224 research outputs found

    Reconstruction 3D personnalisée de la colonne vertébrale à partir d'images radiographiques non-calibrées

    Get PDF
    Les systèmes de reconstruction stéréo-radiographique 3D -- La colonne vertébrale -- La scoliose idiopathique adolescente -- Évolution des systèmes de reconstruction 3D -- Filtres de rehaussement d'images -- Techniques de segmentation -- Les méthodes de calibrage -- Les méthodes de reconstruction 3D -- Problématique, hypothèses, objectifs et méthode générale -- Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images -- A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities -- Simulation experiments -- Clinical validation -- A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis -- Auto-calibrage d'un système à rayons-X à partir de primitives de haut niveau -- Segmentation de la colonne vertébrale -- Approche hiérarchique d'auto-calibrage d'un système d'acquisition à rayons-X -- Personalized 3D reconstruction of the scoliotic spine from hybrid statistical and X-ray image-based models -- Validation protocol

    Multimodal image fusion of anatomical structures for diagnosis, therapy planning and assistance

    Get PDF
    This paper provides an overview of work done in recent years by our research group to fuse multimodal images of the trunk of patients with Adolescent Idiopathic Scoliosis (AIS) treated at Sainte-Justine University Hospital Center (CHU). We first describe our surface acquisition system and introduce a set of clinical measurements (indices) based on the trunk's external shape, to quantify its degree of asymmetry. We then describe our 3D reconstruction system of the spine and rib cage from biplanar radiographs and present our methodology for multimodal fusion of MRI, X-ray and external surface images of the trunk We finally present a physical model of the human trunk including bone and soft tissue for the simulation of the surgical outcome on the external trunk shape in AIS.CIHR / IRS

    A Novel Method for the 3-D Reconstruction of Scoliotic Ribs From Frontal and Lateral Radiographs

    Get PDF
    Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.Natural Sciences and Engineering Research Council of Canada and MENTOR, a strategic training program of the Canadian Institutes of Health Research

    Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pelvic incidence, sacral slope and slip percentage have been shown to be important predicting factors for assessing the risk of progression of low- and high-grade spondylolisthesis. Biomechanical factors, which affect the stress distribution and the mechanisms involved in the vertebral slippage, may also influence the risk of progression, but they are still not well known. The objective was to biomechanically evaluate how geometric sacral parameters influence shear and normal stress at the lumbosacral junction in spondylolisthesis.</p> <p>Methods</p> <p>A finite element model of a low-grade L5-S1 spondylolisthesis was constructed, including the morphology of the spine, pelvis and rib cage based on measurements from biplanar radiographs of a patient. Variations provided on this model aimed to study the effects on low grade spondylolisthesis as well as reproduce high grade spondylolisthesis. Normal and shear stresses at the lumbosacral junction were analyzed under various pelvic incidences, sacral slopes and slip percentages. Their influence on progression risk was statistically analyzed using a one-way analysis of variance.</p> <p>Results</p> <p>Stresses were mainly concentrated on the growth plate of S1, on the intervertebral disc of L5-S1, and ahead the sacral dome for low grade spondylolisthesis. For high grade spondylolisthesis, more important compression and shear stresses were seen in the anterior part of the growth plate and disc as compared to the lateral and posterior areas. Stress magnitudes over this area increased with slip percentage, sacral slope and pelvic incidence. Strong correlations were found between pelvic incidence and the resulting compression and shear stresses in the growth plate and intervertebral disc at the L5-S1 junction.</p> <p>Conclusions</p> <p>Progression of the slippage is mostly affected by a movement and an increase of stresses at the lumbosacral junction in accordance with spino-pelvic parameters. The statistical results provide evidence that pelvic incidence is a predictive parameter to determine progression in isthmic spondylolisthesis.</p

    A physically based trunk soft tissue modeling for scoliosis surgery planning systems

    Get PDF
    One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.IRSC / CIH

    Personalized 3D reconstruction of the rib cage for clinical assessment of trunk deformities

    Get PDF
    Scoliosis is a 3D deformity of the spine and rib cage. Extensive validation of 3D reconstruction methods of the spine from biplanar radiography has already been published. In this article, we propose a novel method to reconstruct the rib cage, using the same biplanar views as for the 3D reconstruction of the spine, to allow clinical assessment of whole trunk deformities. This technique uses a semi-automatic segmentation of the ribs in the postero-anterior X-ray view and an interactive segmentation of partial rib edges in the lateral view. The rib midlines are automatically extracted in 2D and reconstructed in 3D using the epipolar geometry. For the ribs not visible in the lateral view, the method predicts their 3D shape. The accuracy of the proposed method has been assessed using data obtained from a synthetic bone model as a gold standard and has also been evaluated using data of real patients with scoliotic deformities. Results show that the reconstructed ribs enable a reliable evaluation of the rib axial rotation, which will allow a 3D clinical assessment of the spine and rib cage deformities.CIHR / IRS

    Biomechanical Morphing for Personalized Fitting of Scoliotic Torso Skeleton Models

