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On the Equivalence between SLNR and MMSE Precoding Schemes with
Single-antenna Receivers

Piya Patcharamaneepakorn, Simon Armour, and Angela Doufexi,Member, IEEE

Abstract—This letter considers transmit precoding schemes
based on the maximum signal-to-leakage-and-noise ratio (SLNR)
in multiuser MIMO systems with single-antenna receivers. The
closed-form solution of SLNR design is generally given in the
form of the eigenvector associated to the maximum eigenvalue.
In this letter, analytic expressions of SLNR-based solutions and
resulting SLNR are derived for a generic power allocation (GPA).
The solution is shown to be a function of user-allocated power and
an arbitrary phase shift. Under equal power allocation (EPA),
the SLNR precoding scheme is shown to be equivalent to the
minimum mean square error (MMSE) precoding scheme. Several
useful implications in terms of the possible extension of existing
algorithms and performance analysis are also discussed.

Index Terms—Multiuser MIMO, linear precoding, SLNR,
MMSE, performance analysis.

I. I NTRODUCTION

M ULTIUSER multiple input multiple output (MU-
MIMO) schemes enable simultaneous multiplexing of

multiuser data streams into the same frequency and time
resources, yielding significant gain in system throughput.It
is known that the theoretical sum capacity of MU-MIMO can
be achieved by dirty paper coding (DPC) [1]. However, its
implementation is hampered by nonlinear complexity. Lin-
ear precoding techniques are, therefore, often consideredin
practical MU-MIMO systems. These techniques include zero-
forcing (ZF) [2], Block-Diagonalization (BD) [3], minimum
mean square error (MMSE) [4] and maximum signal-to-
leakage-and-noise ratio (SLNR) [5].

In this letter, the SLNR precoding scheme (SLNR-PS) in
MU-MIMO systems with single-antenna users is considered.
In contrast to [5] where the closed-form solution of the SLNR-
PS is given in terms of the eigenvector associated to the
maximum eigenvalue, an explicit formula of SLNR-based
solutions for GPA is presented in this letter and is shown to
be in a form of a regularised channel inverse [2] shifted by
random phase-shifts. The regularisation factors are shownto
be a function of user-allocated power to noise ratio. Under
EPA, the SLNR-PS can be viewed as a phase-shifted, power-
normalised version of the MMSE precoding scheme (MMSE-
PS), resulting in the equivalence between both schemes under
this power constraint. This leads to several useful implications
in terms of performance analysis and the applications of
techniques developed for MMSE to SLNR precoding schemes.

Notation: (·)T , (·)H denote the transpose and Hermitian
operations, respectively.[·]kk denotes the(k, k) entry of a
matrix. ‖·‖ is the vector norm andQ(·) is theQ-function.
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II. SYSTEM MODEL AND PRECODINGSCHEMES

Consider a downlink MU-MIMO system havingM transmit
antennas andK single-antenna users. The transmitted signal is
given byx = WAs, wheres = [s1, s2, ..., sK ]T is the overall
data vector,sk ∈ C, E{|sk|2} = 1; W = [w1,w2, ...,wK ]
is the transmit precoding matrix,wk ∈ C

M×1; and A =
diag(a1, ..., aK) is the power normalisation matrix, such that
Pk = a2k‖wk‖2,

∑

k Pk = P . The composite channel matrix,
given byHH = [h1,h2, ...,hK ]H ∈ C

K×M , has independent
complex Gaussian elementsCN (0, 1). The additive noisenk

is an independent complex Gaussian variable with zero mean
and equal variance for all users, i.e.E{nkn

H
k } = σ2

k, where
σ2
k = σ2, ∀k. The system signal to noise ratio (SNR) is defined

asP/σ2. The received signal at userk can be written as

yk = h
H
k WAs+ nk. (1)

User k’s estimated data stream, after processing by the
receiver filtergHk ∈ C, is given by

ŝk = gHk yk = gHk h
H
k wkaksk + gHk h

H
k

∑

j 6=k

wjajsj +nk. (2)

A. MMSE Precoding Scheme

For the single-antenna receiver case, the transmit precoding
matrix satisfying MMSE criteria is given by [2] [4]

Wmmse = H(HH
H+

Kσ2

P
I)−1. (3)

From (3), it can be shown that the MMSE beamforming
vector for any userk can be written as

wk,mmse = (HH
H +

Kσ2

P
I)−1hk. (4)

The receiver filter is given bygHk = 1, ∀k.

