170 research outputs found

    Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations

    Full text link
    In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations. Our approach is non-intrusive and we use the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier-Stokes equation for each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly competitive in this setting and even outperforms some other standard methods

    Meshless Method for Simulation of Compressible Flow

    Full text link
    In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow problems. To solve this discontinuity problem, this research study deals with the implementation of a conservative meshless method and its applications in computational fluid dynamics (CFD). One of the most common types of collocating meshless method the RBF-DQ, is used to approximate the spatial derivatives. The issue with meshless methods when dealing with highly convective cases is that they cannot distinguish the influence of fluid flow from upstream or downstream and some methodology is needed to make the scheme stable. Therefore, an upwinding scheme similar to one used in the finite volume method is added to capture steep gradient or shocks. This scheme creates a flexible algorithm within which a wide range of numerical flux schemes, such as those commonly used in the finite volume method, can be employed. In addition, a blended RBF is used to decrease the dissipation ensuing from the use of a low shape parameter. All of these steps are formulated for the Euler equation and a series of test problems used to confirm convergence of the algorithm. The present scheme was first employed on several incompressible benchmarks to validate the framework. The application of this algorithm is illustrated by solving a set of incompressible Navier-Stokes problems. Results from the compressible problem are compared with the exact solution for the flow over a ramp and compared with solutions of finite volume discretization and the discontinuous Galerkin method, both requiring a mesh. The applicability of the algorithm and its robustness are shown to be applied to complex problems

    VW-PINNs: A volume weighting method for PDE residuals in physics-informed neural networks

    Full text link
    Physics-informed neural networks (PINNs) have shown remarkable prospects in the solving the forward and inverse problems involving partial differential equations (PDEs). The method embeds PDEs into the neural network by calculating PDE loss at a series of collocation points, providing advantages such as meshfree and more convenient adaptive sampling. However, when solving PDEs using nonuniform collocation points, PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure. In this work, we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points. To address the issue, we define volume-weighted residual and propose volume-weighted physics-informed neural networks (VW-PINNs). Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain, we embed explicitly the spatial distribution characteristics of collocation points in the residual evaluation. The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed. Considering the meshfree characteristics of VW-PINNs, we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points. We verify the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions, where conventional PINNs fail; By solving the Burgers' equation, we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by 3 times, and can reduce the relative error of conventional PINNs in solving the inverse problem by more than one order of magnitude

    Meshfree Methods

    Get PDF

    On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations

    Full text link
    Meshfree solution schemes for the incompressible Navier--Stokes equations are usually based on algorithms commonly used in finite volume methods, such as projection methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms that are specific to meshfree methods have often been overlooked. In this paper, we study the drawbacks of conventionally used meshfree Generalized Finite Difference Method~(GFDM) schemes for Lagrangian incompressible Navier-Stokes equations, both operator splitting schemes and monolithic schemes. The major drawback of most of these schemes is inaccurate local approximations to the mass conservation condition. Further, we propose a new modification of a commonly used monolithic scheme that overcomes these problems and shows a better approximation for the velocity divergence condition. We then perform a numerical comparison which shows the new monolithic scheme to be more accurate than existing schemes

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Use of Machine Learning for Automated Convergence of Numerical Iterative Schemes

    Get PDF
    Convergence of a numerical solution scheme occurs when a sequence of increasingly refined iterative solutions approaches a value consistent with the modeled phenomenon. Approximations using iterative schemes need to satisfy convergence criteria, such as reaching a specific error tolerance or number of iterations. The schemes often bypass the criteria or prematurely converge because of oscillations that may be inherent to the solution. Using a Support Vector Machines (SVM) machine learning approach, an algorithm is designed to use the source data to train a model to predict convergence in the solution process and stop unnecessary iterations. The discretization of the Navier Stokes (NS) equations for a transient local hemodynamics case requires determining a pressure correction term from a Poisson-like equation at every time-step. The pressure correction solution must fully converge to avoid introducing a mass imbalance. Considering time, frequency, and time-frequency domain features of its residual’s behavior, the algorithm trains an SVM model to predict the convergence of the Poisson equation iterative solver so that the time-marching process can move forward efficiently and effectively. The fluid flow model integrates peripheral circulation using a lumped-parameter model (LPM) to capture the field pressures and flows across various circulatory compartments. Machine learning opens the doors to an intelligent approach for iterative solutions by replacing prescribed criteria with an algorithm that uses the data set itself to predict convergence

    An improved local radial basis function method for solving small-strain elasto-plasticity

    Full text link
    Strong-form meshless methods received much attention in recent years and are being extensively researched and applied to a wide range of problems in science and engineering. However, the solution of elasto-plastic problems has proven to be elusive because of often non-smooth constitutive relations between stress and strain. The novelty in tackling them is the introduction of virtual finite difference stencils to formulate a hybrid radial basis function generated finite difference (RBF-FD) method, which is used to solve smallstrain von Mises elasto-plasticity for the first time by this original approach. The paper further contrasts the new method to two alternative legacy RBF-FD approaches, which fail when applied to this class of problems. The three approaches differ in the discretization of the divergence operator found in the balance equation that acts on the non-smooth stress field. Additionally, an innovative stabilization technique is employed to stabilize boundary conditions and is shown to be essential for any of the approaches to converge successfully. Approaches are assessed on elastic and elasto-plastic benchmarks where admissible ranges of newly introduced free parameters are studied regarding stability, accuracy, and convergence rate
    • …
    corecore