‖B‖, we can rewrite the time difference of Lyapunov function as

Vk+1 − Vk ≤ −ρk (ψ
T
k Jψk)

1/p − kp kl ∆t
(
〈I −Qk, K〉

)1/p
+

1
2
‖ψk+1 + ψk‖

∥∥∥uD
k

∥∥∥
≤ −(ψT

k Jψk)
1/p − kl ∆t

(
kp 〈I −Qk, K〉

)1/p
+

1
2
‖ψk+1 + ψk‖

∥∥∥uD
k

∥∥∥
≤ −kl ∆t

(
(ψT

k Jψk)
1/p +

(
kp 〈I −Qk, K〉

)1/p
)
+

1
2
‖ψk+1 + ψk‖

∥∥∥uD
k

∥∥∥
≤ −kl ∆t

(
ψ
(1/p)
max + s(1/p)

max

)
+ Ψmax

∥∥∥uD
k

∥∥∥ . (3.80)

Therefore, Vk+1 − Vk is non-positive along the boundary of N if

−kl ∆t
(

ψ
(1/p)
max + s(1/p)

max

)
+ Ψmax

∥∥∥uD
k

∥∥∥ ≤ 0, (3.81)

which is a sufficient condition for all trajectories starting outside the boundary of neigh-

borhood N to converge to this neighborhood of (I, 0). Expression (3.81) leads to (4.65)

for the bound on the norm of the disturbance uD
k for which convergence of errors to the

neighborhood N of (I, 0) is guaranteed. �

Remark 3.5.1. In the presence of bounded disturbances and internal parametric uncer-

tainties in the dynamics of the rigid body, state trajectories will converge to a bounded

neighborhood of (Q, ω) = (I, 0). On the other hand, based on a desired size of this

neighborhood, one can find an upper bound on the norm of external disturbances and

internal parametric uncertainties that can be tolerated for state trajectories to converge to

this neighborhood. This can be done using the Lyapunov analysis presented in the proof

of the almost global finite-time stability of the tracking control scheme given in Theorems

3.3.1 and 3.4.1.
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3.6 Continuous finite-time stable tracking control on SE(3)

A FTS tracking control scheme in continuous time has been reported in (Prabhakaran,

Sanyal, and Warier, 2017). In this scheme, the error dynamics in continuous time is given

by:


m ˙̃v = m g e3 − ϕc − vd,

Jω̇ = τc + J(ω×QTΩd −QTΩ̇d)− (ω + QTΩd)× J(ω + QTΩd),
(3.82)

where τc and ϕc ∈ R3 are obtained from the feedback control laws in continuous time as

follows:

τc = J

(
QTΩ̇d − κrH(sK(Q))(

sT
K(Q)sK(Q)

)1−1/p w(Q, ω)

)

+ (QTΩd)× J
(
QTΩd − κrzK(Q)

)
+ κr J

(
zK(Q)×QTΩd)

+ κr J(ω + QTΩd)× zK(Q)− kpsK(Q)− LΩΨ(Q, ω)(
Ψ(Q, ω)TLΩΨ(Q, ω)

)1−1/p , (3.83)

and

ϕc = ge3 − v̇d + κt(ż + b̃) +
κtPr(ṽ + κtz)[

(ṽ + κtz)TPr(ṽ + κtz)
]1−1/p . (3.84)
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In equations (3.83) and (3.84),

Ψ(Q, ω) = ω + κzK(Q), (3.85)

H(x) = I − 2(1− 1/p)
xTx

xxT, (3.86)

z(t) =
b̃

(b̃Tb̃)1−1/p
, (3.87)

ż =
(b̃Tb̃)1−1/pṽ− (2− 2/p)(b̃Tb̃)−1/p(b̃Tṽ)b̃

(b̃Tb̃)2−2/p
, (3.88)

where Pr ∈ R3×3 is a positive definite control gain matrix, and p is as defined in Lemma

3.4.1. Further, LΩ is a positive definite control gain matrix such that LΩ − J is positive

semi-definite, kp > 1 and the control gain κ is defined by

κp =
σL,min

σJ,max
> 0.

These continuous control laws guarantee the finite-time stability of the feedback tracking

error dynamics given by (3.82) at (Q, ω, b̃, ṽ) = (I, 0, 0, 0). These control laws are then

sampled over the time interval [t0, t f ] and with a time step size ∆t.

The following section presents numerical results obtained by implementing this chap-

ter’s proposed FTS scheme in discrete time compared to the results of the sampled finite-

time continuous scheme.

3.7 Simulation Results

This section presents numerical simulation results for the FTS tracking control scheme in

discrete time. These simulation results are provided for a quadrotor UAV with a mass
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m = 4 kg, for time period of T = 5s, and with time step size of ∆t = 0.01s using discrete-

time FTS control laws obtained in (3.40) and (3.73). Figure 3.1 shows the block diagram

of a control system for controlling a quadrotor UAV to follow a time-varying desired

position, bd
k . This system has two loops: an inner loop for attitude control and an outer

loop for position control. The desired attitude (Rd
k) that is to be tracked, is generated using

the desired control force vector given by an outer loop position tracking scheme.

FIGURE 3.1: Block diagram of a quadrotor UAV control system.

3.7.1 Numerical simulation results for discrete-time FTS position and

attitude tracking control schemes

A helical desired position trajectory with the following initial conditions is used for both

control loops:

bd
k = bd(tk) =

[
0.4 sin πtk 0.6 cos πtk 0.4 tk

]T
,

b0 =

[
1 0 0

]T
, v0 =

[
0 0 0

]T
,

R0 = I, Ω0 =

[
0 0 0

]T
, Ωd

0 =

[
0 0 0

]T
.
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The gains are selected after trial and error for the FTS discrete-time attitude tracking

scheme as follows:

P = 4 I3×3, β = 0.01, κ = 0.009,

kl = 0.01, Γ = 0.1,

and for the FTS sampled continuous time scheme as follows:

Pr = 5 I3×3, κt = 0.8,

LΩ = 3.5 I3×3, kp = 4.5, κr = 0.04,

which provide desirable and similar transient response characteristics of both tracking

control schemes when ∆t = 0.01. The time trajectory of the UAV tracking the desired

trajectory is shown in Fig. 3.2 and it shows that the trajectory converges to the desired

values in a finite time stable manner.
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FIGURE 3.2: Time trajectory of UAV.

The results of the numerical simulation for the discrete-time FTS tracking control laws

obtained in (3.40) and (3.73) for ∆t = 0.01 and t f = 5s are shown in Figures 3.3 and 3.4.

Figures 3.3a and 3.3b show that the translational motion tracking errors converge to zero

in finite time. Figures 3.3c and 3.4a indicate the finite-time convergence of rotational mo-

tion tracking errors to zero. The attitude tracking error is parameterized by the principal

rotation angle Φ of the attitude error matrix Q, and is given by

Φ = cos−1
(1

2
(
tr(Q)− 1

))
. (3.89)

Convergence of the attitude tracking error Φ in finite time, as shown in Fig. 3.4a, implies

that R tracks the desired trajectory Rd. The time plots of the control inputs fk and τk in

Figs. 3.4b and 3.4c respectively, show that the control effort is within reasonable bounds
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and practically achievable for multi-rotor UAVs. Therefore the discrete-time tracking con-

trol scheme proposed here is able to track the desired trajectory in finite time.

3.7.2 Comparison with a sampled continuous-time tracking scheme

The performance of the proposed FTS tracking control scheme in discrete time is com-

pared here to that of the sampled continuous-time FTS tracking scheme presented in sec-

tion 3.6. Result of numerical simulations are provided for the same quadrotor UAV given

above but for different time periods of T = 5, 25, and 50s, with different time step sizes of

∆t = 0.01, 0.05, and 0.1s and the same total number of time steps, using discrete-time FTS

control laws obtained in (3.40) and (3.73), and the sampled continuous-time control laws

given in (Prabhakaran, Sanyal, and Warier, 2017). Simulation results are presented in Fig.

3.5 to Fig. 3.9 to compare the performance of the discrete-time FTS tracking scheme with

a sampled continuous-time FTS tracking scheme for different values of the time step size.

From these plots, one can conclude that the control law obtained by sampling the contin-

uous FTS control input does not ensure the stability in tracking when the time step size

changes. Moreover, to have a definite result of the comparison between results of these

two schemes, a parameter study that was first proposed and used in (Hamrah, Sanyal,

and Prabhakaran, 2019) is used here to confirm how the value of the Lyapunov function

behaves at certain time instants. This tests whether the Lyapunov function increases in

value between two successive sampling instants, and whether that increase is significant

or is just an artifact of machine (float) precision. The results of this comparison are given

in Table 3.1, where ∆Vmax denotes the maximum positive value of the time difference
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Vk+1 −Vk as:

∆Vmax = max
[
(Vk+1 −Vk) > 0

]
, (3.90)

and Vk denotes the sum of the values of the Lyapunov functions for the position and

attitude tracking errors as defined in (3.28) and (3.59), respectively. The value of Vk+1 −
Vk is expected to be negative for a finite-time stable system until it converges to zero

in finite time, which ensures the stability of the system in finite time. On the contrary, a

significant increase in the value of ∆Vmax occurs for the sampled continuous FTS tracking

scheme as time step size increases, whereas ∆Vmax has a negligible value (to machine

precision) when the discrete-time FTS tracking control scheme is implemented.