B. SLNR Precoding Scheme

For SLNR-PS, the power normalisation is normally assumed
such thatak =

√
Pk and w

H
k wk = 1. The SLNR criterion

leads to the following optimisation problem [5]:

wk,slnr = arg max
wk∈CM

w
H
k hkh

H
k wk

wH
k H̃kH̃

H
k wk +

σ2

k

Pk

(5)

subject towH
k wk = 1

where H̃k = [h1, ...,hk−1,hk+1, ...,hK ]. The closed-form
solution to (5) can be written as [5]

wk,slnr ∝ max .eigenvector

(

(

H̃kH̃
H
k +

σ2
k

Pk
I

)−1

hkh
H
k

)

.

(6)
The resulting maximum SLNR value corresponds to the

maximum eigenvalue, i.e.slnrk = λmax,k, and the matched

filter, gHk =
w

H
k hk

‖wH
k
hk‖

, is deployed as the receiver filter [5].

0000–0000/00$00.00c© 2012 IEEE
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III. A N EXPLICIT EXPRESSION OFSLNR-BASED

SOLUTIONS FORGENERIC POWER ALLOCATION

From (6), an SLNR solution lies in the eigenspace associ-
ated to the maximum eigenvalue, i.e. anyvk that satisfies the
following eigenvector equation:

(

(

H̃kH̃
H
k +

σ2
k

Pk
I

)−1

hkh
H
k

)

vk = λvk (7)

λ

(

HH
H +

σ2
k

Pk
I

)

vk = (λ+ 1)hkh
H
k vk. (8)

Observe that, for a nonzero eigenvalue, a nonzero vector
vk satisfying (8) must not be orthogonal tohk, i.e. the inner
producthH

k vk results in a nonzero complex scalar, denoted as
αke

jθk . Thus, (8) becomes

vk = (
λ+ 1

λ
)(αke

jθk)

(

HH
H +

σ2
k

Pk
I

)−1

hk

= βke
jθk

(

HH
H +

σ2
k

Pk
I

)−1

hk; βk = (
λ+ 1

λ
)αk. (9)

Since a multiplication of an eigenvector with any nonzero
complex scalar leads to another eigenvector, (9) satisfies (7)
for any arbitrary values ofβk and θk, whereβk is nonzero.
By imposing the power normalisation constraint, a nonzero
solution to (5) can be rewritten as

wk =
vk

‖vk‖
=

1

ρk
ejθk

(

HH
H +

σ2
k

Pk
I

)−1

hk (10)

whereρk = ‖
(

HH
H +

σ2

k

Pk
I

)−1

hk‖ is a normalisation factor

so thatwH
k wk = 1, θk is arbitrary. The corresponding receiver

filter can also be rewritten as

gHk =
w

H
k hk

‖wH
k hk‖

= e−jθk
h
H
k

(

HH
H +

σ2

k

Pk
I

)−1

hk

‖hH
k

(

HHH +
σ2

k

Pk
I

)−1

hk‖
= e−jθk . (11)

Note that the solution (10) is generally not unique. It is
in a form of a regularised channel inverse [2], similar to the
MMSE solution (4), but with different regularisation factors
and additional phase-shifts. While the MMSE solution utilises
the same factor equal to the inverse of average SNR (Kσ2/P )
for all users, the SLNR solution sets each user’s regularisation
factor to the inverse of its individual SNR (σ2

k/Pk). Arbitrary
phase shifts introduced by the SLNR precoder have insignif-
icant impact upon system performance as they are generally
cancelled at the receiver. Thus, the solution of SLNR-PS can
be chosen such that the receiver filter reduces to asimple form,
i.e. choosenθk = 0 so thatgHk = 1, ∀k (no post-processing
is required at the receivers). This solution can be defined as
the basic solution. It is unique (having zero phase-shifts) and
can always be assumed for simplicity in performance analysis
and practical implementations, without loss of generality.

