14,597 research outputs found

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    The power system and microgrid protection-a review

    Get PDF
    In recent years, power grid infrastructures have been changing from a centralized power generation model to a paradigm where the generation capability is spread over an increasing number of small power stations relying on renewable energy sources. A microgrid is a local network including renewable and non-renewable energy sources as well as distributed loads. Microgrids can be operated in both grid-connected and islanded modes to fill the gap between the significant increase in demand and storage of electricity and transmission issues. Power electronics play an important role in microgrids due to the penetration of renewable energy sources. While microgrids have many benefits for power systems, they cause many challenges, especially in protection systems. This paper presents a comprehensive review of protection systems with the penetration of microgrids in the distribution network. The expansion of a microgrid affects the coordination and protection by a change in the current direction in the distribution network. Various solutions have been suggested in the literature to resolve the microgrid protection issues. The conventional coordination of the protection system is based on the time delays between relays as the primary and backup protection. The system protection scheme has to be changed in the presence of a microgrid, so several protection schemes have been proposed to improve the protection system. Microgrids are classified into different types based on the DC/AC system, communication infrastructure, rotating synchronous machine or inverter-based distributed generation (DG), etc. Finally, we discuss the trend of future protection schemes and compare the conventional power systems

    Smart Regulation for Smart Grids

    Get PDF
    Climate change and security of supply policies are driving us towards a decarbonization of the electricity system. It is in this context that smart grids are being discussed. Electricity grids, and hence their regulatory frameworks, have a key role to play in facilitating this transformation of the electricity system. In this paper, we analyze what is expected from grids and what are the regulatory tools that could be used to align the incentives of grid companies and grid users with what is expected from them. We look at three empirical cases to see which regulatory tools have already been applied and find that smart grids need a coherent regulatory framework addressing grid services, grid technology innovation and grid user participation to the ongoing grid innovation. The paper concludes with what appears to be a smart regulation for smart grids.Regulation, innovation, electricity, grids, transmission, distribution

    Strategic distribution network planning with smart grid technologies

    Get PDF
    This paper presents a multiyear distribution network planning optimization model for managing the operation and capacity of distribution systems with significant penetration of distributed generation (DG). The model considers investment in both traditional network and smart grid technologies, including dynamic line rating, quadrature-booster, and active network management, while optimizing the settings of network control devices and, if necessary, the curtailment of DG output taking into account its network access arrangement (firm or non-firm). A set of studies on a 33 kV real distribution network in the U.K. has been carried out to test the model. The main objective of the studies is to evaluate and compare the performance of different investment approaches, i.e., incremental and strategic investment. The studies also demonstrate the ability of the model to determine the optimal DG connection points to reduce the overall system cost. The results of the studies are discussed in this paper

    ICT Technologies, Standards and Protocols for Active Distribution Network Automation and Management

    Get PDF
    The concept of active distribution network (ADN) is evolved to address the high penetration of renewables in the distribution network. To leverage the benefits of ADN, effective communication and information technology is required. Various communication standards to facilitate standard-based communication in distribution network have been proposed in literature. This chapter presents various communication standards and technologies that can be employed in ADN. Among various communication standards, IEC 61850 standard has emerged as the de facto standard for power utility automation. IEC 61850-based information modeling for ADN entities has also been presented in this chapter. To evaluate the performance of ADN communication architecture, performance metrics and performance evaluation tools have also been presented in this chapter

    Assessing the reliability of adaptive power system protection schemes

    Get PDF
    Adaptive power system protection can be used to improve the performance of existing protection schemes under certain network conditions. However, their deployment in the field is impeded by their perceived inferior reliability compared to existing protection arrangements. Moreover, their validation can be problematic due to the perceived high likelihood of the occurrence of failure modes or incorrect setting selection with variable network conditions. Reliability (including risk assessment) is one of the decisive measures that can be used in the process of verifying adaptive protection scheme performance. This paper proposes a generic methodology for assessing the reliability of adaptive protection. The method involves the identification of initiating events and scenarios that lead to protection failures and quantification of the probability of the occurrence of each failure. A numerical example of the methodology for an adaptive distance protection scheme is provided
    • 

    corecore