93 research outputs found

    Mumford-Shah and Potts Regularization for Manifold-Valued Data with Applications to DTI and Q-Ball Imaging

    Full text link
    Mumford-Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are computationally challenging even for scalar data. For manifold-valued data, the problem becomes even more involved since typical features of vector spaces are not available. In this paper, we propose algorithms for Mumford-Shah and for Potts regularization of manifold-valued signals and images. For the univariate problems, we derive solvers based on dynamic programming combined with (convex) optimization techniques for manifold-valued data. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging), we show that our algorithms compute global minimizers for any starting point. For the multivariate Mumford-Shah and Potts problems (for image regularization) we propose a splitting into suitable subproblems which we can solve exactly using the techniques developed for the corresponding univariate problems. Our method does not require any a priori restrictions on the edge set and we do not have to discretize the data space. We apply our method to diffusion tensor imaging (DTI) as well as Q-ball imaging. Using the DTI model, we obtain a segmentation of the corpus callosum

    Second Order Differences of Cyclic Data and Applications in Variational Denoising

    Full text link
    In many image and signal processing applications, as interferometric synthetic aperture radar (SAR), electroencephalogram (EEG) data analysis or color image restoration in HSV or LCh spaces the data has its range on the one-dimensional sphere S1\mathbb S^1. Although the minimization of total variation (TV) regularized functionals is among the most popular methods for edge-preserving image restoration such methods were only very recently applied to cyclic structures. However, as for Euclidean data, TV regularized variational methods suffer from the so called staircasing effect. This effect can be avoided by involving higher order derivatives into the functional. This is the first paper which uses higher order differences of cyclic data in regularization terms of energy functionals for image restoration. We introduce absolute higher order differences for S1\mathbb S^1-valued data in a sound way which is independent of the chosen representation system on the circle. Our absolute cyclic first order difference is just the geodesic distance between points. Similar to the geodesic distances the absolute cyclic second order differences have only values in [0,{\pi}]. We update the cyclic variational TV approach by our new cyclic second order differences. To minimize the corresponding functional we apply a cyclic proximal point method which was recently successfully proposed for Hadamard manifolds. Choosing appropriate cycles this algorithm can be implemented in an efficient way. The main steps require the evaluation of proximal mappings of our cyclic differences for which we provide analytical expressions. Under certain conditions we prove the convergence of our algorithm. Various numerical examples with artificial as well as real-world data demonstrate the advantageous performance of our algorithm.Comment: 32 pages, 16 figures, shortened version of submitted manuscrip

    Total Generalized Variation for Manifold-valued Data

    Full text link
    In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    Riemannian Flows for Supervised and Unsupervised Geometric Image Labeling

    Get PDF
    In this thesis we focus on the image labeling problem, which is used as a subroutine in many image processing applications. Our work is based on the assignment flow which was recently introduced as a novel geometric approach to the image labeling problem. This flow evolves over time on the manifold of row-stochastic matrices, whose elements represent label assignments as assignment probabilities. The strict separation of assignment manifold and feature space enables the data to lie in any metric space, while a smoothing operation on the assignment manifold results in an unbiased and spatially regularized labeling. The first part of this work focuses on theoretical statements about the asymptotic behavior of the assignment flow. We show under weak assumptions on the parameters that the assignment flow for data in general position converges towards integral probabilities and thus ensures unique assignment decisions. Furthermore, we investigate the stability of possible limit points depending on the input data and parameters. For stable limits, we derive conditions that allow early evidence of convergence towards these limits and thus provide convergence guarantees. In the second part, we extend the assignment flow approach in order to impose global convex constraints on the labeling results based on linear filter statistics of the assignments. The corresponding filters are learned from examples using an eigendecomposition. The effectiveness of the approach is numerically demonstrated in several academic labeling scenarios. In the last part of this thesis we consider the situation in which no labels are given and therefore these prototypical elements have to be determined from the data as well. To this end we introduce an additional flow on the feature manifold, which is coupled to the assignment flow. The resulting flow adapts the prototypes in time to the assignment probabilities. The simultaneous adaptation and assignment of prototypes not only provides suitable prototypes, but also improves the resulting image segmentation, which is demonstrated by experiments. For this approach it is assumed that the data lie on a Riemannian manifold. We elaborate the approach for a range of manifolds that occur in applications and evaluate the resulting approaches in numerical experiments
    • …
    corecore