The resulting maximum SLNR valueλmax,k can also be
determined from the characteristic equation:

det

[

λI−
(

H̃kH̃
H
k +

σ2
k

Pk
I

)−1

hkh
H
k

]

= 0

det

[(

HH
H +

σ2
k

Pk
I

)

− (
λ+ 1

λ
)hkh

H
k

]

= 0. (12)

Since
(

HH
H +

σ2

k

Pk
I

)

is invertible, det
[

HH
H +

σ2

k

Pk
I

]

6=
0. Let A−1 =

(

HH
H +

σ2

k

Pk
I

)

, u = −(λ+1
λ )hk, andv

H =

h
H
k and applying the Matrix Determinant Lemma: det(A−1+

uv
H) = (1 + v

H
Au) · det(A−1) into (12) results in

[

1− λ+ 1

λ
h
H
k

(

HH
H +

σ2
k

Pk
I

)−1

hk

]

= 0. (13)

As the matrix
(

H̃kH̃
H
k +

σ2

k

Pk
I

)−1

hkh
H
k in (7) is rank one,

it has only one nonzero eigenvalue that is the maximum SLNR
value, which can be obtained from (13) as

λmax,k = slnrk =
1

1− hH
k

(

HHH +
σ2

k

Pk
I

)−1

hk

− 1. (14)

IV. T HE EQUIVALENCE BETWEEN SLNR AND MMSE
PRECODINGSCHEMES, AND ITS IMPLICATIONS

As shown in Section III, the user-pairwise solutions of
SLNR-PS and MMSE-PS are typically different due to differ-
ent regularisation factors and arbitrary phase-shifts. However,
it can be easily seen that they lie in the same direction for
every user’s pair if and only if the EPA constraint is imposed
(provided that all receivers have equal noise variance), i.e.
Pk = P/K, ∀k. In this case, the SLNR beamforming vector
and the resulting SLNR value can be given by

wk,slnr = ejθk

(

HH
H + Kσ2

P I

)−1

hk

‖
(

HHH + Kσ2

P I
)−1

hk‖
= ejθk

wk,mmse

‖wk,mmse‖
(15)

slnrk =
1

1− hH
k

(

HHH + Kσ2

P I
)−1

hk

− 1 (16)

=
P

Kσ2
[

(

HHH+ Kσ2

P I
)−1
]

kk

− 1. (17)

Clearly seen from (15), under EPA, any solution of SLNR-
PS can be obtained by arbitary phase-shifting and power-
normalising of the MMSE solution. Due to power normali-
sation constraint, both schemes only differ by arbitrary phase-
shifts. They are, therefore, equivalent under EPA. Similar
results are also observed in an independent work [6], where the
equivalence is shown by a verification that the MMSE solution
(referred to as conventional regulated ZF (RZF) in [6]) is an
eigenvector satisfying (7), i.e. a solution of the SLNR scheme.
While only EPA is considered and no generic solutions are
given in [6], this letter derives a generic form of SLNR-based
solutions for GPA and asserts that SLNR-PS and MMSE-PS
are equivalent if and only if EPA is imposed. Specifically,
under EPA, the MMSE solution is shown to be one (the basic
solution) of the infinite solutions of SLNR-PS.

Several useful implications can be drawn from this equiv-
alent viewpoint, e.g. SLNR-PS has identical performance as
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MMSE-PS, i.e. outperforming the ZF precoding scheme (ZF-
PS), under EPA. Furthermore, previously developed algorithms
and analysis of MMSE-PS are generally applicable for SLNR-
PS under EPA. Some modifications may be required for GPA.
To illustrate this idea, an extension of UL MMSE performance
analysis [7] to SLNR-PS under GPA is given in the following
subsections. Comparing to possible extensions of DL MMSE
analysis (e.g. [2]), this approach provides a better insight of
the performance of SLNR-PS with respect to ZF-PS.

A. SLNR analysis when K ≤ M

Notice that the SLNR expression (17) corresponds to
the signal-to-interference-and-noise ratio (SINR) of theUL
MMSE equaliser with the composite channel matrix defined by
H (see e.g. [8]), the SLNR maximisation problem in downlink
can thus be equivalently viewed as the MMSE optimisation
problem in virtual uplink under EPA. This motivates an ex-
tension of SINR analysis of UL MMSE [7] to SLNR analysis
of SLNR-PS. ForK ≤ M and GPA, the basic solution of (10)
can be decomposed into two orthogonal vectors, i.e.

wk =
1

νk

[

P
⊥
H̃k

+
σ2
k

Pk
P

etr
H̃k

]

hk. (18)

Note thatP⊥
H̃k

hk =

[

I− H̃k

(

H̃
H
k H̃k

)−1

H̃
H
k

]

hk is the

orthognal projection ofhk into the null space ofH̃k, i.e.
lies in the direction of ZF beamforming. The extra part

