126 research outputs found

    The multimedia blockchain: a distributed and tamper-proof media transaction framework

    Get PDF
    A distributed and tamper proof media transaction framework is proposed based on the blockchain model. Current multimedia distribution does not preserve self-retrievable information of transaction trails or content modification histories. For example, digital copies of valuable artworks, creative media and entertainment contents are distributed for various purposes including exhibitions, gallery collections or in media production workflow. Original media is often edited for creative content preparation or tampered with to fabricate false propaganda over social media. However there is no existing trusted mechanism that can easily retrieve either the transaction trails or the modification histories. We propose a novel watermarking based Multimedia Blockchain framework that can address such issues. The unique watermark information contains two pieces of information: a) a cryptographic hash that contains transaction histories (blockchain transactions log) and b) an image hash that preserves retrievable original media content. Once the watermark is extracted, first part of the watermark is passed to a distributed ledger to retrieve the historical transaction trail and the latter part is used to identify the edited / tampered regions. The paper outlines the requirements, the challenges and demonstrates the proof of this concept

    Digital Video Inpainting Detection Using Correlation Of Hessian Matrix

    Full text link
    The use of digital video during forensic investigation helps in providing evidence related to crime scene. However, due to freely available user friendly video editing tools, the forgery of acquired digital videos that are used as evidence in a law suit is now simpler and faster. As a result, it has become easier for manipulators to alter the contents of digital evidence. For instance, inpainting technique is used to remove an object from a video without leaving any artefact of illegal tampering. Therefore, this paper presents a technique for detecting and locating inpainting forgery in a video sequence with static camera motion. Our technique exploits statistical correlation of Hessian matrix (SCHM) to detect and locate tampered regions within a video sequence. The results of our experiments prove that the technique effectively detect and locate areas which are tampered using both texture and structure based inpainting with an average precision rate of 99.79% and an average false positive rate of 0.29%

    On the Sensor Pattern Noise Estimation in Image Forensics: A Systematic Empirical Evaluation

    Get PDF
    Extracting a fingerprint of a digital camera has fertile applications in image forensics, such as source camera identification and image authentication. In the last decade, Photo Response Non_Uniformity (PRNU) has been well established as a reliable unique fingerprint of digital imaging devices. The PRNU noise appears in every image as a very weak signal, and its reliable estimation is crucial for the success rate of the forensic application. In this paper, we present a novel methodical evaluation of 21 state-of-the-art PRNU estimation/enhancement techniques that have been proposed in the literature in various frameworks. The techniques are classified and systematically compared based on their role/stage in the PRNU estimation procedure, manifesting their intrinsic impacts. The performance of each technique is extensively demonstrated over a large-scale experiment to conclude this case-sensitive study. The experiments have been conducted on our created database and a public image database, the 'Dresden image databas

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain

    Video copy-move forgery detection scheme based on displacement paths

    Get PDF
    Sophisticated digital video editing tools has made it easier to tamper real videos and create perceptually indistinguishable fake ones. Even worse, some post-processing effects, which include object insertion and deletion in order to mimic or hide a specific event in the video frames, are also prevalent. Many attempts have been made to detect such as video copy-move forgery to date; however, the accuracy rates are still inadequate and rooms for improvement are wide-open and its effectiveness is confined to the detection of frame tampering and not localization of the tampered regions. Thus, a new detection scheme was developed to detect forgery and improve accuracy. The scheme involves seven main steps. First, it converts the red, green and blue (RGB) video into greyscale frames and treats them as images. Second, it partitions each frame into non-overlapping blocks of sized 8x8 pixels each. Third, for each two successive frames (S2F), it tracks every block’s duplicate using the proposed two-tier detection technique involving Diamond search and Slantlet transform to locate the duplicated blocks. Fourth, for each pair of the duplicated blocks of the S2F, it calculates a displacement using optical flow concept. Fifth, based on the displacement values and empirically calculated threshold, the scheme detects existence of any deleted objects found in the frames. Once completed, it then extracts the moving object using the same threshold-based approach. Sixth, a frame-by-frame displacement tracking is performed to trace the object movement and find a displacement path of the moving object. The process is repeated for another group of frames to find the next displacement path of the second moving object until all the frames are exhausted. Finally, the displacement paths are compared between each other using Dynamic Time Warping (DTW) matching algorithm to detect the cloning object. If any pair of the displacement paths are perfectly matched then a clone is found. To validate the process, a series of experiments based on datasets from Surrey University Library for Forensic Analysis (SULFA) and Video Tampering Dataset (VTD) were performed to gauge the performance of the proposed scheme. The experimental results of the detection scheme were very encouraging with an accuracy rate of 96.86%, which markedly outperformed the state-of-the-art methods by as much as 3.14%

    Increasing accuracy and reducing time of face recognition with Euclid norm

    Get PDF
    Biometric parameters are used largely than smart cards, passwords or others in authentication processes. They differ from other methods with stability and indispensable features. In practice, fingerprints, face, iris, and gate based biometric authentication methods are used. Researchers compare biometric parameters by reliability to forgery, no changing, no repeating and convenient to use. Authentication based on face is very popular and suitable to parameters. The major advantage is the only physiological biometric that can be reliable mark at distance and, so, the verification of the users can happen without their accurate interaction with the sensor or their knowledge. Face recognition solutions are used for controlling attendance in airports, stadiums, railway stations, education and other organizations. The main problems of face recognition algorithms are recognition time and accuracy. We will solve this problem by changing Frobenius norm to Euclid norm in proposed method. Ways of optimization and several recommendations for collection face database are proposed

    Robust image hashing using ring partition-PGNMF and local features

    Get PDF
    corecore