Tracking Control Scheme ∆t(s) t f (s) ∆Vmax

Discrete-time FTS
0.01 5 1.0991× 10−15

0.05 25 4.0776× 10−25

0.1 50 4.1364× 10−25

Sampled Continuous FTS
0.01 5 2.3153× 10−5

0.05 25 0.3166
0.1 50 1.7888

TABLE 3.1: Stability performance of discrete-time FTS vs. sampled
continuous-time FTS tracking control scheme on SO(3).
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FIGURE 3.3: Tracking errors and control laws for discrete-time FTS tracking
control scheme for ∆t = 0.01 and t f = 5s.
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FIGURE 3.4: Tracking errors and control laws for discrete-time FTS tracking
control scheme for ∆t = 0.01 and t f = 5s.
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FIGURE 3.5: Tracking errors for sampled FTS continuous tracking control
scheme for ∆t = 0.01 and t f = 5s.
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FIGURE 3.6: Tracking errors for discrete-time FTS tracking control scheme for
∆t = 0.05 and t f = 25s.

74



0 5 10 15 20 25

-1

-0.5

0

0.5

1

(A) Position tracking error

0 5 10 15 20 25

-1.5

-1

-0.5

0

0.5

(B) Velocity tracking error

0 5 10 15 20 25

0

1

2

3

(C) Angular velocity error

0 5 10 15 20 25

0

0.2

0.4

0.6

(D) Attitude tracking error

FIGURE 3.7: Tracking errors for sampled FTS continuous tracking control
scheme for ∆t = 0.05 and t f = 25s.
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FIGURE 3.8: Tracking errors for discrete-time FTS tracking control scheme for
∆t = 0.1 and t f = 50s.
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FIGURE 3.9: Tracking errors for sampled FTS continuous tracking control
scheme for ∆t = 0.1 and t f = 50s.
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3.8 Conclusion

This research work proposes a discrete-time stable tracking control scheme with finite-

time stability for unmanned vehicles that can be modeled as rigid bodies with one degree

of freedom of translational motion and three degrees of freedom of rotational motion ac-

tuated. This control scheme is designed with two loops: an inner loop for attitude control

and an outer loop for position control. In the outer loop, given a desired position trajec-

tory in an inertial coordinate frame, the desired control force vector is obtained in discrete

time to stabilize the desired trajectory in finite time. This control force vector expressed

in the body-fixed frame is then used to generate a desired attitude trajectory. In the in-

ner loop to track this desired attitude trajectory, a discrete-time finite-time stable (FTS)

attitude tracking scheme is developed and utilized. The outer loop for position track-

ing also uses a discrete-time FTS control scheme. The finite-time stability of the overall

tracking control scheme is proved using a discrete-time Lyapunov analysis, which results

in discrete-time error dynamics in terms of translational and rotational motion tracking

errors. A two-step method is proposed for each of the two control loops here, designed

using a Lyapunov function that is quadratic in vector-valued functions linear in velocity

and angular velocity tracking errors. Then, it is shown that position and attitude tracking

errors converge to zero when this vector-valued function vanishes. This analysis results

in discrete-time control laws that guarantee the convergence of the position and attitude

states to the desired position and attitude trajectories in a finite time interval. Analysis

of robustness to bounded disturbance torque is also presented. Moreover, a compari-

son between the performance of the proposed scheme and that of a sampled continuous

FTS scheme is studied here, and numerical results show that a discrete-time FTS tracking

control scheme is more reliable for onboard computer implementation when we need to
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work with a variety of input data frequencies.
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Chapter 4

Stable Nonlinear Attitude Estimation

with Finite-Time Convergence

This chapter is adapted from the paper (Sanyal, Warier, and Hamrah, 2019) published in

Proceeding of the 18th European Control Conference (ECC 2019). The author gratefully

acknowledges Dr. Amit Sanyal, and Dr. Rakesh R. Warier for their participation.

Abstract This research work presents a nonlinear finite-time stable attitude estimation

scheme for a rigid body with unknown dynamics. Attitude is estimated from a minimum

of two linearly independent known vectors measured in the body-fixed frame, and the

angular velocity vector is assumed to have a constant bias in addition to measurement er-

rors. Estimated attitude evolves directly on the special Euclidean group SO(3), avoiding

any ambiguities. The constant bias in angular velocity measurements is also estimated.

The estimation scheme is proven to be almost globally finite time stable in the absence of

measurement errors using a Lyapunov analysis. The robustness of the scheme in the pres-

ence of bounded measurement errors is analytically shown. For digital implementation,

the estimation scheme is discretized as a geometric integrator. Numerical simulations
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demonstrate the robustness and convergence properties of the estimation scheme.

4.1 Mathematical Preliminaries

Any square matrix A ∈ Rn×n can be written as the sum of unique symmetric and skew-

symmetric matrices as follows:

A = sym(A) + skew(A), (4.1)

where the symmetric and skew-symmetric components are defined as,

sym(A) =
1
2
(A + AT), skew(A) =

1
2
(A− AT). (4.2)

Additionally, the following property holds. If A1 ∈ Rn×n is a symmetric matrix and

A2 ∈ Rn×n is a skew symmetric matrix, then,

〈A1, A2〉 =0. (4.3)

In other words, symmetric and skew matrices are orthogonal under the trace inner prod-

uct. For all a1, a2 ∈ R3,

〈
a×1 , a×2

〉
=2a1 · a2 (4.4)

With these definitions, we proceed to lay out the attitude estimation problem.
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4.2 Static Attitude Determination From Vector Measurements

The aim of this section is to formulate the problem of attitude determination from vector

measurements. Let I denote an inertial frame that is spatially fixed. A body-fixed frame

is fixed to the rigid body with its origin at the center of mass of the body, and is denoted

B. We denote the attitude of the rigid body by R ∈ SO(3), which transforms vectors in

the body frame B to their counterparts in the inertial frame I .

4.2.1 Vector Measurements

The attitude of the rigid body is determined from body-fixed measurements of k known

inertial vectors. Let e1, e2, · · · ek, k ∈N be the known inertial vectors and um
1 , um

2 , · · · um
k be

the corresponding body-fixed measurements. The ith vector measurement in the body-

fixed frame B satisfies,

um
i = RTei + σi (4.5)

where σi ∈ R3 is the noise in the ith vector measurement, for all i ∈ 1, 2, · · · k. The attitude

of the rigid body can be calculated from the vector measurements provided the following

assumption is satisfied.

Assumption 4.2.1. There are at least two non-collinear vectors in the set {e1, · · · , ek} for attitude

determination at all times. If k = 2, e3 = e1 × e2 is selected as the third non-collinear vector.
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Define the matrix consisting of k known inertial vectors ei as column vectors,

E =


[e1 e2 e1 × e2] ∈ R3×3 when k = 2,

[e1 e2 . . . ek] ∈ R3×k when k > 2.
(4.6)

The assumption 4.2.1 can be alternatively specified as follows: matrix E should have rank

equal to 3. The corresponding matrix composed of body-fixed measurements as column

vectors can be defined as,

Um =


[um

1 um
2 um

1 × um
2 ] ∈ R3×3 when k = 2,

[um
1 um

2 . . . um
k ] ∈ R3×k when k > 2.

(4.7)

The matrix consisting of inertial vectors E and the matrix containing the body frame vec-

tors Um are related by:

Um = RTE + Ξ, (4.8)

where the columns of matrix Ξ correspond to the measurement errors σi. Let the true

vectors in body frame be denoted by ui = RTei, then the matrix of the actual body vectors

corresponding to the inertial vectors ei is given by

U = RTE, (4.9)

in the absence of measurement errors.

The static attitude determination problem is formulated in the next subsection.

84



4.2.2 Cost Function For Attitude Determination

The objective is to obtain an estimate of the attitude denoted by R̂ ∈ SO(3) from k known

inertial vectors e1, . . . , ek and corresponding measured vectors um
1 , . . . , um

k . The static atti-

tude estimation can be formulated as an optimization problem as follows,

MinimizeR̂U =
1
2

k

∑
i

wi(ei − R̂um
i )

T(ei − R̂um
i ), (4.10)

where wi > 0 are weight factors. This is referred to as Wahba’s problem as in (Wahba,

1965). The cost function is re-expressed as,

U =
1
2

〈
E− R̂Um, (E− R̂Um)W

〉
, (4.11)

where W = diag([w1, w2, . . . , wk]) and E and Um are given by equations (4.6) and (4.7)

respectively. The cost function can be generalized such that W is a symmetric positive

semi-definite matrix satisfying some special conditions. This is described in the next sub-

section. The structure of the generalized cost function in the absence of measurement

errors, is detailed in the following lemma.