P
etr
H̃k

hk = H̃k

(

H̃
H
k H̃k +

σ2

k

Pk
I

)−1 (

H̃
H
k H̃k

)−1

H̃
H
k hk lies

in the column space of̃Hk, i.e. generating interference to other
users. The interference is implicitly well-controlled forGPA
as this vector is scaled byσ

2

k

Pk
(inversely proportional to the

allocated power). It can be verified thatP⊥
H̃k

hk andP
etr
H̃k

hk

are orthogonal andνk =
√

‖P⊥
H̃k

hk‖2 + ‖ σ2

k

Pk
Petr

H̃k

hk‖2.

Using the orthogonality property, i.e. the inner product of
P
⊥
H̃k

hk andhj (j 6= k) is zero, the leakage from userk to
userj to noise ratio can be given by

Lk→j

σ2
k

=
Pk

σ2
k

‖hH
j wk‖2 =

Pk

σ2
kν

2
k

‖hH
j

(

σ2
k

Pk
P

etr
H̃k

)

hk‖2. (19)

As νk is finite, i.e.‖P⊥
H̃k

hk‖ ≤ νk ≤ ‖hk‖, it can be seen
from (19) that the leakage from a user to another to noise
ratio converges to zero in the low and high SNR regimes. The
SLNR expression (14) can also be decomposed as

slnrk = snrkh
H
k P
⊥
H̃k

hk + h
H
k P

etr
H̃k

hk

= γzf
k + γetr

k (20)

wheresnrk = Pk

σ2

k

, γzf
k = Pk

σ2

k

h
H
k P
⊥
H̃k

hk corresponds to the

SINR of ZF-PS andγetr
k = h

H
k P

etr
H̃k

hk is an additional gain as

a result of the transmission of the extra part in the range ofH̃k.
Following [7], it can be shown that the gainγetr

k is a nonnega-
tive nondecreasing function ofsnrk and statistically indepen-
dent ofγzf

k . This indicates the superior performance of SLNR-
PS compared to ZF-PS. Assnrk → ∞, γetr

k converges to a

scaledF random variableγetr
k,∞ = h

H
k H̃k

(

H̃
H
k H̃k

)−2

H̃
H
k hk

with probability distribution function (pdf) given by

M −K + 2

K − 1
γetr
k,∞ ∼ F2(K−1),2(M−K+2). (21)

B. SLNR analysis when K > M

For K > M , the ZF solution is not applicable. Neither is
the decomposition in (18). Using (10), the leakage from user
k to userj to noise ratio and the SLNR expression (14) can
be written as

Lk→j

σ2
k

=
Pk

σ2
k

‖hH
j

(

HH
H +

σ2

k

Pk
I

)−1

hk‖2

‖
(

HHH +
σ2

k

Pk
I

)−1

hk‖2
(22)

slnrk = h
H
k

(

H̃kH̃
H
k +

σ2
k

Pk
I

)−1

hk. (23)

From (22), it can be seen that the leakage power converges
to zero at low SNR but it diverges (increases withsnrk) at
high SNR. Assnrk → ∞, the slnrk converges to a scaled

F random variableslnrk,∞ = h
H
k

(

H̃kH̃
H
k

)−1

hk, which
is independent ofsnrk, indicating the saturation of SLNR.
Thus, an attempt to multiplex excessive data streams leads to
ineffective SLNR solutions, causing inevitable interference at
high SNR. The pdf ofslnrk,∞ can be given by

K −M

M
slnrk,∞ ∼ F2M,2(K−M). (24)

C. SLNR as an approximation of SINR

Despite the different definitions between SINR and SLNR, it
could be argued that SINR can be well-approximated by SLNR
for symmetric channels. To show this, observe the relationship
between the interference at userk induced by userj and
the associated power leakage (assuming EPA and equal noise
variance for simplicity):

Ik←j =
P

K
‖hH

k wj‖
2
=

P

K

1

ρ2j
‖hH

k

(

HH
H
+

Kσ2

P
I

)

−1

hj‖
2

=
ρ2k
ρ2j

P

K
‖hH

j wk‖
2
=

ρ2k
ρ2j

Lk→j (25)

where ρ2n =

[

H
H
(

HH
H + Kσ2

P I

)−2

H

]

nn

, n ∈ {j, k}.

