800 research outputs found

    Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals

    Get PDF
    Sleep apnea is a common sleep disorder in which patient sleep patterns are disrupted due to recurrent pauses in breathing or by instances of abnormally low breathing. Current gold standard tests for the detection of apnea events are costly and have the addition of long waiting times. This paper investigates the use of cheap and easy to use sensors for the identification of sleep apnea events. Combinations of respiration, electrocardiography (ECG) and acceleration signals were analysed. Results show that using features, formed using the discrete wavelet transform (DWT), from the ECG and acceleration signals provided the highest classification accuracy, with an F1 score of 0.914. However, the novel employment of just the accelerometer signal during classification provided a comparable F1 score of 0.879. By employing one or a combination of the analysed sensors a preliminary test for sleep apnea, prior to the requirement for gold standard testing, can be performed

    Smart nanotextiles: materials and their application

    Get PDF
    Textiles are ubiquitous to us, enveloping our skin and surroundings. Not only do they provide a protective shield or act as a comforting cocoon but they also serve esthetic appeal and cultural importance. Recent technologies have allowed the traditional functionality of textiles to be extended. Advances in materials science have added intelligence to textiles and created ‘smart’ clothes. Smart textiles can sense and react to environmental conditions or stimuli, e.g., from mechanical, thermal, chemical, electrical, or magnetic sources (Lam Po Tang and Stylios 2006). Such textiles find uses in many applications ranging from military and security to personalized healthcare, hygiene, and entertainment. Smart textiles may be termed ‘‘passive’’ or ‘‘active.’’ A passive smart textile monitors the wearer’s physiology or the environment, e.g., a shirt with in-built thermistors to log body temperature over time. If actuators are integrated, the textile becomes an active, smart textile as it may respond to a particular stimulus, e.g., the temperature-aware shirt may automatically roll up the sleeves when body temperature rises. The fundamental components in any smart textile are sensors and actuators. Interconnections, power supply, and a control unit are also needed to complete the system. All these components must be integrated into textiles while still retaining the usual tactile, flexible, and comfortable properties that we expect from a textile. Adding new functionalities to textiles while still maintaining the look and feel of the fabric is where nanotechnology has a huge impact on the textile industry. This article describes current developments in materials for smart nanotextiles and some of the many applications where these innovative textiles are of great benefit

    Integration and embedding of vital signs sensors and other devices into textiles

    Get PDF
    The development of ubiquitous vital sign monitoring has become a very up-to-date research theme for many academics and industrial companies in the last years. With new materials and integration techniques, it is possible to implement vital sign monitoring in an economic manner, directly into textile products. This unobtrusive presence of sensors is especially important for the monitoring of children or elderly people. This paper focuses on two aspects of sensor integration: Integration of off-the-shelf electronic components, and the use of the textile material itself as sensor, or in general as an electrically active element presenting some exploratory work in the integration of electronic devices into textiles. The main objective was to reproduce and improve on previous work presented by other authors, and foster possibilities of developing garments for vital sign monitoring with immediate industrial and economic feasibility. The use of standard production techniques to produce textile-based sensors, easily integrated into garments and with mass-market potential, is one of the important motivations for this work

    Low power respiration monitoring using wearable 3D knitted helical coils.

    Get PDF
    We demonstrate a novel low power inductive wearable plethysmography system. This consists of ultra-sensitive 3D knitted helical coils integrated in a garment and an oscillator circuit with high quality factor. The low power oscillator is built using two cross coupled FET pairs with low capacitance drawing only 95 μA during operation and with a response time smaller than 10 μs . The sensor system is linear, with negligible hysteresis. The best compromise in sensitivity and power consumption is obtained with a 3D knitted helical coil using jersey knit with elastic yarn, a lower knitting needle size than recommended for the yarn and minimizing both the number of stitches per winding as well as the stitches containing metal. A sensitivity of 2.7 kHz per mm change in circumference with a power consumption of 6.85 mW per 30 ms measurement time is reported. This system can be used for long term breathing monitoring using a garment indistinguishable from everyday clothing

    Development Trends in Electronics Printed: Intelligent Textiles Produced with the Use of Printing Techniques on Textile Substrates

    Get PDF
    The authors concentrated their attention on the new area of research, concerning properties of electrically conductive textiles, produced by printing techniques. Such materials can be used for monitoring, for example, the rhythm of breathing. The aim of this study was to develop a sensor of strains for the needs of wearable electronics. A resistance‐type sensor was made on a knitted fabric with shape memory, dedicated to monitor motor activity of human. The Weftloc knitted fabric shows elastic memory—thanks to the presence of elastomeric fibers. The dependence of sensoric properties of the Weftloc knitted fabric on the values of load, its increment rate, and its direction of action was tested. Mechanical parameters including total and elastic strain, elasticity degree, and strength were also assessed. The results indicate an anisotropic character of mechanical and sensoric behaviors of the sensor showing a particularly optimal behavior during diagonal loading. Electro‐conductive properties have been imparted to the Weftloc fabric by chemical deposition of polypyrrole dopped with Cl ions. In addition, authors used as a carrier functional water dispersion of carbon nanotubes AquaCyl that was adapted in the Department of Material and Commodity Sciences and Textile Metrology for forming electrically conductive pathways by film printing method. It was assumed that the electrically conductive paths are sensitive to chemical stimuli. Studies of the effectiveness of the sensors for chemical stimuli were conducted for selected pairs of liquids. The best sensory properties were obtained for the methanol vapor—the relative resistance (Rrel.) at the level above 40%. In the case of nonpolar liquid vapor, the sensoric sensitivity of the printed fabric was much lower, with Rrel. level below 29%. Properties of the electrically conductive materials, such as thermal conductivity, electrical conductivity, and resistance to chemicals, allow for widely using them nanotechnology