Lemma 4.2.1. Define Q = RR̂T as the attitude estimation error. Let E ∈ R3×k be as defined as

in (4.6) with rank(E) = 3. Let the gain matrix W of the generalized Wahba cost function be given

by,

W = ET(EET)−1K
(
EET)−1E, (4.12)
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where K = diag([k1, k2, k3]) and k1 > k2 > k3 ≥ 1. Then, in the absence of measurement errors,

U =
1
2

〈
E− R̂Um, (E− R̂Um)W

〉
= 〈K, I −Q〉 , (4.13)

which is a Morse function on SO(3) whose critical points are given by the set,

C = {I, diag([−1,−1, 1]), diag([1,−1,−1]),

diag([−1, 1,−1])}. (4.14)

In addition, U has a global minimum at Q = I.

Proof. Utilizing the properties of the inner product we can arrive at the following simpli-

fication:

U =
1
2

tr
((

ETE + (Um)TUm)W)
− 1

2
tr
((

(Um)TR̂TE− ETR̂Um)W). (4.15)

Substituting W as given by (4.12) and defining

L = EW(Um)T, (4.16)

the expression (4.15) can be further simplified to:

U =
1
2

tr
(

K + UmW(Um)T − R̂TL− LTR̂
)
. (4.17)
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In the absence of measurement noise in the vector measurements, Um = U = RTE and

L = KR. Substituting Um = RTE in equation (4.17) and tr(AB) = tr(BA), we get

U =tr(K− LTR̂) = tr
(

K− R̂RTEWET
)

= 〈K, I −Q〉 , where Q = RR̂T. (4.18)

The choice of W given in eq. (4.12) ensures that K = EWET. Next it is shown that

〈K, I −Q〉 is a Morse function with four isolated non-degenerate critical points on SO(3)

given in (4.14). A Morse function is a function that has isolated non-degenerate critical

points, which can be classified as minimum, maximum or saddle points by examining

the Hessian of this function as in (Milnor, Spivak, and Wells, 1969). The proof that shows

(4.13) is a Morse function is presented in detail in Lemma 2.1 in (Izadi and Sanyal, 2014)

and is omitted here for brevity.

A first variation of Q ∈ SO(3) is given by,

δQ = QΣ×, (4.19)

where Σ ∈ R3. The first variation of 〈K, I −Q〉 with respect to Q is given by

∂Q 〈K, I −Q〉 = 〈K,−δQ〉 = tr(−KQΣ×). (4.20)

KQ can be written as sum of skew and symmetric matrices i.e., KQ = sym(KQ) +
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skew(KQ). Exploiting the linearity of the trace inner product and utilizing the identi-

ties given by Eq. (4.3) and Eq. (4.4), the following expression is obtained.

∂Q 〈K, I −Q〉 = 〈skew(KQ), Σ〉

= vex(KQ−QTK)TΣ = sK(Q)TΣ, (4.21)

where sK(Q) is given by,

sK(Q) = vex(KQ−QTK), (4.22)

and vex(.) is as defined in Section 4.1. The critical points of 〈K, I −Q〉 on SO(3) are where

the variation vanishes. Since Σ is arbitrary, the critical points satisfy, sK(Q) = 0, which

implies,

KQ = QTK. (4.23)

Due to the properties of K, the critical points of 〈K, I −Q〉 are therefore given by,

Q ∈{I, diag([−1,−1, 1]), diag([1,−1,−1]),

diag([−1, 1,−1])}. (4.24)

By taking the second variation it can be shown that 〈K, I −Q〉 achieves a minimum at

Q = I. Similar results are available in prior literature, e.g., (Izadi and Sanyal, 2014; Bullo

and Lewis, 2004). �

The static estimation problem outlined here can be solved by computing R̂ that will
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minimize the U at any given instant. However, static methods often under perform when

measurements have noise and bias. The following section considers dynamic attitude

estimation under unknown attitude dynamics and with biased angular velocity measure-

ments.

4.3 Preliminary Results for Attitude State and Angular Ve-

locity Bias Estimation

4.3.1 Dynamic Attitude Estimation

The kinematics of rigid body rotation is given by Poisson’s equation:

Ṙ = RΩ×, (4.25)

where Ω ∈ R3 is the true angular velocity of the rigid body represented in the body-fixed

coordinate frame. Let the measured angular velocity, denoted by Ωm, be given by

Ωm = Ω + β + ν, (4.26)

where β ∈ R3 is a constant bias in angular velocity measurements that also has to be

estimated, and ν ∈ R3 is the vector of additive noise in angular velocity components. Let

(R̂, Ω̂) ∈ SO(3)×R3 be the estimated attitude and angular velocity states provided by

the estimation scheme, satisfying the following kinematic relation:

˙̂R = R̂Ω̂×. (4.27)
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In addition, let

Ω̂ = Ωm − β̂−ω, (4.28)

where β̂ ∈ R3 is the estimate of the bias in angular velocity measurements, and ω ∈ R3

is the “excess" or error in estimating the angular velocity and the bias.

The objective is to obtain estimates of the attitude, angular velocity, and bias (R̂, Ω̂

and β̂) in real time, from the matrix of known inertial vectors E, the corresponding vector

measurements made in the body-fixed frame Um, and the biased angular velocity mea-

surement Ωm. The moment of inertia and other parameters that occur in the dynamics of

the rigid body are unknown. Note that the (number of) measured vectors may be varying

over time, as long as at least two non-collinear vectors are measured at all times. The ob-

server design given in the following section is shown to provide almost global finite-time

stable (AGFTS) estimates R̂, Ω̂ and β̂, where these estimates converge to the respective

true values R, Ω and β in finite time, in the absence of measurement noise. Section 5.3

shows the robustness of this observer in the presence of measurement noise. The follow-

ing result, relating the attitude estimation error to the angular velocity estimation error,

is used in the next section to prove the main result.

Lemma 4.3.1. Let K be as defined in Lemma 4.2.1. Then, in the absence of the measurement errors,

the time derivative of U along the trajectories satisfying the kinematic equations (4.25)-(4.27), is

given by:

d
dt
U =

d
dt
〈K, I −Q〉 = sK(Q) ·

(
R̂Ω̃
)

(4.29)

=
d
dt

tr(K− LTR̂) = −sL(R̂) · Ω̃, (4.30)
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where

Ω̃ = Ω− Ω̂, sL(R̂) = vex(LTR̂− R̂TL). (4.31)

Proof. Since Re = RR̂T, we obtain from eqs. (4.25)-(4.27):

Q̇ =
d
dt

Q = ṘR̂T + R ˙̂R
T

= RΩ×R̂T − RΩ̂×R̂T

= RR̂T(R̂(Ω− Ω̂)
)×

= Q(R̂Ω̃)×.

(4.32)

Further, from the definition of L in eq. (4.16), we see that in the absence of measurement

noise Um = U = RTE and

L̇ = EWU̇T = EWUTΩ× = LΩ×. (4.33)

From eq. (4.32), we obtain

d
dt
〈K, I −Q〉 = 〈K,−Q(R̂Ω̃)×〉.

From eq. (4.33), we get

d
dt

tr(K− LTR̂) = tr(Ω×LTR̂− LTR̂Ω̂×).
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As in the proof of Lemma 4.2.1, (4.3) and (4.4) are utilized to obtain,

d
dt
〈K, I −Q〉 = −1

2
tr
(
(KQ−QTK)(R̂Ω̃)×

)
= vex(KQ−QTK) · (R̂Ω̃) (4.34)

and
d
dt

tr(K− LTR̂) = −vex(LTR̂− R̂TL) · Ω̃. (4.35)

As (4.34) is identical to (4.29) and (4.35) is identical to (4.30), we conclude the result. �

4.3.2 Some Preliminary Results

The following four lemmas are used to prove the main result on finite time stable attitude,

angular velocity and bias estimation scheme given in Section 4.4.

Lemma 4.3.2. Let x and y be non-negative real numbers and let p ∈ (1, 2). Then

x(1/p) + y(1/p) ≥ (x + y)(1/p). (4.36)

Moreover the above inequality is a strict inequality if both x and y are non-zero.

Proof. The proof of this result is given in (Bohn and Sanyal, 2014; Bohn and Sanyal, 2015),

and is omitted here for brevity. �
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Lemma 4.3.3. Let K be as defined in Lemma 4.2.1 and sK(Q) be as given in the equation (4.22).