Assuming the channel is symmetric,E{ρ2j} = E{ρ2k}, and the
leakage is small compared to noise, the interference plus noise
can be estimated from the leakage plus noise by neglecting the
correction factorρ

2

k

ρ2

j

, i.e.
∑

j 6=k Ik←j+σ2 ≈∑j 6=k Lk→j+σ2.
Hence, the SINR of SLNR-PS can be approximated by the
corresponding SLNR. This is analogous to the approximation
of DL SINR by UL SINR in the MMSE scheme, previously
observed in [9]. The estimation is generally tight when leakage
power is relatively small compared to noise variance. These
arguments can also be extended to GPA.

For K ≤ M , (20) can be used as the approximation of
SINR and is analytically tight at low and high SNR as leakage
power converges to zero. At high SNR, the ergodic capacity
and the uncoded bit error rate (BER) of userk (for quadrature
phase-shift keying (QPSK) modulation) can be estimated by
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Fig. 1. Ergodic sum capacity when the number of transmit antennasM = 4.

Cslnr
k ≈ log2

(

1 + γzf
k

(

1 +
γetr
k,∞

γzf
k

))

≈ Czf
k (26)

berslnrk ≈ E

[

Q

(

√

γzf
k + γetr

k,∞

)]

(27)

≈ E{e−γetr
k,∞/2} · berzfk (28)

where berzfk ≃ E

[

Q

(

√

γzf
k

)]

. (26) shows that the sum

capacity of SLNR-PS converges to that of ZF-PS in the high
SNR regime. In contrast, a non-vanishing gap in BER is seen
in (28) (sinceE{e−γetr

k,∞/2} is constant and less than unity) as
will also be shown in simulation results in Section V.

For K > M , leakage power diverges at high SNR. Thus,
the SINR estimation using (23) is only tight at low SNR.

V. SIMULATION RESULTS

This section provides simulation results for the case of EPA
andM = 4. The number of users is assumed to beK = 4
(K ≤ M ) and K = 5 (K > M ). In both cases, SLNR-PS
and MMSE-PS provide the same capacity as depicted in Fig.
1 due to their equivalence under EPA. ForK ≤ M , SLNR-PS
achieves higher sum capacity compared to ZF-PS in low-to-
moderate SNR range and converges to ZF-PS at asymptotic
high SNR as suggested by (26). The estimated capacity by
using SLNR (20) is tight in the low and high SNR regimes as
expected. It also appears to be rather accurate in the moderate
SNR range. ForK > M , the sum capacity of SLNR-PS
and MMSE-PS reaches a ceiling at high SNR as discussed
in Section IV.B. The SINR approximation using (23) is loose
at high SNR; however, it remains tight in the low SNR regime.

The uncoded BER performance is presented in Fig. 2. The
equivalence between SLNR-PS and MMSE-PS can again be
observed for bothK ≤ M andK > M . ForK ≤ M , SLNR-
PS and MMSE-PS outperform ZF-PS over the entire SNR
range. Notice the BER gap at high SNR as result of the non-
vanishing SINR gain. ForK > M , the BER performance
of SLNR-PS and MMSE-PS converges to an irreducible level
at high SNR due to residual interference unavoidable by the
precoding schemes. Note that the results of ZF-PS forK > M
are left out as ZF solutions cannot be obtained in this case.
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Fig. 2. Average uncoded BER with QPSK modulation whenM = 4.

VI. CONCLUSION

This letter derived an explicit expression of SLNR-based
solutions and the resulting SLNR for GPA in MU-MIMO sys-
tems with single-antenna receivers. It was shown that SLNR-
PS can be classified as a regularised channel inversion scheme,
with regularisation factors customised per user accordingto
their operating SNR, plus arbitrary phase-shifts. Under the
specific constraint of EPA, SLNR-PS was shown to be equiv-
alent to MMSE-PS. In particular, MMSE-PS was shown to
be the basic solution of SLNR-PS under EPA. Several useful
implications, such as the possible application of analysisand
algorithms (e.g. power allocation) from MMSE-PS to SLNR-
PS, were also discussed. As an illustration, the performance of
SLNR-PS was evaluated for GPA by the extension of MMSE
analysis. ForK ≤ M and any specific power allocation,
analytical results show that SLNR-PS is superior to ZF-PS.
At high SNR, the sum capacity of SLNR-PS converges to that
of ZF-PS, whereas a non-vanishing gap remains to be seen in
BER performance.
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