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Zusammenfassung

In dieser Dissertation beschäftigen wir uns mit dem Image Labeling Problem, welches als
Unterroutine in zahlreichen Anwendungen in der Bildverarbeitung gebraucht wird. Unsere
Arbeit baut auf dem Assignment Flow auf, welcher kürzlich als neuer geometrischer Ansatz
zum Image Labeling Problem eingeführt wurde. Dieser Fluss entwickelt sich zeitlich auf der
Mannigfaltigkeit der zeilenstochastischen Matrizen, dessen Elemente die Wahrscheinlichkeiten
der Zuweisungen von Klassenlabels repräsentieren. Die strikte Trennung von Zuweisungen
und Daten ermöglicht es, dass die Daten aus jedem beliebigen metrischen Raum stammen
dürfen. Zudem führt eine Glättungsoperation im Raum der Zuweisungen zu einem räumlich
regularisierten Labeling, das ohne systematischen Fehler auf dem zugrundeliegenden Graphen
realisiert wird.

Der erste Teil der Arbeit ist theoretischen Aussagen zum asymptotischen Verhalten des Assi-
gnment Flows gewidmet. Wir zeigen unter schwachen Voraussetzungen an die Parameter, dass
der Assignment Flow für Daten in allgemeiner Lage gegen ganzzahlige Wahrscheinlichkeiten
und somit eindeutige Zuweisungsentscheidungen konvergiert. Zudem untersuchen wir die
Stabilität der möglichen Grenzwerte in Abhängigkeit der Eingabedaten und Parameter. Für sta-
bile Grenzwerte leiten wir Bedingungen her, welche das frühzeitige Erkennen der Konvergenz
zu diesen Werten ermöglichen und somit eine Konvergenzgarantie liefern.

Im zweiten Teil der Arbeit diskutieren wir, wie der ursprüngliche Ansatz des Assignment
Flows erweitert werden kann, um einfache Label-Statistiken als Vorwissen für eine zusätzliche
Regularisierung einzuführen. Diese Label-Statistiken ergeben sich durch globale konvexe
Einschränkungen auf lineare Filterstatistiken des resultierenden Labelings. Die zugehörigen
Filter können anhand von Beispielen mittels einer Eigenwertzerlegung gelernt werden. Die
Wirksamkeit des neuen Ansatzes wird anhand akademischer Beispiele demonstriert.

Im letzten Teil der Arbeit betrachten wir die Situation, in der keine Labels gegeben sind
und somit diese prototypischen Elemente aus den Daten mitbestimmt werden müssen. Hierfür
führen wir einen zusätzlichen Fluss im Raum der Daten ein, der an den Assignment Flow
gekoppelt wird. Der resultierende Fluss adaptiert die Prototypen zeitlich an die Zuweisungs-
wahrscheinlichkeiten. Die simultane Adaption und Zuweisung der Prototypen liefert nicht
nur passende Prototypen, sondern verbessert auch die resultierende Bildsegmentierung, was
durch Experimente belegt wird. Für diesen Ansatz wird angenommen, dass die Daten auf einer
Riemannschen Mannigfaltigkeit liegen. Wir konkretisieren den Ansatz für eine Reihe von
Mannigfaltigkeiten aus der Anwendung und evaluieren die resultierenden Verfahren anhand
experimenteller Beispiele.





Abstract

In this thesis we focus on the image labeling problem, which is used as a subroutine in many
image processing applications. Our work is based on the assignment �ow which was recently
introduced as a novel geometric approach to the image labeling problem. This �ow evolves over
time on the manifold of row-stochastic matrices, whose elements represent label assignments
as assignment probabilities. The strict separation of assignment manifold and feature space
enables the data to lie in any metric space, while a smoothing operation on the assignment
manifold results in an unbiased and spatially regularized labeling.

The �rst part of this work focuses on theoretical statements about the asymptotic behavior of
the assignment �ow. We show under weak assumptions on the parameters that the assignment
�ow for data in general position converges towards integral probabilities and thus ensures
unique assignment decisions. Furthermore, we investigate the stability of possible limit points
depending on the input data and parameters. For stable limits, we derive conditions that allow
early evidence of convergence towards these limits and thus provide convergence guarantees.

In the second part, we extend the assignment �ow approach in order to impose global convex
constraints on the labeling results based on linear �lter statistics of the assignments. The cor-
responding �lters are learned from examples using an eigendecomposition. The e�ectiveness
of the approach is numerically demonstrated in several academic labeling scenarios.