    Get PDF
    The use of patient-specific biomechanical models offers many opportunities in the treatment of adolescent idiopathic scoliosis, such as the design of personalized braces. The first step in the development of these patient-specific models is to fit the geometry of the torso skeleton to the patient’s anatomy. However, existing methods rely on high-quality imaging data. The exposure to radiation of these methods limits their applicability for regular monitoring of patients. We present a method to fit personalized models of the torso skeleton that takes as input biplanar low-dose radiographs. The method morphs a template to fit annotated points on visible portions of the spine, and it relies on a default biomechanical model of the torso for regularization and robust fitting of hardly visible parts of the torso skeleton, such as the rib cage. The proposed method provides an accurate and robust solution to obtain personalized models of the torso skeleton, which can be adopted as part of regular management of scoliosis patients. We have evaluated the method on ten young patients who participated in our study. We have analyzed and compared clinical metrics on the spine and the full torso skeleton, and we have found that the accuracy of the method is at least comparable to other methods that require more demanding imaging methods, while it offers superior robustness to artifacts such as interpenetration of ribs. Normal-dose X-rays were available for one of the patients, and for the other nine we acquired low-dose X-rays, allowing us to validate that the accuracy of the method persisted under less invasive imaging modalities

    Biomechanical Modeling and Characterization of the Postural Parameters in Adolescent Idiopathic Scoliosis

    Get PDF
    RÉSUMÉ La scoliose est une déformation 3D de la colonne vertébrale qui influence la morphologie et l'alignement de la colonne vertébrale, du bassin et de la cage thoracique. Bien que plusieurs paramètres soient introduits pour identifier et évaluer les courbes chez les sujets scoliotiques, la relation biomécanique entre la colonne vertébrale et le bassin ainsi que ses impacts sur la posture et l'équilibre général des sujets scoliotiques n’est pas encore élucidée. Le but de ce projet doctoral était d'examiner l'interaction spino-pelvienne en mesurant les paramètres biomécaniques chez les sujets atteints de scolioses idiopathiques adolescentes (SIA). La cinématique pelvienne, l'orientation spino-pelvienne relative et le chargement biomécanique lombo-sacré ont été examinés chez des sujets avec des courbures différentes. L’hypothèse que nous souhaitons vérifier est que l'interaction spino-pelvienne (au niveau des paramètres statiques, cinématiques et des chargements biomécaniques à l’interface entre le rachis et le bassin) est non seulement différente entre les SIA et les contrôles, mais varie aussi entre les sujets présentant différents types de scolioses. De plus, l'effet d’une instrumentation chirurgicale du rachis sur l’équilibre ainsi que sur l'interaction biomécanique spino-pelvienne a été étudié post opérativement. Donc, après avoir examiné la littérature pertinente, trois chapitres ont été consacrés pour examiner l'hypothèse générale de ce projet. Chaque chapitre aborde un aspect de l'interaction spino-pelvienne chez les sous-groupes scoliotiques et compare les résultats avec un groupe de contrôles de la même catégorie d'âge-sexe. Bien que l'orientation pelvienne entre les sujets SIA et le groupe contrôle était différente, il n'est pas vérifié dans quelle mesure l'orientation pelvienne et l'alignement spino-pelvien affectent la cinématique du bassin chez les sujets présentant différents types de courbures. Par la suite, l’interférence entre l'orientation du bassin et le mouvement spino-pelvien a été étudiée.----------ABSTRACT Scoliosis is a 3D spinal deformity which impacts the morphology and alignment of the spine, the pelvis, and the ribcage. Although several spinal parameters are introduced to identify and evaluate scoliotic curves, there is not much known about the biomechanical relationship between the spine and the pelvis and its impact on the overall posture and equilibrium of the scoliotic patients. The focus of this Ph.D. project was to investigate the spino-pelvic biomechanical interaction in adolescent idiopathic scoliosis (AIS) more closely. Spine and pelvic kinematic, relative spino-pelvic orientation in static, and lumbosacral biomechanical loading were investigated in subjects with different curve patterns. We hypothesized that spino-pelvic interaction is not only different between AIS and controls, but also varies between subjects with different scoliotic types in static, kinematic, and biomechanical loading. Furthermore the hypothetical effect of the spinal operation on equilibrating the spino-pelvic biomechanical interaction was tested postoperatively. Hence, after reviewing the pertinent literatures, 3 chapters were devoted to investigate the general hypothesis of this project. Each chapter tries to investigate one aspect of the spine and pelvis interaction in scoliotic subgroups and compares the results with an age-gender match group of controls. Although the pelvic alignment in the AIS group was different from the age-gender matched control group, it is not closely verified to what extent the pelvic orientation and the spino-pelvic alignment affect the pelvis kinematic in subjects with different curve types and subsequently its impact on the spino-pelvic movement is not determined. An experimental setup was designed to investigate the pelvic 3D motion during simple trunk movement in vivo

    Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning

    Get PDF
    One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.CIHR / IRS

    Biomechanical Simulator for the Surgical Correction of Sagittal Balance in Adult Spinal Deformity