Let S ⊂ SO(3) be a closed subset containing the identity in its interior, defined by

S =
{

Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0

∀i, j ∈ {1, 2, 3}, i 6= j
}

. (4.37)

Then for Q ∈ S , we have

sK(Q)TsK(Q) ≥ tr(K− KQ). (4.38)

Proof. The proof of this result is given in (Bohn and Sanyal, 2015), and is omitted here for

brevity. �

Lemma 4.3.4. Let sL(R̂) and sK(Q) be as defined earlier. Then following holds:

sL(R̂)TsL(R̂) = sK(Q)TsK(Q) (4.39)

Proof. From the definition of L, it can be seen that L = KR. sL(R̂) and sK(Q) can be

rewritten as,

sL(R̂) = vex(RTKR̂− R̂TKR) =: vex(A1), (4.40)

sK(Q) = vex(KRR̂T − R̂RTK) := vex(A2), (4.41)

where A1, A2 are used to represent the skew symmetric matrices inside the vex(.) opera-

tor. From the identity given in Eq.(4.4), it is clear that Eq.(4.39) is equivalent to following
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expression,

tr(A1A1) = tr(A2A2). (4.42)

The RHS turns out to be,

tr(A1A1) = tr
(
(RTKR̂− R̂TKR)(RTKR̂− R̂TKR)

)
(4.43)

The LHS is obtained as,

tr(A2A2) = tr
(
(KRR̂T − R̂RTK)(KRR̂T − R̂RTK)

)
(4.44)

The identity in Eq. (4.42) can be obtained by expanding and simplifying the above two

expressions using the properties of trace inner product. �

The design and stability result of the finite-time stable estimator are given in the fol-

lowing section. Note that the attitude estimation error Q = RR̂T is defined on the group

of rigid body rotations, SO(3), which is not a vector space. The angular velocity estima-

tion error, Ω̃, and bias estimation error, β̃, are expressed on the vector space R3. Therefore,

for Lyapunov stability analysis of the observer designed on SO(3)×R3 ×R3, a suitable

Lyapunov function is required. This comes in the form of a Morse-Lyapunov function, as

defined later in Theorem 4.4.1 in Section 4.4, where the Morse function U = 〈K, I −Q〉 on

SO(3) is used as the component of the Morse-Lyapunov function that depends on the at-

titude component of the full state. The Morse-Lyapunov function is subsequently shown

to guarantee convergence of state estimation errors (Q, Ω̃, β̃) to (I, 0, 0) in finite-time.
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4.4 Finite-time Stable Attitude State and Angular Velocity

Bias Estimation

In this section we give the main result; a finite-time stable observer for estimation of rigid

body attitude, angular velocity, and a constant bias in angular velocity measurements. A

Hölder-continuous Morse-Lyapunov function is utilized to show the finite-time stability

of the resulting closed-loop system. For rigid body attitude, we assume that at least two

non-collinear but known inertial vectors are measured in a body-fixed frame, as described

earlier in section 4.2.

Theorem 4.4.1. Consider the attitude kinematics and angular velocity measurements given by

(4.25)-(4.28) in the absence of measurement noise (i.e., σ = 0, ν = 0). Let p ∈]1, 2[ and κ > 0 be

scalar observer gains, and define the following quantities:

β̃ = β− β̂, (4.45)

zL(R̂) =
sL(R̂)(

sL(R̂)TsL(R̂)
)1−1/p , (4.46)

Ψ(L, R̂, ω) = ω− κzL(R̂), and (4.47)

wL(R̂, Ω̂, Ωm, β̂) =
d
dt

sL(R̂) = vex
(

LTR̂Ω̂× + Ω̂×R̂TL
)

− vex
(

R̂TL(Ωm − β̂)× + (Ωm − β̂)×LTR̂
)
. (4.48)
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Let Assumption 4.2.1 be satisfied and let µ, kp, kv be positive scalar observer gains such that

µ ≤ 1. Thereafter, consider the following observer equations:

˙̂R = R̂Ω̂× = R̂(Ωm − β̂−ω)×, (4.49)

˙̂β =
kp

2− µ
sL, and (4.50)

µω̇ = kpsL − kv
Ψ(

ΨTΨ
)1−1/p +

µκ(
sT

L sL
)1−1/p H(sL)wL, (4.51)

where the functional dependencies of sL, wL and Ψ have been suppressed for notational conve-

nience, and where H : R3 → Sym(3), the space of symmetric 3 × 3 real matrices, is defined

by

H(x) = I − 2(1− 1/p)
xTx

xxT. (4.52)

Then the attitude and angular velocity estimation errors (Q, ω) converge to (I, 0) ∈ SO(3)×R3

and the bias estimation error β̃ converges to 0 ∈ R3 in a finite time stable manner, from almost all

initial conditions except those in a set of measure zero.

Proof. Consider the following Morse-Lyapunov function:

V(L, R̂, Ω, Ω̂, β̃) =
µ

2
ΨTΨ + kp U (R̂, Um, E)

+
2− µ

2
β̃Tβ̃,

(4.53)

where U (·, ·, ·) is as defined in Lemma 4.2.1. In the following analysis, we suppress the

functional dependencies of U and V for notational ease. Taking the time derivative of this

Lyapunov function, we get

V̇ = µΨTΨ̇− kpsT
L Ω̃− (2− µ)β̃T ˙̂β
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where we used eq. (4.30) to substitute for the time derivative of U in the second term, and

the fact that β is a constant bias (therefore ˙̃β = − ˙̂β) in the third term on the right side of

the above expression. Substituting from eq. (4.50) for ˙̂β into the third term, we get

V̇ = µΨTΨ̇− kpsT
L (Ω̃ + β̃). (4.54)

From (Bohn and Sanyal, 2014; Bohn and Sanyal, 2015), we know that

d
dt

zL =
1(

sT
L sL
)1−1/p H(sL)wL.

Now substituting for Ψ from eq. (4.47) in to eq. (4.54), using the time derivative of zL as

given by the above equation, and noting that ω = Ω̃ + β̃ in the absence of measurement

noise, we obtain

V̇ = µΨT
(

ω̇− κ(
sT

L sL
)1−1/p H(sL)wL

)
− kpsT

L ω. (4.55)

Finally, substituting the observer eq. (4.51) for ω̇ into eq. (4.55), we get

V̇ = ΨT
(

kpsL − kv
Ψ(

ΨTΨ
)1−1/p

)
− kpsT

L ω

= kpsT
L (Ψ−ω)− kv

(
ΨTΨ

)1/p

= −kpκsT
L zL − kv

(
ΨTΨ

)1/p

= −kpκ
(
sT

L sL
)1/p − kv

(
ΨTΨ

)1/p. (4.56)
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From Lemma 4.3.3 and Lemma 4.3.4, in a neighborhood of I ∈ SO(3), we have

− sT
L sL ≤ −U (R̂, Um, E) = −〈K, I −Q〉. (4.57)

Therefore, for the expression (4.56), we get

V̇ ≤ −k1−1/p
p κ(kpU )1/p − kv

(
ΨTΨ

)1/p

≤ −k0

((
ΨTΨ

)1/p
+
(
kpU

)1/p
)

, (4.58)

where k0 = min(k1−1/p
p κ, kv).

Finally, applying Lemma 4.3.2 to the above inequality, we have:

V̇ ≤ −k0

(
ΨTΨ + kpU

)1/p
. (4.59)

Considering equation (4.59), the set where V̇ = 0 is:

V̇−1(0) ={(Q, ω) : sk(Q) = 0 and Ψ = 0}

={(Q, ω) : Q ∈ C and ω = 0}. (4.60)

where C is as defined by eq. (4.14). Using the invariance-like theorem 8.4 in (Khalil, 2001),

we can conclude that as t→ ∞, (Q, ω) converges to the set:

S = {(Q, ω) : Q ∈ C and ω = 0 ∈ R3} (4.61)
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in finite time, which is equivalent to:

S = {(Q, Ω̃, β̃) ∈ SO(3)×R3 ×R3 : Q ∈ C , Ω̃ = 0 and β̃ = 0}, (4.62)

as ω = Ω̃ + β̃.

This means that the resulting closed-loop system has a set of equilibria S ⊂ SO(3)×
R3 ×R3, to which all initial estimation errors ultimately converge. The only stable equi-

librium in S is (I, 0, 0) while the other three are unstable equilibria. The resulting closed-

loop system with the estimation errors gives rise to a Hölder-continuous feedback with

exponent less than one ( 1
p < 1), while in the limiting case of 1

p = 1 the feedback system

is Lipschitz-continuous. Proceeding with an analysis similar to that in (Sanyal, Izadi, and

Bohn, 2014; Bohn and Sanyal, 2014; Sanyal, Bohn, and Bloch, 2013), it can be concluded

that the equilibria and the corresponding regions of attraction of the Hölder-continuous

FTS observer with p ∈]1, 2[ are identical to those of the corresponding Lipschitz-continuous

asymptotically stable observer with p = 1, and the region of attraction is almost global.

�

4.5 Robustness Analysis

The almost global finite-time stability property of the estimator given by Theorem 4.4.1

results in a guaranteed convergence of almost any bounded initial estimate errors to the

true state, given by the estimation errors (Q, Ω̃, β̃) = (I, 0, 0), in finite time in the absence

of any disturbances. In the presence of a bounded measurement noise ν in the measure-

ment of angular velocity, all estimate errors will converge to a bounded neighborhood of
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(I, 0, 0). The following result gives a conservative statement relating the bound of mea-

surement noise that can be tolerated and bounds on the neighborhood of (I, 0, 0).