In the last part of this thesis we consider the situation in which no labels are given and
therefore these prototypical elements have to be determined from the data as well. To this end
we introduce an additional �ow on the feature manifold, which is coupled to the assignment
�ow. The resulting �ow adapts the prototypes in time to the assignment probabilities. The
simultaneous adaptation and assignment of prototypes not only provides suitable prototypes,
but also improves the resulting image segmentation, which is demonstrated by experiments.
For this approach it is assumed that the data lie on a Riemannian manifold. We elaborate
the approach for a range of manifolds that occur in applications and evaluate the resulting
approaches in numerical experiments.
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1 Introduction

1.1 Motivation

Image segmentation is a fundamental task needed in numerous applications in computer
vision. For video surveillance and autonomous driving, segmentation techniques are used to
detect pedestrians and other objects in the street scene [TPM08]. In biological research, cell
segmentation is used to analyze cell morphology and cell movement [KSR19]. Additionally,
segmentation techniques are used in medical imaging to assist physicians in diagnosing and
treating diseases. This includes cancer detection [WER18] as well as blood vessel segmentation
to identify pathologies such as aneurysms and dissections [Bie+12, Bie+15]. While segmentation
of biomedical images can be done by hand, manual segmentation is time consuming and error-
prone. Therefore automatic segmentation methods are needed.

There are numerous segmentation methods and they come in many di�erent forms such as
graph partitioning or model-based segmentation. In this thesis we deal with the image labeling
problem, which is a subclass of the image segmentation problem. It consists of assigning each
pixel a single element from a �nite set of labels, so that equally labelled pixels share certain
characteristics. By labels we mean prototypical elements from the feature space. The following
subproblems arise in the labeling problem, which a�ect the segmentation result.

1. Similarity measure. A dissimilarity function is needed to compare data and labels. This
function is used for pixelwise labeling decisions.

2. Regularization. To cope with noisy data, prior knowledge of (inter-pixel) label statistics
should be incorporated into the image labeling method as regularization. This includes the
information that neighboring pixels are more likely to have the same label.

3. Labels. For the labeling problem, the set of labels must be known beforehand and these
prototypical elements should properly represent the data.

The �rst item must be considered separately for each dataset. We do not want to pay much
attention to this point. Therefore, we choose an intuitive dissimilarity function for each feature
space. In the case of RGB values, for example, this is the Euclidean distance. The main focus of
this work will be on the last two points. Depending on the labeling method, regularization may
depend on the dissimilarity function and thus on the feature space. We will choose a labeling
method where feature space and label assignment are decoupled so that the regularization can
be considered independent of the dataset. As regularization we will examine label statistics in
the form of �lter statistics. Labels, on the other hand, depend on the dissimilarity function
and, based on this function, they should re�ect the range of the data well. In addition, they
should also allow a labeling in good accordance with the regularization, i.e. the labels should
also be chosen depending on the regularization and thus on the labeling method itself. Since it
is di�cult or sometimes impossible to determine such labels in advance, we will follow the
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1 Introduction

approach of learning labels during the labeling process whenever no labels are given. For this
we will follow established clustering methods.

As our underlying labeling method we will use the assignment �ow approach introduced in
[ÅPSS17]. This has the following reasons. The approach follows a strict separation between
the feature space containing the data and the label assignments. As mentioned above, this
allows the regularization to be considered independently of the feature space. Moreover, the
approach allows a spatial regularization that is unbiased by pixel position. Furthermore, the
strict separation of feature space and label assignments enables any metric space to be used
as a feature space. Here we are particularly interested in Riemannian manifolds that appear
in practice. Examples include the space of positive de�nite matrices [TPM08] or the one-
dimensional sphere [RPF97]. Another interesting aspect of the assignment �ow approach is
that it assumes data to lie on vertices of a general (undirected) graph. This does not necessarily
have to be a grid graph, as is common for image domains, but can also be, for example, a
triangulated manifold or an image presegmented as superpixels [Ach+12]. Thus the application
is not limited to 2D/3D images.

1.2 Related Work

Image Labeling

A large number of labeling methods model the labeling problem as a variational problem of
form

min
ℓ : �→!

