3 research outputs found

    A wavelet based method for electrical stimulation artifacts removal in electromyogram

    No full text
    International audienceA technique for artifact removal based on the continuous wavelet transform is presented. It uses common mother wavelets to find the temporal localization of stimulation artifacts on electromyogram signal recording during an electrical surface evoked contraction of a muscle. This method is applied with different kinds of stimulation pulse parameters including shape and duration changes. This method is used with standard stimulation pulse waveforms such as monophasic or biphasic ones. It can also be applied when the artifacts and M waves are in the same range of amplitude where threshold techniques are inefficient. Lastly, a method to determine which mother wavelet efficiently removed artifacts is proposed, results indicate the Haar wavelet performs best among fourteen tested wavelets

    Characterization of cochlear implant artifacts in electrically evoked auditory steady-state responses

    Get PDF
    AbstractObjectiveElectrically evoked auditory steady-state responses (EASSRs) are neural potentials measured in the electroencephalogram (EEG) in response to periodic pulse trains presented, for example, through a cochlear implant (CI). EASSRs could potentially be used for objective CI fitting. However, EEG signals are contaminated with electrical CI artifacts. In this paper, we characterized the CI artifacts for monopolar mode stimulation and evaluated at which pulse rate, linear interpolation over the signal part contaminated with CI artifact is successful.MethodsCI artifacts were characterized by means of their amplitude growth functions and duration.ResultsCI artifact durations were between 0.7 and 1.7ms, at contralateral recording electrodes. At ipsilateral recording electrodes, CI artifact durations are range from 0.7 to larger than 2ms.ConclusionAt contralateral recording electrodes, the artifact was shorter than the interpulse interval across subjects for 500pps, which was not always the case for 900pps.SignificanceCI artifact-free EASSRs are crucial for reliable CI fitting and neuroscience research. The CI artifact has been characterized and linear interpolation allows to remove it at contralateral recording electrodes for stimulation at 500pps

    Development of a hybrid assist-as-need hand exoskeleton for stroke rehabilitation.

    Get PDF
    Stroke is one of the leading causes of disability globally and can significantly impair a patient’s ability to function on a daily basis. Through physical rehabilitative measures a patient may regain a level of functional independence. However, required therapy dosages are often not met. Rehabilitation is typically implemented through manual one-to-one assistance with a physiotherapist, which quickly becomes labour intensive and costly. Hybrid application of functional electrical stimulation (FES) and robotic support can access the physiological benefits of direct muscle activation while providing controlled and repeatable motion assistance. Furthermore, patient engagement can be heightened through the integration of a volitional intent measure, such as electromyography (EMG). Current hybrid hand-exoskeletons have demonstrated that a balanced hybrid support profile can alleviate FES intensity and motor torque requirements, whilst improving reference tracking errors. However, these support profiles remain fixed and patient fatigue is not addressed. The aim of this thesis was to develop a proof-of-concept assist-as-need hybrid exoskeleton for post-stroke hand rehabilitation, with fatigue monitoring to guide the balance of support modalities. The device required the development and integration of a constant current (CC) stimulator, stimulus-resistant EMG device, and hand-exoskeleton. The hand exoskeleton in this work was formed from a parametric Watt I linkage model that adapts to different finger sizes. Each linkage was optimised with respect to angular precision and compactness using Differential Evolution (DE). The exoskeleton’s output trajectory was shown to be sensitive to parameter variation, potentially caused by finger measurement error and shifts in coupler placement. However, in a set of cylindrical grasping trials it was observed that a range of movement strategies could be employed towards a successful grasp. As there are many possible trajectories that result in a successful grasp, it was deduced that the exoskeleton can still provide functional assistance despite its sensitivity to parameter variation. The CC stimulator developed in this work has a part cost of USD 145andallowsflexibleadjustmentofwaveformparametersthroughanon−boardmicro−controller.Thedeviceisdesignedtooutputcurrentupto±30mAgivenavoltagecomplianceof±50V.Whenappliedacrossa2k℩load,thedeviceexhibitedalinearoutputtransferfunction,withamaximumramptrackingerrorof5Thestimulus−resistantEMGdevicebuildsoncurrentdesignsbyusinganovelSchmitttriggerbasedartefactdetectionchanneltoadaptivelyblankstimulationartefactswithoutstimulatorsynchronisation.ThedesignhasapartcostofUSD145 and allows flexible adjustment of waveform parameters through an on-board micro-controller. The device is designed to output current up to ±30mA given a voltage compliance of ±50V. When applied across a 2k℩ load, the device exhibited a linear output transfer function, with a maximum ramp tracking error of 5%. The stimulus-resistant EMG device builds on current designs by using a novel Schmitt trigger based artefact detection channel to adaptively blank stimulation artefacts without stimulator synchronisation. The design has a part cost of USD 150 and has been made open-source. The device demonstrated its ability to record EMG over its predominant energy spectrum during stimulation, through the stimulation electrodes or through separate electrodes. Pearson’s correlation coefficients greater than 0.84 were identified be- tween the normalised spectra of volitional EMG (vEMG) estimates during stimulation and of stimulation-free EMG recordings. This spectral similarity permits future research into applications such as spectral-based monitoring of fatigue and muscle coherence, posing an advantage over current same-electrode stimulation and recording systems, which can- not sample the lower end of the EMG spectrum due to elevated high-pass filter cut-off frequencies. The stimulus-resistant EMG device was used to investigate elicited EMG (eEMG)-based fatigue metrics during vEMG-controlled stimulation and hybrid support profiles. During intermittent vEMG-controlled stimulation, the eEMG peak-to-peak amplitude (PTP) index was the median frequency (MDF) had a negative correlation for all subjects with R > 0:62 during stimulation-induced wrist flexion and R > 0:55 during stimulation-induced finger flexion. During hybrid FES-robotic support trials, a 40% reduction in stimulus intensity resulted in an average 21% reduction in MDF gradient magnitudes. This reflects lower levels of fatigue during the hybrid support profile and indicates that the MDF gradient can provide useful information on the progression of muscle fatigue. A hybrid exoskeleton system was formed through the integration of the CC stimulator, stimulus-resistant EMG device, and the hand exoskeleton developed in this work. The system provided assist-as-need functional grasp assistance through stimulation and robotic components, governed by the user’s vEMG. The hybrid support profile demonstrated consistent motion assistance with lowered stimulation intensities, which in-turn lowered the subjects’ perceived levels of fatigue
    corecore