With the technological evolution of digital acquisition and storage technologies, millions of images and video sequences are captured every day and shared in online services. One way of exploring this huge volume of images and videos is through searching a particular object depicted in images or videos by making use of object duplicate detection. Therefore, need of research on object duplicate detection is validated by several image and video retrieval applications, such as tag propagation, augmented reality, surveillance, mobile visual search, and television statistic measurement. Object duplicate detection is detecting visually same or very similar object to a query. Input is not restricted to an image, it can be several images from an object or even it can be a video. This dissertation describes the author's contribution to solve problems on object duplicate detection in computer vision. A novel graph-based approach is introduced for 2D and 3D object duplicate detection in still images. Graph model is used to represent the 3D spatial information of the object based on the local features extracted from training images so that an explicit and complex 3D object modeling is avoided. Therefore, improved performance can be achieved in comparison to existing methods in terms of both robustness and computational complexity. Our method is shown to be robust in detecting the same objects even when images containing the objects are taken from very different viewpoints or distances. Furthermore, we apply our object duplicate detection method to video, where the training images are added iteratively to the video sequence in order to compensate for 3D view variations, illumination changes and partial occlusions. Finally, we show several mobile applications for object duplicate detection, such as object recognition based museum guide, money recognition or flower recognition. General object duplicate detection may fail to detection chess figures, however considering context, like chess board position and height of the chess figure, detection can be more accurate. We show that user interaction further improves image retrieval compared to pure content-based methods through a game, called Epitome