5,575 research outputs found

    Evaluation of local orientation for texture classification

    Get PDF
    The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation in the classification process. In this paper the orientation for each pixel in the image is extracted using the partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of the local dominant orientation (which is calculated by combining the magnitude and local orientation) on the classification results. While the dominant orientation of the texture depends strongly on the observation scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant orientations for all pixels in the image that sample the texture at micro-level. The experimental results were conducted on standard texture databases and the results indicate that the dominant orientation calculated at micro-level is an appropriate measure for texture description

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    Object Detection using Dimensionality Reduction on Image Descriptors

    Get PDF
    The aim of object detection is to recognize objects in a visual scene. Performing reliable object detection is becoming increasingly important in the fields of computer vision and robotics. Various applications of object detection include video surveillance, traffic monitoring, digital libraries, navigation, human computer interaction, etc. The challenges involved with detecting real world objects include the multitude of colors, textures, sizes, and cluttered or complex backgrounds making objects difficult to detect. This thesis contributes to the exploration of various dimensionality reduction techniques on descriptors for establishing an object detection system that achieves the best trade-offs between performance and speed. Histogram of Oriented Gradients (HOG) and other histogram-based descriptors were used as an input to a Support Vector Machine (SVM) classifier to achieve good classification performance. Binary descriptors were considered as a computationally efficient alternative to HOG. It was determined that single local binary descriptors in combination with Support Vector Machine (SVM) classifier don\u27t work as well as histograms of features for object detection. Thus, histogram of binary descriptors features were explored as a viable alternative and the results were found to be comparable to those of the popular Histogram of Oriented Gradients descriptor. Histogram-based descriptors can be high dimensional and working with large amounts of data can be computationally expensive and slow. Thus, various dimensionality reduction techniques were considered, such as principal component analysis (PCA), which is the most widely used technique, random projections, which is data independent and fast to compute, unsupervised locality preserving projections (LPP), and supervised locality preserving projections (SLPP), which incorporate non-linear reduction techniques. The classification system was tested on eye detection as well as different object classes. The eye database was created using BioID and FERET databases. Additionally, the CalTech-101 data set, which has 101 object categories, was used to evaluate the system. The results showed that the reduced-dimensionality descriptors based on SLPP gave improved classification performance with fewer computations

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201
    • 

    corecore