Corollary 4.5.1. Consider the observer equations (4.49)-(4.51). Let the measured angular velocity

be given by

Ωm = Ω + β + ν (4.63)

where ν is the time-varying noise vector. LetN ⊂ S×R3×R3, where S is as defined in equation

(4.37), be a closed neighborhood of (I, 0, 0) defined by

N :=
{
(Q, Ω̃, β̃) : ‖sL‖ ≤ sLmax and ‖Ψ‖ ≤ Ψmax < 1

}
, (4.64)

If the norm of the noise in angular velocity ν satisfies following inequality,

‖ν(t)‖ ≤ ε ≤
kv

(
s(2/p)

Lmax
+ Ψ(2/p)

max

)
kp sLmax

, (4.65)

then, the estimation errors (Q, Ω̃, β̃) converge to the neighborhood N .

Proof. The proof of this statement is based on the Lyapunov analysis used in the proof of

Theorem 4.4.1. Substituting (4.26) in (4.28), we find

Ω̃ + β̃ = ω− ν, (4.66)

where Ω̃ and β̃ are defined in (4.31) and (4.45), respectively. Substituting (4.66) into the

time derivative of Lyapunov functions that is obtained and simplified as in (4.54), we

have

V̇ = µΨTΨ̇− kpsT
L ω + kpsT

L ν, (4.67)
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Then substituting for Ψ from (4.47) into (4.67) using the time derivative of zL, in the pres-

ence of measurement noise, we obtain

V̇ = µΨT
(

ω̇− κ(
sT

L sL
)1−1/p H(sL)wL

)
(4.68)

− kpsT
L ω + kpsT

L ν.

Finally, substituting the expression given in (4.51) for ω̇ into (4.68), we get

V̇ = ΨT
(

kpsL − kv
Ψ(

ΨTΨ
)1−1/p

)
− kpsT

L ω + kpsT
L ν

= kpsT
L (Ψ−ω)− kv

(
ΨTΨ

)1/p
+ kpsT

L ν

= −kpκsT
L zL − kv

(
ΨTΨ

)1/p
+ kpsT

L ν

= −kpκ
(
sT

L sL
)1/p − kv

(
ΨTΨ

)1/p
+ kpsT

L ν. (4.69)

which has an additional term due to the measurement noise, when compared with ex-

pression (4.56) for V̇ along the noise-free observer. Considering upper bounds of the

noise as defined in (4.65) on this extra term, we find

kpsT
L ν ≤

∥∥kp
∥∥ ‖sL‖ ‖ν‖ ≤ kpsLmax ε (4.70)

Therefore, V̇ is upper bounded as

V̇ ≤ −kpκ
(
sT

L sL
)1/p − kv

(
ΨTΨ

)1/p
+ kpsLmax ε (4.71)
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On the boundary of the neighborhoodN defined by (4.64), the upper bound on V̇ is given

by

V̇ ≤ −kv

(
s(2/p)

Lmax
+ Ψ(2/p)

max

)
+ kpsLmax ε. (4.72)

Therefore, V̇ is non-positive along the boundary of N if

−kv

(
s(2/p)

Lmax
+ Ψ(2/p)

max

)
+ kpsLmax ε ≤ 0. (4.73)

which is a sufficient condition for all trajectories starting outside this neighborhood to

converge to the neighborhood of (I, 0, 0). Expression (4.73) leads to (4.65) for the bound

on the norm of the noise ν for which convergence of estimation errors (Q, Ω̃, β̃) to (I, 0, 0)

is guaranteed. �

4.6 Numerical results of the finite-time stable (FTS) esti-

mator

In this section, simulation results of the proposed finite-time stable (FTS) estimator with-

out any measurement noise are presented to show the finite-time convergence of all estima-

tion errors to zero. Attitude estimation with the FTS estimator as well as the discrete VAE

introduced in Section 5.2.1 are numerically implemented using a geometric scheme. Unlike

commonly used numerical integration methods like Runge-Kutta, geometric integration

schemes preserve the geometry of the state space without any projection or parameteri-

zation.
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Let ω̇ = χ where χ is the right-hand side of (4.51) divided by µ, and let ∆t be the time

step size. Discretized equations that are used to numerically implement the proposed FTS

estimation scheme are as follows:

R̂i+1 = R̂i exp
(
∆t(Ωm

i − β̂i −ωi)
×), (4.74)

ωi+1 = ωi + ∆tχi, (4.75)

β̂i+1 = β̂i +
∆t kp

2− µ
sLi(R̂i). (4.76)

where

χi = µ−1
(

kpsLi −
kvΨi(

ΨT
i Ψi

)1−1/p +
µκH(sLi)wLi(
sT

Li
sLi

)1−1/p

)
(4.77)

The matrix exponential map in (4.74) guarantees that each attitude estimate belongs to

SO(3).

The estimator is simulated with a time step size of ∆t = 0.01 s for a time duration of

T = 30 s. The rigid body is assumed to have the following initial attitude and angular

velocity:

R0 = exp
(

π
(
[1, 0, 0]T

)×), Ω0 = [1 0.5 0]Trad/s.

The initial estimated states are selected to be R̂0 = I, Ω̂0 = [0, 0, 1]Trad/s, and β̂0 =

[0, 0, 0.1]T. Three inertial vectors are considered to be measured at a constant rate by

body-fixed sensors. There is no measurement noise in the direction vector measurements

or angular velocity vector measurement. The angular velocity measurement is only as-

sumed to have a constant bias of β = [−0.1, −1, 0.2]T rad/s. The observer gains are
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kp = 2, kv = 1, κ = 0.1, and µ = 0.35. The fractional exponent is taken as p = 1.1.

The simulation results are illustrated in Fig. 4.1. The attitude error, Q, error in esti-

mation of angular velocity and bias, ω, and bias estimation error itself, β̃, are shown to

converge in finite time in the absence of measurement noise, which implies the finite time

stability of the estimation scheme.

104



0 5 10 15 20 25 30
0

2

4

tr
(K

(I
−
Q
))

(A) Attitude Estimation Error with time

0 5 10 15 20 25 30

−2

0

2

4

ω
(r
ad

/s
)

ωx ωy ωz

(B) Angular velocity error ω with time

0 5 10 15 20 25 30

−1

0

Time(s)

β̃
(r
ad

/s
)

β̃x β̃y β̃z

(C) Bias estimation error β̃ with time

FIGURE 4.1: Simulation results of the FTS estimator without any measure-
ment noise
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4.7 Conclusion

The chapter presented a nonlinear state estimator for rigid body rotational motion. The

proposed scheme estimates the attitude and constant angular velocity bias vector from

a minimum of two known linearly independent vectors for attitude, and biased angular

velocity measurements made in the body-fixed frame. The rigid body’s dynamics is un-

known. The estimation errors including the bias estimation error are analytically proven

to stabilize to zero from almost all initial conditions in the absence of measurement er-

rors. The scheme is numerically implemented by a geometric integrator for a realistic

scenario involving measurement errors. Numerical results validate the theoretical results

and show the robustness of the proposed estimation scheme.
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Chapter 5

Comparison of A Geometric Finite-Time

Stable Observer with Some

State-of-the-Art Filters

This chapter is adapted from a journal paper submitted in Automatica on July 2019 and is

still under review. The author gratefully acknowledges Dr. Amit Sanyal, and Dr. Rakesh

R. Warier for their participation.

Abstract This research work presents a nonlinear finite-time stable attitude estimation

scheme for a rigid body with unknown dynamics and with unknown bias in angular ve-

locity measurements. The attitude and angular velocity are estimated from a minimum

of two linearly independent known vectors measured in the body-fixed frame, and the

measured angular velocity vector is assumed to have a constant bias in addition to mea-

surement errors. The estimated attitude evolves directly on the special orthogonal group

SO(3) of rigid body rotations, avoiding any ambiguities and singularities. The constant

bias in angular velocity measurements is also estimated. The estimation scheme is proven
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to be almost globally finite time stable in the absence of measurement errors using a Lya-

punov analysis. The estimation scheme is discretized as a geometric integrator for digital

implementation. Numerical simulations demonstrate the finite time stability properties

of the estimation scheme. Robustness of this estimation scheme is also demonstrated

through a numerical comparison against some state-of-the-art nonlinear attitude estima-

tion schemes.

5.1 Introduction

This chapter presents a numerical comparison between the proposed attitude estima-

tion scheme in Chapter 4 and existing results from the literature including the discrete-

time variational estimator (VAE) given in (Izadi et al., 2016), the geometric approximate

minimum-energy (GAME) of (Zamani, Trumpf, and Mahony, 2011), and the constant gain

observer (CGO) given in (Mahony, Hamel, and Pflimlin, 2008). As mentioned in previ-

ous chapter, the main contributions of the work are: (1) the proposed attitude estimation

scheme evolves on the special orthogonal group SO(3) and does not suffer from singular-

ities or unwinding; (2) the estimation scheme is model-free in the sense that no assump-

tions are made on the attitude dynamics model including knowledge of the moment of

inertia or the measurement noise model; (3) the estimation scheme is continuous and

almost globally finite time stable in the absence of measurement errors even when the an-

gular velocity measurement has an unknown constant bias; (4) the angular velocity bias

estimate is also stabilized to the true value in finite time; and (5) the robustness of the pro-

posed scheme under time-varying noise in angular velocity measurements is analytically

shown.
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5.2 Other State-of-the-Art Filters on SO(3)

Three estimation schemes are used in comparisons with the finite-time stable variational

estimator (FTS): The discrete-time variational estimator (VAE), the geometric approxi-

mate minimum-energy (GAME) estimator, and a constant gain observer (CGO).