    Bio-sensing textile based patch with integrated optical detection system for sweat monitoring

    Get PDF
    Sensors, which can be integrated into clothing and used to measure biochemical changes in body fluids, such as sweat, constitute a major advancement in the area of wearable sensors. Initial applications for such technology exist in personal health and sports performance monitoring. However, sample collection is a complicated matter as analysis must be done in real-time in order to obtain a useful examination of its composition. This work outlines the development of a textile-based fluid handling platform which uses a passive pump to gather sweat and move it through a pre-defined channel for analysis. The system is tested both in vitro and in vivo. In addition, a pH sensor, which depends on the use of a pH sensitive dye and paired emitter-detector LEDs to measure colour changes, has been developed. In vitro and on-body trials have shown that the sensor has the potential to record real-time variations in sweat during exercise

    Health monitoring using textile sensors and electrodes: an overview and integration of technologies

    Get PDF
    Publicado em "MeMeA 2014 International Symposium on Medical Measurements and Applications : proceedings", ISBN 978-1-4799-2920-7This paper gives an overview of technologies and results of integration and test of textile integrated sensors and electrodes for monitoring of biosignals (electrocardiographic - ECG and electromyographic - EMG), breathing and moisture. Using a seamless jacquard knitting machine, it is possible to integrate these sensors and electrodes directly into the fabrics, which can then be used in clothing for monitoring of elderly people, in sports or in hazardous occupations. The total integration of the sensing elements and connections into the garment presents great advantages in physical as well as psychological comfort of the user. It has been shown that the measurements are of adequate quality for most of the applications. In some cases, as is the case of ECG and EMG, signals acquired are similar to those obtained using conventional electrodes.The authors wish to thank funding by FCT -Fundação para a Ciência e a Tecnologia, projects PEst-C/CTM/UI0264/2011, PTDC/DTP-DES/1661/2012 and project PROTACTICAL - Co-Promoção Nº Projecto: 23267, sponsored by AD

    Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording

    Get PDF
    This systematic review concerns the use of smart textiles enabled applications based on myoelectric activity. Electromyography (EMG) is the technique for recording and evaluating electric signals related to muscle activity (myoelectric). EMG is a well-established technique that provides a wealth of information for clinical diagnosis, monitoring, and treatment. Introducing sensor systems that allow for ubiquitous monitoring of health conditions using textile integrated solutions not only opens possibilities for ambulatory, long-term, and continuous health monitoring outside the hospital, but also for autonomous self-administration. Textile-based electrodes have demonstrated potential as a fully operational alternative to \u27standard\u27 Ag/AgCl electrodes for recording surface electromyography (sEMG) signals. As a substitute for Ag/AgCl electrodes fastened to the skin by taping or pre-gluing adhesive, textile-based electrodes have the advantages of being soft, flexible, and air permeable; thus, they have advantages in medicine and health monitoring, especially when self-administration, real-time, and long-term monitoring is required. Such advances have been achieved through various smart textile techniques; for instance, adding functions in textiles, including fibers, yarns, and fabrics, and various methods for incorporating functionality into textiles, such as knitting, weaving, embroidery, and coating. In this work, we reviewed articles from a textile perspective to provide an overview of sEMG applications enabled by smart textile strategies. The overview is based on a literature evaluation of 41 articles published in both peer-reviewed journals and conference proceedings focusing on electrode materials, fabrication methods, construction, and sEMG applications. We introduce four textile integration levels to further describe the various textile electrode sEMG applications reported in the reviewed literature. We conclude with suggestions for future work along with recommendations for the reporting of essential benchmarking information in current and future textile electrode applications

    Smart shirt with embedded vital sign and moisture sensing

    Get PDF
    This paper presents the development of a smart shirt with embedded electrodes in two-lead configuration for heart rate measurement and a knitted moisture sensor for sweat detection. Signal conditioning for heart rate measurement is based on the Analog Devices AD8232 heart rate monitor front-end. The shirt is part of a fireman interactive Personal Protective Equipment (PPE), which monitors information on heart rate and sweat detection, among other variables. Sweat detection is used to avoid skin burns that may occur due to the combination of excessive moisture and heat. Tests have demonstrated that the measurement of heart rate using the shirt is as efficient as conventional solutions, such as heart-rate monitoring straps. Sweat detection through textile moisture sensors has also shown to be effective.FCT - Fundação para a Ciência e a Tecnologia, in the framework of project UID/CTM/00264/2013 and project PROTACTICAL - Co-Promoção Nº Projecto: 23267, sponsored by ADI

    Nanosensors, big benefit or big brother

    Get PDF
    corecore