    Get PDF
    RÉSUMÉ Pour maintenir une posture érigée minimisant les dépenses énergétiques, l’alignement de la colonne vertébrale dans le plan sagittal est d’une grande importance. Dans le contexte des déformations de la colonne vertébrale chez l'adulte, un mauvais alignement dans le plan sagittal demande une dépense énergétique plus élevée et est associé à la douleur et à une perte de fonction. Le maintien d'une posture érigée dans de telles conditions implique une activation accrue des muscles du tronc et l'utilisation de mécanismes compensatoires pour contrebalancer le débalancement antérieur du haut du corps. L'instrumentation chirurgicale est indiquée chez les patients souffrant de grandes douleurs et de handicaps lorsque les traitements non chirurgicaux ne sont plus suffisants. Cette procédure consiste à insérer des vis dans les pédicules des vertèbres et à redresser la colonne vertébrale à l’aide de tiges métalliques, ce qui conduit à la fusion permanente de la colonne vertébrale. Pour la correction de déformations importantes et manquant de flexibilité dans le plan sagittal, l'ostéotomie de soustraction pédiculaire (OSP) est une procédure souvent utilisée pour rétablir le profil sagittal normal de la colonne lombaire. Cette technique implique la résection des éléments postérieurs de la vertèbre ainsi qu’un coin d’os dans le corps vertébral pour créer une forte angulation de la colonne vertébrale. C'est une procédure très exigeante en raison des risques de complications mécaniques. De nombreux facteurs de risque ayant une incidence sur les taux de complications mécaniques après une instrumentation chirurgicale avec OSP ont été identifiés dans le cadre d’études cliniques. Les patients ayant eu des complications mécaniques avaient reçu une correction significativement plus grande de l’axe vertical sagittal, un cintrage plus grand des tiges dans le plan sagittal et une ostéotomie réalisée à un niveau plus caudal. Il a également été démontré que jusqu'à 40% des patients gardaient un alignement sagittal antérieur après une chirurgie avec OSP et qu'un alignement sagittal non neutre était associé à des taux plus élevés de révision chirurgicale. Même si des objectifs chirurgicaux globaux ont été définis avec la classification SRS-Schwab pour la correction du déséquilibre sagittal, la stratégie chirurgicale optimale spécifique au patient reste mal définie. En outre, malgré les études cliniques et biomécaniques, les relations entre les contraintes mécaniques dans l'instrumentation et les différents paramètres de correction dans le plan sagittal (degré de correction sagittale par variation de l'angle de l’OSP et de l'angle de cintrage des tiges, niveau vertébral de l’OSP et nombre de tiges) sont encore mal comprises. Les connaissances biomécaniques sur les facteurs de risque et leurs effets sur les complications mécaniques liées aux OSP telles que le bris des tiges sont encore limitées et une meilleure compréhension de l'impact biomécanique des OSP pourrait être un excellent outil pour aider les chirurgiens dans leur planification préopératoire de la correction du déséquilibre sagittal.----------ABSTRACT To maintain an erect posture minimizing energy expenditure, the alignment of the spine in the sagittal plane is of great importance. In adult spine deformity (ASD), sagittal misalignment requires higher energy expenditure and is associated with pain and loss of function. Maintaining an erect posture in such conditions involves increased trunk muscles activation and the use of compensatory mechanisms to counter balance the shift of the upper body. Surgical instrumentation is indicated for patients with high pain and disabilities when non-surgical treatments are not sufficient. This procedure consists in inserting screws in the pedicles of the vertebrae and straightening the spine with metal rods connected to the pedicle screws, leading subsequently to the permanent fusion of the spine. For the correction of large and rigid deformities in the sagittal plane, pedicle subtraction osteotomy (PSO) is a procedure used to restore normal sagittal profile of the lumbar spine. This technique involves a wedge-shaped resection of the vertebral body along with all posterior elements of the vertebra to locally increase the lumbar lordosis. It is a highly demanding procedure due to the risks of mechanical complications. Patients with mechanical complications after PSO had a significantly greater correction of the sagittal vertical axis, higher sagittal contour of the rods, and osteotomy performed at a more caudal level. It was also reported that up to 40% of patients kept an anterior sagittal alignment after surgery with PSO and a non-neutral sagittal alignment is associated with higher rates of revision surgery. Even though global surgical objectives have been defined through the SRS-Schwab ASD classification for the correction of sagittal imbalance, patient-specific optimal surgical strategy is still poorly defined. Also, despite clinical and biomechanical investigations, relations between stresses in the instrumentation and different sagittal correction parameters (amount of sagittal correction through varying PSO wedge angle and rod sagittal contouring angle, vertebral level of the PSO and number of rods) is still not well understood. Biomechanical knowledge of the reported risk factors and their effects on mechanical complications related to PSO such as rod breakage are still limited and a better understanding of the PSO’s biomechanical impact could be a great tool to assist surgeons in their preoperative planning of sagittal imbalance correction. Therefore, this project aims to address the following research question: « How do PSO resection angle, rod curvature, vertebral level of the PSO, and number of rods biomechanically impact the correction of sagittal balance and loads in the construct, and how should they be adjusted to reduce the risks of mechanical failure in adult spinal deformity?
    corecore