5.2.1 Discrete-time Variational Attitude Estimator

This estimator appeared in (Izadi et al., 2016) and obtained by applying the (discrete)

Lagrange-d’Alembert principle of variational mechanics to a (discrete) Lagrangian con-

structed from residuals between measurements and state estimates with a dissipation

term that is linear in the angular velocity measurement residual. This discrete-time es-

timator is based on the earlier (continuous-time) variational attitude estimator (VAE)

that appeared in (Izadi and Sanyal, 2014). Here, we generalize the discrete-time VAE

to include angular velocity measurements that have a constant bias in addition to mea-

surement noise. The filter equations in discrete-time for a rigid body with the attitude

kinematics (4.25) and with measurements of vectors and angular velocity in a body-fixed

frame, are given by

R̂k+1 = R̂k exp
(
∆t(Ωm

k −ωk − β̂k)
×), (5.1)

β̂k+1 = β̂k + ∆tΦ′
(
U 0(R̂k, Um

k )
)

P−1sLk(R̂), (5.2)

Ω̂k = Ω̂m
k −ωk − β̂k, (5.3)

mωk+1 = exp(−∆tΩ̂×k+1){(m I3×3 − ∆t D)ωk (5.4)

+ ∆tΦ′
(
U 0(R̂k+1, Um

k+1)
)
sLk+1(R̂k+1)},
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where ∆t = tk+1− tk is the time step size for k = 1, 2, ..., N, sLk(R̂) = vex(LT
k R̂k− R̂T

k Lk) ∈
R3, Lk is as defined in (4.16) and evaluated at time tk, m is a positive scalar, D is a positive

definite filter gain matrix, and U 0(R̂k, Um
k ) and Φ

(
U 0(R̂, Um)

)
are as defined in (Izadi et

al., 2016).

5.2.2 GAME Filter

This estimator is a near-optimal filter proposed in (Zamani, Trumpf, and Mahony, 2011)

by generalizing Mortensen’s maximum-likelihood filtering scheme to SO(3). The geomet-

ric approximate minimum-energy (GAME) filter in continuous form is as given below:

˙̂R = R̂(Ωm − β̂ + Pal)×, (5.5)

where l =
j

∑
i=1

(
Di(ûi − ui)

)
× ûi

Ṗa = QΩ + 2Ps
(

Pa(2(Ωm − β̂)− Pal)×
)

(5.6)

+ Pa(E− S)Pa − PT
c − Pc,

Ṗc = −(Ωm − β̂− Pal)×Pc + Pa(E− S)Pc − Pb, (5.7)

Ṗb = Qb + Pc(E− S)Pc, (5.8)

˙̂β = PT
c l, (5.9)
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where

S =
j

∑
i=1

(û×i )
TDiû×i , (5.10)

E = trace(C)I − C, (5.11)

C =
j

∑
i=1

Ps
(
Di(ûi − ui)ûT

i
)
. (5.12)

Here ui is the true vector observed in body frame, ûi = R̂Tei, QΩ = BBT where B ∈
R3×3 allows for different weights for the components of the vector of additive noise in

angular velocity components, Qb = I3×3, Ps(X) = 1
2(X + XT) for X ∈ R3×3, Di =

(DiDT
i )
−1 where Di ∈ R3×3 allows for different weights for the vector measurement

noise, R̂(0) = I3×3, Pc(0) = 03×3, Pa(0) = 1
ϕ2 I3×3 where ϕ2 is the variance of the principal

angle corresponding to the initial attitude estimate, and Pb(0) = 1
ψ2 I3×3 where ψ2 is the

standard deviation of an initial bias.

5.2.3 The Constant Gain Observer

The Constant Gain Observer (CGO) presented in (Mahony, Hamel, and Pflimlin, 2008) in

continuous form is also represented as

˙̂R = R̂
(

Ωm − β̂ + KP ¯̀
)×

, ¯̀ =
j

∑
i=1

(
ui × ûi

)
, (5.13)

˙̂β = KI `. (5.14)

where KP and KI are constant gains and R̂(0) = I3×3. Note that the discrete-time versions

of this filter and the GAME filter as presented in (Zamani, 2013) use the unit quaternion
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representation, and are implemented as such in the following numerical simulations.

5.3 Numerical Simulation Results

This section presents numerical simulation results of a comparison between this scheme

and three other state-of-the-art estimators. The performance of the finite-time stable es-

timator in the presence of vector measurement noise, σi, and angular velocity noise, νi, and un-

known bias in angular velocity measurements is compared to that of the three estimators

presented in Section 5.2, under identical conditions. To do so, all the estimation schemes

are applied to the same rigid-body dynamics, with the same initial estimate errors, equal

time steps, and identical measurement noise. The sampling period and the total simu-

lation time are ∆t = 0.01s and T = 30s, respectively. Three known inertial directions

are measured by the sensors in the body frame, and these measurements include known

levels of noise, and rate gyro sensors for angular velocity measurement are assumed to

be biased with a constant bias of β = [−0.01, −0.005, 0.02]T rad/s for all schemes. The

initial estimate of the bias is set to be β̂0 = [0, 0, 0.1]T, the initial estimated rotation ma-

trix is set equal to identity, and the initial rotation matrix is selected such that its principal

angle has zero mean and a standard deviation of 60
◦
. The rigid body simulated has the

following angular velocity profile:

Ω(t) =
[

sin
2π

15
t − sin

2π

18
(t +

π

20
) cos(

2π

17
t)
]T

(5.15)

The initial angular velocity estimates are also set to be identical, as follows. According

to (5.5), the initial angular velocity estimation error is given by Pa(0)l(0) for the GAME

filter. For the FTS and discrete-time VAE estimators, choosing ω0 = Pa(0)l(0) and for the
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CGO, choosing KP = Pa(0) satisfies this condition. For this comparison in simulations,

the scalar “inertia-like” gain for the VAE estimator is selected as m = 0.5, the constant

gain KI of CGO filter is set equal to 0.3, and the positive definite dissipation matrix as

D = diag
( [

2.4 2.6 2.8

]T )
. (5.16)

As in (Zamani, 2013), the GAME and CGO estimators utilize unit quaternions for attitude

representation when implemented numerically. We compare the performance of these

two estimators as well as the discrete VAE scheme with the FTS attitude estimator for

two different cases, as described in the rest of this section.

5.3.1 CASE I: High Noise Levels

In this case, both direction vector measurement noise vectors σi and angular velocity

measurement noise vector ν are random zero mean signals whose probability distribu-

tions are normalized bump functions. It is assumed that the standard deviation of the

direction measurement noise and angular velocity measurement noise are 30
◦

and 25
◦
/s,

respectively. In order to have a fair comparison between the different estimation schemes

that may have different gains (and gain update scheme in the case of the GAME filter),

the (initial) gains are selected such that all estimators have the same initial attitude and

initial angular velocity estimates. Moreover, all estimators simulated here are provided

the same set of measurements with the same (constant) bias added to the angular veloc-

ity measurements. The time profiles of the attitude estimate error for each estimator are

plotted and compared in Fig. 5.1.
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FIGURE 5.1: Attitude estimation error for noise levels similar to that in (Za-
mani, 2013).

Fig. 5.1 shows some transient behavior in the attitude estimation error with the FTS

estimator. However, there are no remarkable differences in the steady state behavior of all

four schemes compared, and in fact the constant gain observer performs somewhat better

than the other schemes. The FTS estimator shows finite-time convergence of attitude

estimate error to zero, and the settling time for this estimator is comparable to that of the

other filters.

5.3.2 CASE II: Low Noise Levels, with Estimator Gains as Before

In this case, the noise signals are considered to be of the same type as in the previous case

(random zero mean bump functions), but with much smaller amplitudes. The standard

deviations in the attitude measurement noise and angular velocity measurement noise

signals are 0.95◦ and 2.5◦/s, respectively. This corresponds to having more accurate sen-

sor measurements than in case I. In order to compare the estimator performances when

the estimator gains are not designed for known sensor noise properties, all the gains are

kept the same as in case I. The attitude estimation errors from all estimators are plotted
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in Fig. 5.2.
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FIGURE 5.2: Attitude estimation error for low noise levels, with estimator
gains unchanged.

A magnified view of the initial transient behavior of these observers is depicted in Fig.

5.3. In this case, as is shown in Fig. 5.3, the GAME filter becomes singular after a few time

steps, and the CGO is not able to converge and filter out noise from the measurements.

