116 research outputs found

    Data Analytics and Machine Learning to Enhance the Operational Visibility and Situation Awareness of Smart Grid High Penetration Photovoltaic Systems

    Get PDF
    Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts. Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity frameworks for PV situation awareness at device, communications, applications, and cognitive levels; (2) a unique combinatorial approach using LASSO-Elastic Net regularizations and multilayer perceptron for PV generation forecasting; (3) applying a fixed-point primal dual log-barrier interior point method to expedite AC optimal power flow convergence; (4) adapting big data standards and capability maturity models to PV systems; (5) using K-nearest neighbors and random forests to impute missing values in PV big data; and (6) a hybrid data-model method that takes PV system deration factors and historical data to estimate generation and evaluate system performance using advanced metrics. These objectives were validated on three real-world case studies comprising grid-tied commercial PV systems. The results and conclusions show that the proposed imputation approach improved the accuracy by 91%, the estimation method performed better by 75% and 10% for two PV systems, and the use of the proposed forecasting model improved the generalization performance and reduced the likelihood of overfitting. The application of primal dual log-barrier interior point method improved the convergence of AC optimal power flow by 0.7 and 0.6 times that of the currently used deterministic models. Through the use of advanced performance metrics, it is shown how PV systems of different nameplate capacities installed at different geographical locations can be directly evaluated and compared over both instantaneous as well as extended periods of time. The results of this dissertation will be of particular use to multiple stakeholders of the PV domain including, but not limited to, the utility network and security operation centers, standards working groups, utility equipment, and service providers, data consultants, system integrator, regulators and public service commissions, government bodies, and end-consumers

    Proceedings of the First Karlsruhe Service Summit Workshop - Advances in Service Research, Karlsruhe, Germany, February 2015 (KIT Scientific Reports ; 7692)

    Get PDF
    Since April 2008 KSRI fosters interdisciplinary research in order to support and advance the progress in the service domain. KSRI brings together academia and industry while serving as a European research hub with respect to service science. For KSS2015 Research Workshop, we invited submissions of theoretical and empirical research dealing with the relevant topics in the context of services including energy, mobility, health care, social collaboration, and web technologies

    System organization and operation in the context of local flexibility markets at distribution level

    Get PDF
    9. Industry, innovation and infrastructur

    Design and implementation of machine learning techniques for modeling and managing battery energy storage systems

    Get PDF
    The fast technological evolution and industrialization that have interested the humankind since the fifties has caused a progressive and exponential increase of CO2 emissions and Earth temperature. Therefore, the research community and the political authorities have recognized the need of a deep technological revolution in both the transportation and the energy distribution systems to hinder climate changes. Thus, pure and hybrid electric powertrains, smart grids, and microgrids are key technologies for achieving the expected goals. Nevertheless, the development of the above mentioned technologies require very effective and performing Battery Energy Storage Systems (BESSs), and even more effective Battery Management Systems (BMSs). Considering the above background, this Ph.D. thesis has focused on the development of an innovative and advanced BMS that involves the use of machine learning techniques for improving the BESS effectiveness and efficiency. Great attention has been paid to the State of Charge (SoC) estimation problem, aiming at investigating solutions for achieving more accurate and reliable estimations. To this aim, the main contribution has concerned the development of accurate and flexible models of electrochemical cells. Three main modeling requirements have been pursued for ensuring accurate SoC estimations: insight on the cell physics, nonlinear approximation capability, and flexible system identification procedures. Thus, the research activity has aimed at fulfilling these requirements by developing and investigating three different modeling approaches, namely black, white, and gray box techniques. Extreme Learning Machines, Radial Basis Function Neural Networks, and Wavelet Neural Networks were considered among the black box models, but none of them were able to achieve satisfactory SoC estimation performances. The white box Equivalent Circuit Models (ECMs) have achieved better results, proving the benefit that the insight on the cell physics provides to the SoC estimation task. Nevertheless, it has appeared clear that the linearity of ECMs has reduced their effectiveness in the SoC task. Thus, the gray box Neural Networks Ensemble (NNE) and the white box Equivalent Neural Networks Circuit (ENNC) models have been developed aiming at exploiting the neural networks theory in order to achieve accurate models, ensuring at the same time very flexible system identification procedures together with nonlinear approximation capabilities. The performances of NNE and ENNC have been compelling. In particular, the white box ENNC has reached the most effective performances, achieving accurate SoC estimations, together with a simple architecture and a flexible system identification procedure. The outcome of this thesis makes it possible the development of an interesting scenario in which a suitable cloud framework provides remote assistance to several BMSs in order to adapt the managing algorithms to the aging of BESSs, even considering different and distinct applications

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    An investigation into the qualitative characteristics of large infrastructure and project finance ventures in Southern Africa

    Get PDF
    A thesis submitted to the Faculty of Commerce, Law and Management, University of the Witwatersrand in fulfilment of the requirements for the degree of Doctor of Philosophy. Wits Business School 4 November 2016Sub-Saharan Africa faces severe infrastructure deficits including in power generation, water facilities, transportation, and telecommunications. These deficits compound the socio-economic challenges of the most impoverished region in the world. It is estimated that funding of US$ 90 billion per annum is required to address infrastructure deficiencies. Other developing regions including Asia, the Middle East, and South America, have with varying degrees of success utilised the project finance framework to address similar infrastructure deficiencies, and also develop other commercial ventures. Africa has lagged behind in this respect, and still accounts for less than 3% of international project finance flows. The ability to attract and access international and domestic project finance capital, and execute the underlying ventures is an important opportunity to address the challenges noted above. The study contributes to knowledge by deepening our understanding of project finance in South Africa, Mozambique, and Zimbabwe in the following ways. Firstly, it offers a model through which to monitor key contextual factors that influence the success, failure, and shaping of project and infrastructure ventures. Secondly, it interrogates the main capital structure theories including the static trade off and pecking order theories, and their applicability and relevance for project and infrastructure finance in the selected jurisdictions. It then compares capital structure theory with actual practice of capital structure formulation in the 7 cases studies investigated. This yields important insights as to the most important factors influencing capital structure in project finance in the three selected countries. In particular the constrained supply of capital is observed as the top factor determining capital structure. It further enhances our understanding of why ventures using project finance in these countries may have significantly lower leverage than other similar ventures in developed regions of the world. Thirdly, the study extracts key insights into how stakeholder interactions evolve in the projects by applying stakeholder agency theory to project sponsors, managers, contractors, state institutions, and community organisations. Collectively these insights should contribute to attracting increased capital to project finance in Sub-Saharan Africa, and arranging projects with greater prospects of operational success.MT 201
    • …
    corecore