130,725 research outputs found

    Object Duplicate Detection

    Get PDF
    With the technological evolution of digital acquisition and storage technologies, millions of images and video sequences are captured every day and shared in online services. One way of exploring this huge volume of images and videos is through searching a particular object depicted in images or videos by making use of object duplicate detection. Therefore, need of research on object duplicate detection is validated by several image and video retrieval applications, such as tag propagation, augmented reality, surveillance, mobile visual search, and television statistic measurement. Object duplicate detection is detecting visually same or very similar object to a query. Input is not restricted to an image, it can be several images from an object or even it can be a video. This dissertation describes the author's contribution to solve problems on object duplicate detection in computer vision. A novel graph-based approach is introduced for 2D and 3D object duplicate detection in still images. Graph model is used to represent the 3D spatial information of the object based on the local features extracted from training images so that an explicit and complex 3D object modeling is avoided. Therefore, improved performance can be achieved in comparison to existing methods in terms of both robustness and computational complexity. Our method is shown to be robust in detecting the same objects even when images containing the objects are taken from very different viewpoints or distances. Furthermore, we apply our object duplicate detection method to video, where the training images are added iteratively to the video sequence in order to compensate for 3D view variations, illumination changes and partial occlusions. Finally, we show several mobile applications for object duplicate detection, such as object recognition based museum guide, money recognition or flower recognition. General object duplicate detection may fail to detection chess figures, however considering context, like chess board position and height of the chess figure, detection can be more accurate. We show that user interaction further improves image retrieval compared to pure content-based methods through a game, called Epitome

    View Synthesis from Image and Video for Object Recognition Applications

    Get PDF
    Object recognition is one of the most important and successful applications in computer vision community. The varying appearances of the test object due to different poses or illumination conditions can make the object recognition problem very challenging. Using view synthesis techniques to generate pose-invariant or illumination-invariant images or videos of the test object is an appealing approach to alleviate the degrading recognition performance due to non-canonical views or lighting conditions. In this thesis, we first present a complete framework for better synthesis and understanding of the human pose from a limited number of available silhouette images. Pose-normalized silhouette images are generated using an active virtual camera and an image based visual hull technique, with the silhouette turning function distance being used as the pose similarity measurement. In order to overcome the inability of the shape from silhouettes method to reonstruct concave regions for human postures, a view synthesis algorithm is proposed for articulating humans using visual hull and contour-based body part segmentation. These two components improve each other for better performance through the correspondence across viewpoints built via the inner distance shape context measurement. Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. We propose two algorithms to address this scenario. For a single light source, we demonstrate a pose-normalized face synthesis approach on a pixel-by-pixel basis from a single view by exploiting the bilateral symmetry of the human face. For more complicated illumination condition, the spherical harmonic representation is extended to encode pose information. An efficient method is proposed for robust face synthesis and recognition with a very compact training set. Finally, we present an end-to-end moving object verification system for airborne video, wherein a homography based view synthesis algorithm is used to simultaneously handle the object's changes in aspect angle, depression angle, and resolution. Efficient integration of spatial and temporal model matching assures the robustness of the verification step. As a byproduct, a robust two camera tracking method using homography is also proposed and demonstrated using challenging surveillance video sequences

    Automatic vehicle tracking and recognition from aerial image sequences

    Full text link
    This paper addresses the problem of automated vehicle tracking and recognition from aerial image sequences. Motivated by its successes in the existing literature focus on the use of linear appearance subspaces to describe multi-view object appearance and highlight the challenges involved in their application as a part of a practical system. A working solution which includes steps for data extraction and normalization is described. In experiments on real-world data the proposed methodology achieved promising results with a high correct recognition rate and few, meaningful errors (type II errors whereby genuinely similar targets are sometimes being confused with one another). Directions for future research and possible improvements of the proposed method are discussed

    Vision-based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

    Get PDF
    The paper focuses on the problem of vision-based obstacle detection and tracking for unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular image sequences is developed by effectively integrating the object detection and tracking into a dynamic Kalman model. At the detection stage, the object of interest is automatically detected and localized from a saliency map computed via the image background connectivity cue at each frame; at the tracking stage, a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a local detector incorporating the saliency map and the temporal information between two consecutive frames. Compared to existing methods, the proposed approach does not require any manual initialization for tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness and superior performance of the proposed approach.Comment: 8 pages, 7 figure
    • …
    corecore