On the other hand, the FTS and VAE estimators are stable and very effective at filtering

out noise. Moreover, the FTS estimator guarantees convergence of estimation errors to

small bounds in finite-time. The settling times are also sufficiently small. Looking at these

two cases, one can conclude that although the GAME and CGO filters perform nicely in

the presence of measurement noise with known noise level, they may not be stable and

their initial gains need to be reset when the noise signal changes. Therefore, one major

downside to these filters is their dependence on the knowledge of the measurement noise

level. On the contrary, the variational estimators (FTS and VAE) are robust with guar-

anteed stability, regardless of the statistics and level of the noise. Moreover, because of

the almost global finite-time stable property of the FTS estimator, it is robust to bounded

measurement noise in attitude states, as shown in this research work.
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FIGURE 5.3: Zoomed-in view of the initial transient response of the attitude
estimation error as plotted in Fig. 5.2.

5.4 Conclusion

This chapter presents a nonlinear finite-time stable state estimator for rigid body rota-

tional motion. The proposed scheme estimates the attitude and constant angular velocity

bias vector from a minimum of two known linearly independent vectors for attitude, and

biased angular velocity measurements made in the body-fixed frame. The estimation er-

rors including the bias estimation error are analytically proven to stabilize to zero from

almost all initial conditions in the absence of measurement errors. The scheme is numer-

ically implemented by a geometric integrator for a realistic scenario involving measure-

ment errors. Numerical results validate the theoretical results given in previous chapter

and show the robustness of the proposed estimation scheme. The behavior of this estima-

tion scheme is compared with three state-of-the-art filters for attitude estimation. Using

a realistic set of data for a rigid body, numerical simulations show that the FTS and vari-

ational attitude estimator (VAE), unlike the GAME filter and CGO, are always stable and

their convergence is not dependent on the type and level of measurement noise. More-

over, finite-time stability guarantees a faster convergence of estimation errors (Q, Ω̃, β̃) to

(I, 0, 0) in finite-time, and robustness to measurement noise.
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Chapter 6

Experimental Results

We developed an experimental platform with quadrotor UAVs to validate our deriva-

tions and simulations. Two quadrotor UAVs are built from scratch for indoor and out-

door flights by designing every parts followed by developing a software for real-time

experiments. The hardware and software development for the experimental part of this

dissertation is presented in the following section of this chapter.

6.1 Building a quadrotor

The quadrotor UAVs developed at the Autonomous Unmanned Systems laboratory (AUS-

Lab) at the Syracuse Center of Excellence are shown at Fig. 6.1a and Fig. 6.1b. The

quadrotor platforms are equipped with a Pixhawk Cube autopilot shown in Fig. 6.3b. The

Cube flight controller (previously known as Pixhawk 2.1) is a flexible autopilot intended

primarily for manufacturers of commercial systems. It is based on the Pixhawk-project

FMUv3 open hardware design and runs PX4 on the NuttX OS.

Cube includes vibration isolation on two of the IMU’s, with a third fixed IMU as a

reference/Backup. The UAV shown in Fig. 6.1a is built for outdoor flight experiments
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(A) Quadrotor UAV built for outdoor flights

(B) Quadrotor UAV built for indoor flights

FIGURE 6.1: UAVs for experiments
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and uses an external combined compass/GPS module mounted as far away from the mo-

tor/ESC power supply lines as possible. The angular velocity is measured from inertial

measurement unit (IMU) built in the Pixhawk and the attitude is also obtained from IMU

data. The UAV in Fig. 6.1b uses a Raspberry Pi as the on-board computer with ROS

(Robot Operating System) that is built to fly autonomously in GPS-denied environments.

The indoor flight test area includes eight Vicon Motion Capture cameras as shown in

Figure 6.2 that detect the UAV’s position and orientation off-board. Position of the UAV

is measured from motion capture system (Vicon) and the velocity is estimated from the

measurement. The Ground desktop system as a server receives the Vicon data and the

UAV’s companion computer can collect the data by sharing IP with that server.

FIGURE 6.2: Motion capture system including 8 Vicon cameras in AUSLab

A list of the hardware components that are used in building our quadrotor UAVs is
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given bellow. The motors are connected directly to the power distribution board, and are

connected to the flight controller via speed controllers and PWM ports.

• Pixhawk running the customized PX4 code stack based on our developed control al-

gorithms, and communicating with the on-board computer through Mavlink/Mavros.

• Raspberry Pi Model B+, connected to Pixhawk via UART communicating with the

desktop computer via WiFi (Figure 6.3a).

• AIR2216 KV880 brushless motors (Figure 6.3c).

• AIR 20A ESCs, connected to Pixhawk via PWM (Figure 6.3c).

• Here GNSS GPS (M8N) module for the UAV built to fly outdoor (Figure 6.3d).

• For safety and to avoid crashes when the UAV is flying autonomously, we use a

Radio Controller (RC) with a FrSky telemetry module (Figure 6.3e) that allows us to

access vehicle telemetry/status information.

Finally, these parts are all connected and two quadrotors are prepared for the experiments

as shown in Figure 6.3.
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(A) Raspberry Pi 3 model

B+

(B) Cube Flight Controller

(C) Motor and ESC

(D) GPS module (E) Telemetry module

FIGURE 6.3: Hardware components for a quadrotor UAV
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6.2 Software Development

As mentioned in the previous section, Pixhawk flight controllers run PX4, which is an

open source flight control software for drones and other unmanned vehicles. PX4 consists

of two main layers: the flight stack is an estimation and flight control system, and the

middleware is a general robotics layer that can support any type of autonomous robot,

providing internal/external communications and hardware integration. The flight stack

is a collection of guidance, navigation and control algorithms for autonomous drones. It

includes controllers for fixed wing, multirotor and VTOL airframes as well as estimators

for attitude and position (PX4-Dev, 2017).

The following diagram shows an overview of the blocks of the PX4 flight stack. It

contains the full pipeline from sensors, RC input and autonomous flight control, down to

the actuators.

FIGURE 6.4: PX4 flight stack diagram

To verify the performance of our proposed discrete-time FTS (dFTS) control scheme in

experiments, the attitude and rate control module of the PX4 (Meier, Honegger, and Polle-

feys, 2015) is replaced with the attitude controller presented in Chapter 3. Multiple codes

in C/C++ were modified to build a new version of the PX4 stack that runs our developed
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attitude control scheme on the Pixhawk flight control module and handles several tasks.

In addition, we use ROS to communicate with the flight controller for sending our desired

trajectory to the flight controller instead of using the PX4’s Navigator module. There are

two steps to carry out the experiments:

• Software-in-the-Loop (SITL) Simulation

• Real flight experiments

Software-in-the-Loop (SITL) Simulation:

Simulators allow PX4 flight code to control a computer modeled vehicle in a simulated

“world”. We can interact with this vehicle just as we do with a real vehicle. Simulation is a

quick, easy, and most importantly, safe way to test changes to PX4 code before attempting

to fly in the real world. PX4 supports both Software In the Loop (SITL) simulation, where

the flight stack runs on a computer, and Hardware In the Loop (HITL) simulation using

a simulation firmware on a real flight controller board. All simulators communicate with

PX4 using the Simulator MAVLink API. This API defines a set of MAVLink messages

that supply sensor data from the simulated world to PX4 and return motor and actuator

values from the flight code that will be applied to the simulated vehicle. The figure below

shows the message flow.
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FIGURE 6.5: PX4’s SITL message flow

Gazebo is a powerful 3D simulation environment that is particularly suitable for test-

ing object-avoidance and computer vision. It can also be used for multi-vehicle simula-

tion and is commonly used with ROS, a collection of tools for automating vehicle control

(PX4-Dev, 2017).

In this step, a SITL simulation of the proposed dFTS attitude controller is carried out

to show its performance in a realistic autonomous flight scenario. The 3DR-Solo quadro-

tor UAV is simulated in Gazebo, and several ROS nodes are written in Python to send

the desired trajectory to the flight control module. The simulation is carried out for two

different trajectories; a circular trajectory and a helical trajectory similar to the desired tra-

jectory in Fig. 3.2. During the simulation, the 3DR solo is in autonomous flight mode and

assigned to follow the given trajectory. These trajectories are designed in such a way that

the UAV flies to the point (0, 0, 2) first, and then completes its flight in the circular or spi-

ral part of the trajectory, and then starts to land. The inertia information of the simulated

3DR Solo quadrotor, is shown as follows (PX4-Dev, 2017):

J = diag(0.011, 0.015, 0.021) kg-m2; m = 1.5 kg. (6.1)
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The gains used for the proposed control scheme are:

kl = 1, κ = 0.025, Γ = 0.006 (6.2)

Figures 6.7, and 6.9 show the performance of the proposed control scheme in the SITL

simulation.

FIGURE 6.6: Principal angle error in SITL simulation for circular trajectory.

FIGURE 6.7: Principal angle error in SITL simulation for helical trajectory.
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The magnitude of the attitude tracking error is given by the principal angle Φ of the

attitude tracking error Q, defined by (3.89) and shown in Figures 6.6 and 6.7 for flights in

the circular and helical phase of the trajectory, respectively. It can be clearly seen that the

proposed geometric control scheme has a good attitude tracking control performance. In

Figures 6.8 and 6.9, it can be seen that the angular velocity tracking performance of the

proposed control scheme is acceptable but has some high-frequency oscillations in the

angular velocity error.

