277 research outputs found

    Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding

    Full text link
    In this paper, we propose a linear precoder for the downlink of a multi-user MIMO system with multiple users that potentially act as eavesdroppers. The proposed precoder is based on regularized channel inversion (RCI) with a regularization parameter α\alpha and power allocation vector chosen in such a way that the achievable secrecy sum-rate is maximized. We consider the worst-case scenario for the multi-user MIMO system, where the transmitter assumes users cooperate to eavesdrop on other users. We derive the achievable secrecy sum-rate and obtain the closed-form expression for the optimal regularization parameter αLS\alpha_{\mathrm{LS}} of the precoder using large-system analysis. We show that the RCI precoder with αLS\alpha_{\mathrm{LS}} outperforms several other linear precoding schemes, and it achieves a secrecy sum-rate that has same scaling factor as the sum-rate achieved by the optimum RCI precoder without secrecy requirements. We propose a power allocation algorithm to maximize the secrecy sum-rate for fixed α\alpha. We then extend our algorithm to maximize the secrecy sum-rate by jointly optimizing α\alpha and the power allocation vector. The jointly optimized precoder outperforms RCI with αLS\alpha_{\mathrm{LS}} and equal power allocation by up to 20 percent at practical values of the signal-to-noise ratio and for 4 users and 4 transmit antennas.Comment: IEEE Transactions on Communications, accepted for publicatio

    1-Bit Massive MIMO Downlink Based on Constructive Interference

    Get PDF
    In this paper, we focus on the multiuser massive multiple-input single-output (MISO) downlink with low-cost 1-bit digital-to-analog converters (DACs) for PSK modulation, and propose a low-complexity refinement process that is applicable to any existing 1-bit precoding approaches based on the constructive interference (CI) formulation. With the decomposition of the signals along the detection thresholds, we first formulate a simple symbol-scaling method as the performance metric. The low-complexity refinement approach is subsequently introduced, where we aim to improve the introduced symbol-scaling performance metric by modifying the transmit signal on one antenna at a time. Numerical results validate the effectiveness of the proposed refinement method on existing approaches for massive MIMO with 1-bit DACs, and the performance improvements are most significant for the low-complexity quantized zero-forcing (ZF) method.Comment: 5 pages, EUSIPCO 201

    On the equivalence between SLNR and MMSE precoding schemes with single-antenna receivers

    Get PDF

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Hybrid Analog-Digital Precoding for Interference Exploitation

    Get PDF
    We study the multi-user massive multiple-input-single-output (MISO) and focus on the downlink systems where the base station (BS) employs hybrid analog-digital precoding with low-cost 1-bit digital-to-analog converters (DACs). In this paper, we propose a hybrid downlink transmission scheme where the analog precoder is formed based on the SVD decomposition. In the digital domain, instead of designing a linear transmit precoding matrix, we directly design the transmit signals by exploiting the concept of constructive interference. The optimization problem is then formulated based on the geometry of the modulation constellations and is shown to be non-convex. We relax the above optimization and show that the relaxed optimization can be transformed into a linear programming that can be efficiently solved. Numerical results validate the superiority of the proposed scheme for the hybrid massive MIMO downlink systems.Comment: 5 pages, EUSIPCO 201

    Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization

    Get PDF
    We propose a data-aided transmit beamforming scheme for the multi-user multiple-input-single-output (MISO) downlink channel. While conventional beamforming schemes aim at the minimization of the transmit power subject to suppressing interference to guarantee quality of service (QoS) constraints, here we use the knowledge of both data and channel state information (CSI) at the transmitter to exploit, rather than suppress, constructive interference. More specifically, we design a new precoding scheme for the MISO downlink that minimizes the transmit power for generic phase shift keying (PSK) modulated signals. The proposed precoder reduces the transmit power compared to conventional schemes, by adapting the QoS constraints to accommodate constructive interference as a source of useful signal power. By exploiting the power of constructively interfering symbols, the proposed scheme achieves the required QoS at lower transmit power. We extend this concept to the signal to interference plus noise ratio (SINR) balancing problem, where higher SINR values compared to the conventional SINR balancing optimization are achieved for given transmit power budgets. In addition, we derive equivalent virtual multicast formulations for both optimizations, both of which provide insights of the optimal solution and facilitate the design of a more efficient solver. Finally, we propose a robust beamforming technique to deal with imperfect CSI, that also reduces the transmit power over conventional techniques, while guaranteeing the required QoS. Our simulation and analysis show significant power savings for small scale MISO downlink channels with the proposed data-aided optimization compared to conventional beamforming optimization

    Constructive Interference based Joint Combiner and Precoder Design in Multiuser MIMO Systems

    Get PDF
    Instead of suppressing multiuser interference as a harmful element by conventional precoders, constructive interference (CI) technique is able to exploit multiuser interference as a beneficial element for enhancing receiver performance. This paper is the first work investigating the feasibility of CI in multiuser multiple-input and multiple-output (MIMO) systems. A joint CI based combiner and precoder approach is proposed, and then a robust design is further developed taking into consideration of imperfect channel state information (CSI). Simulation shows that the proposed designs significantly outperform the existing benchmarks, and shows a high level of robustness against CSI error

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area
    • …
    corecore