5,648 research outputs found

    Data-Driven Time-Frequency Analysis

    Get PDF
    In this paper, we introduce a new adaptive data analysis method to study trend and instantaneous frequency of nonlinear and non-stationary data. This method is inspired by the Empirical Mode Decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t)cos(θ(t))}\{a(t) \cos(\theta(t))\}, where aV(θ)a \in V(\theta), V(θ)V(\theta) consists of the functions smoother than cos(θ(t))\cos(\theta(t)) and θ0\theta'\ge 0. This problem can be formulated as a nonlinear L0L^0 optimization problem. In order to solve this optimization problem, we propose a nonlinear matching pursuit method by generalizing the classical matching pursuit for the L0L^0 optimization problem. One important advantage of this nonlinear matching pursuit method is it can be implemented very efficiently and is very stable to noise. Further, we provide a convergence analysis of our nonlinear matching pursuit method under certain scale separation assumptions. Extensive numerical examples will be given to demonstrate the robustness of our method and comparison will be made with the EMD/EEMD method. We also apply our method to study data without scale separation, data with intra-wave frequency modulation, and data with incomplete or under-sampled data

    Lattice dynamical wavelet neural networks implemented using particle swarm optimisation for spatio-temporal system identification

    Get PDF
    Starting from the basic concept of coupled map lattices, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNN), is introduced for spatiotemporal system identification, by combining an efficient wavelet representation with a coupled map lattice model. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimisation (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the orthogonal projection pursuit algorithm, significant wavelet-neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated waveletneurons are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be redundant. In the second stage, an orthogonal least squares (OLS) algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet-neurons from the network. The proposed two-stage hybrid training procedure can generally produce a parsimonious network model, where a ranked list of wavelet-neurons, according to the capability of each neuron to represent the total variance in the system output signal is produced. Two spatio-temporal system identification examples are presented to demonstrate the performance of the proposed new modelling framework

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    A unified wavelet-based modelling framework for non-linear system identification: the WANARX model structure

    Get PDF
    A new unified modelling framework based on the superposition of additive submodels, functional components, and wavelet decompositions is proposed for non-linear system identification. A non-linear model, which is often represented using a multivariate non-linear function, is initially decomposed into a number of functional components via the wellknown analysis of variance (ANOVA) expression, which can be viewed as a special form of the NARX (non-linear autoregressive with exogenous inputs) model for representing dynamic input–output systems. By expanding each functional component using wavelet decompositions including the regular lattice frame decomposition, wavelet series and multiresolution wavelet decompositions, the multivariate non-linear model can then be converted into a linear-in-theparameters problem, which can be solved using least-squares type methods. An efficient model structure determination approach based upon a forward orthogonal least squares (OLS) algorithm, which involves a stepwise orthogonalization of the regressors and a forward selection of the relevant model terms based on the error reduction ratio (ERR), is employed to solve the linear-in-the-parameters problem in the present study. The new modelling structure is referred to as a wavelet-based ANOVA decomposition of the NARX model or simply WANARX model, and can be applied to represent high-order and high dimensional non-linear systems

    Sparse Time-Frequency decomposition for multiple signals with same frequencies

    Get PDF
    In this paper, we consider multiple signals sharing same instantaneous frequencies. This kind of data is very common in scientific and engineering problems. To take advantage of this special structure, we modify our data-driven time-frequency analysis by updating the instantaneous frequencies simultaneously. Moreover, based on the simultaneously sparsity approximation and fast Fourier transform, some efficient algorithms is developed. Since the information of multiple signals is used, this method is very robust to the perturbation of noise. And it is applicable to the general nonperiodic signals even with missing samples or outliers. Several synthetic and real signals are used to test this method. The performances of this method are very promising
    corecore