FIGURE 6.8: Angular velocity error in SITL for circular trajectory.

FIGURE 6.9: Angular velocity error in SITL for helical trajectory.
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6.3 Real Autonomous Flight Experiment

For real autonomous flight experiments, a framework is designed that utilizes visual and

inertial feedback. The framework is designed for technology and capability demonstra-

tion, particularly for autonomous trajectory tracking applications in GPS-denied envi-

ronments. In addition to a standard flight controller (Pixhawk), the framework includes a

companion computer (Raspberry Pi) that is utilized to receive position and attitude data

retrieved via WiFi from a motion capture system (Vicon cameras). In this framework, the

flight controller is utilized for low-level tasks such as attitude control, generating actua-

tor commands and sensor data acquisition and fusion. On the other hand, the companion

computer is used for high-level tasks such as trajectory generation and optimization. To

establish communications between the companion computer and the motion capture sys-

tem, a ROS network is used. The companion computer on the UAV operates as the ROS

Master that can be used to modify the desired trajectory online and during the flight. The

commands of position set-points are published on a set-point ROS node, and MAVROS

sends the set-points to the flight controller. MAVROS provides a plugin to relay a visual

estimate from the motion capture system to the flight controller using a vision-pose ROS

node. Based on the feedback data from the motion capture system, the flight controller

generates appropriate actuator commands for the quadrotor UAV to track a desired tra-

jectory. The custom-made quadrotor UAV platform built to carry out the indoor experi-

ments is as shown in Fig. 6.1b, and the flow diagram of this framework is given in Fig.

6.10.
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FIGURE 6.10: On-board implementation process flow diagram

Experimental results are shown in Figures 6.12 and 6.13. These two figures show the

snapshots for two autonomous flight experiments by implementing the dFTS tracking

control scheme as presented in Chapter 3. Fig. 6.11 indicates x, y, and z directions of the

Vicon system coordinate frame in the lab.
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FIGURE 6.11: Coordinate frame of Vicon System

In Fig. 6.12, snapshots for an autonomous hovering is given, in which the UAV first

hovers at 1.5m and then flies from the hovering point (0, 0, 1.5) to the point (1, 1, 1). Fig.

6.13 shows the snapshots of a flight in a circular trajectory given to the same UAV through

a ROS node. In this scenario, UAV takes off at (0, 0, 0) and flies to hover at the point

(0, 0, 1.5). Then, it flies to the point (0, 1.5, 1.5) to start following the circular trajectory

with radius 1.5m. In both tests, the UAV lands autonomously and becomes disarmed

(motors stop spinning) when the given mission is accomplished. Both Vicon and flight

control module work at 30Hz, and no delay is expected unless there is a communication

failure. Therefore, due to the robustness and stability properties of the proposed con-

troller, position and attitude tracking performance show satisfactory results.
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FIGURE 6.12: Snapshots for an autonomous hovering at 1.5m and flight from
(0 0 1.5) to (1 1 1)

FIGURE 6.13: Snapshots for an autonomous flight in a circular trajectory with
radius of 1.5m starting at (0 1.5 1.5)
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There are also several limitations, and important hardware challenges for the pre-

sented experimental platform that has to be always considered for current and future

experimental platforms. In real-time experiments, establishing a stable communication

is very important, and so high speed update rate is required to maintain an aggressive

maneuver. In some experiments, we experienced failure in communication that caused

instability of the system and led to UAV crashing. Lipo Batteries used for the experiment

can play an important role in a successful maneuver, since they can be drained very soon

which affects the performance of the hardware. Different sensors used in real-time exper-

iments may provide noisy data which has to be filtered to obtain smooth data. We also

experienced delay in receiving the data using the Vicon system.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We conclude this dissertation by providing a summary of the research presented here,

followed by a discussion on related future work.

In Chapter 2, a discrete-time stable tracking control scheme for a rigid body with one

actuated translational degree of freedom and three actuated rotational degrees of free-

dom is presented. In this research, a discrete-time energy-based tracking control scheme

is designed to obtain the desired discrete-time control force vector that asymptotically sta-

bilizes the desired translational motion. In order to track the desired attitude trajectory, a

discrete-time attitude tracking control law is developed. Discrete-time Lyapunov analysis

shows that the tracking control scheme obtained provides stable asymptotic convergence

of actual states to desired states. This results in discrete-time tracking error dynamics that

behaves as a dissipative system, and state tracking errors are dissipated in discrete time.

The stable discrete-time control laws are then obtained from these discrete-time error dy-

namics equations as well. The discrete-time stable tracking control algorithm utilizes a
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trajectory generation scheme that selects the desired trajectory for the translational mo-

tion that passes through the given waypoints and generates an attitude trajectory to fol-

low the desired thrust direction. Numerical simulation confirms the stable performance

of the the overall tracking control scheme as well as discrete-time stability of the resulting

control laws.

Chapter 3 proposes a discrete-time stable tracking control scheme with finite-time

stability for unmanned vehicles. The finite-time stability of the overall tracking control

scheme is proved using a discrete-time Lyapunov analysis, which results in discrete-time

error dynamics in terms of translational and rotational motion tracking errors. This anal-

ysis results in discrete-time control laws that guarantee the convergence of the position

and attitude states to the desired position and attitude trajectories in a finite time interval.

Analysis of robustness to bounded disturbance torques is also presented. In addition, a

comparison between the performance of the proposed scheme and that of a sampled con-

tinuous FTS scheme is studied here, and numerical results show that a discrete-time FTS

tracking control scheme is more reliable for onboard computer implementation when we

need to work with a variety of input data frequencies.

In Chapter 4, a nonlinear state estimator for rigid body rotational motion is presented.

The proposed scheme estimates the attitude and constant angular velocity bias vector

from a minimum of two known linearly independent vectors for attitude, and biased

angular velocity measurements made in the body-fixed frame. This attitude estimation

scheme is considered under unknown attitude dynamics. The estimation errors includ-

ing the bias estimation error are analytically proven to stabilize to zero from almost all
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initial conditions in the absence of measurement errors. The scheme is numerically im-

plemented by a geometric integrator for a realistic scenario involving measurement er-

rors. Numerical results validate the theoretical results and show the robustness of the

proposed estimation scheme.

In Chapter 5, the behavior of the nonlinear state estimation scheme presented in Chap-

ter 4 is compared with three state-of-the-art filters for attitude estimation. Using a realistic

set of data for a rigid body, numerical simulations show that the FTS and variational atti-

tude estimator (VAE), unlike the GAME filter and CGO, are always stable and their con-

vergence is not dependent on the type and level of measurement noise. Moreover, FTS

guarantees a faster convergence of estimation errors (Q, Ω̃, β̃) to (I, 0, 0) in finite-time,

and robustness to measurement noise.

The rigorous mathematical stability proofs that are given in this dissertation are ver-

ified by mathematical analysis, numerical simulations, and in Chapter 6 they are also

implemented and verified by experiments in both SITL and real autonomous flights.

7.2 Ideas for Future Work

The following are ideas to extend the research presented in this PhD dissertation:

• More comprehensive comparison of the proposed discrete-time stable tracking con-

trol scheme with other state-of-the-art sampled continuous-time tracking control

schemes through hardware-in-the-loop (HITL) experiments.

• Developing the discrete finite-time stable attitude estimation from intermittent mea-

surements at different rates, and design of state-varying or time-varying filter gains

for faster convergence of state estimates.
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• Combining and implementing the discrete FTS controller and a discrete FTS estima-

tor in a flight control module for unmanned aerial and ground vehicles.

• Developing the finite-time stable model-free filter in SE(3). The comparison of the

proposed FTS observer with the variational estimator and other state-of-the-art fil-

ters presented in Chapter 5 can also be verified numerically.

• Experimental validation of model-free FTS filter in SO(3) or SE(3) in the presence

of bias in angular velocities; gyroscopes are used in practice to provide angular

velocities. The output of such sensors usually contain constant or variable drift,

which harms the performance of the filter. The estimator presented in Chapter 4 is

designed in such a way that it could be robust to bias in the sensor readings.

• Developing an analytical approach to design a delayed stable feedback system in the

presence of an unknown time delay in feedback measurement using delay differen-

tial equations and Morse–Lyapunov–Krasovskii or Morse-Lyapunov-Razumikhin

techniques. This approach can be developed to deal with the delay limitation out-

lined in the last paragraph of Chapter 6. A related research is presented in (Samiei,

Sanyal, and Butcher, 2017).

• Modeling the “hidden” dynamics of the actuators at the Motor-ESC level in the

design of a robust control system, and studying the effects of actuator dynamics,

control-structure interaction, and the impact of the mechanical design of the actua-

tors on it.
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• Extending the experimental research work in an outdoor environment to identify

the wind effects and verifying the performance of the controller in various weather

situations.
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