� (ℓ), with � (ℓ) = �data(ℓ) + �reg(ℓ), (1.1)

where � is the image domain, ! is the �nite set of labels, �data is a data �delity term and �reg is
a regularization term. The image domain can be continuous or discrete. In [LS11], for example,
a continuous domain and a convex relaxation of problems of the form (1.1) are considered. In
the �eld of computer vision discrete models prevail. Prominent examples can be found in the
context of inference tasks of probabilistic graphical models like Markov random �elds [WJ08],
where minimization (1.1) corresponds to maximum a posteriori inference with respect to the
probability distribution ? (ℓ) = 1

/
exp(−� (ℓ)). In that case, the vertices of a graph correspond to

the image domain, i.e. the pixel locations. The regularization term measures the compatibility
of labels along edges or cliques of higher order. This interaction between the pixels makes the
labeling problem a hard combinatorial problem. Thus, in practical applications relaxations
are used as approximations. One noteworthy example is the local polytope relaxation, which
is a particular linear programming relaxation of the labeling problem [Wer07]. On the other
hand, min-cut/max-�ow algorithms such as the U-expansion algorithm [BVZ01, BK04] are
widely used because they provide su�ciently accurate solutions to many large-scale problems
in an e�cient way. For further methods we refer to [Kap+15], which provides a comprehensive
overview and evaluation.

The assignment �ow approach [ÅPSS17], on which we base our work, di�ers from the
above methods in two ways. First, there is no energy that is (approximately) minimized by
the solution of the assignment �ow. Although the assignment �ow was introduced as an
approximation to the gradient �ow of a functional, the functional is not de�ned for the limits
of the assignment �ow. Second, the data �delity term and the regularization term do not enter
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1.2 Related Work

additively into the labeling process as in (1.1), but are both described by operators that appear
in the vector �eld of the assignment �ow by concatenation.

Replicator Dynamics

The vector �eld of the assignment �ow is a coupled system of replicator equations. Replicator
equations are ordinary di�erential equations that were introduced in mathematical biology to
model natural selection [TJ78] and since then have appeared in various literature on evolution-
ary game theory, e.g. [Fri91, HS03]. From the perspective of di�erential geometry, replicator
equations are related to a particular Riemannian geometry on the probability simplex, known in
information geometry as Fisher-Rao geometry [Ama16], and can be understood as Riemannian
gradient �ows with respect to this geometry [MS18]. With respect to convergence statements
for replicator equations, we mention [LA83] and [BS99], which consider replicator equations
with symmetrical linear �tness and show convergence to a stationary point of a quadratic
function on the probability simplex.

Filter Statistics

Early seminal publications on the generative aspects of �lter statistics in image processing
include [ZM97] and [PS00]. In the former, �lters appear as parameters of a Gibbs-Boltzmann
distribution. A Gibbs reaction-di�usion for this distribution induces �lter statistics in an image
over time. In the second publication, textures are synthesized by projecting an image onto a
manifold formed by several hundred �lter constraints. A more recent work on �lter statistics is
[BGGS17], where �lters are learned as parameters of TV-like regularizers for image denoising
problems.

Clustering

A naive approach to determining labels for image labeling is to ignore the spatial context and
group the feature vectors in the feature space using a clustering method and subsequently
determine a representative for each cluster, e.g. by averaging. One of the best known methods
is :-means clustering, which can be found in various literature. We merely refer to the survey
[Teb07]. :-means tries to minimize the mean square distance to the cluster centers by averaging
within the clusters and thus automatically provides representatives for each cluster. Another
centroid-based method is :-center clustering [Har11], which is applicable in any metric space.
It attempts to minimize the maximum distance to the cluster centers. In addition, there are
density-based clustering approaches such as mean-shift [CM02, FH75], which determine cluster
centroids with respect to an empirical density, similar to :-means. By generalizing means to
Riemannian (Karcher) means, mean-shift can be extended to data on a Riemannian manifold
[SM09].

A clustering method widely used in statistics is the EM algorithm [MP00], which is modeled
on a mixed distribution and thus belongs to the distribution-based clustering methods. In
addition to the class probabilities, the parameters of the class-conditional distributions are
also determined. The authors in [BMDG05] investigated the case where the class-conditional
distributions belong to an exponential family and are represented by a Bregman divergence,
whereby the parameters of the distributions are single points (representatives) in the feature
space.
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Examples of methods that provide only a segmentation of the data and no representatives
are connectivity-based methods that decide the grouping based solely on pairwise distances
between the data. These include spectral clustering [SM00] and hierarchical clustering [Mül11,
Bat88].

1.3 Contribution and Overview

In this thesis we deal with the assignment �ow approach. We investigate its properties
mathematically and we also present two extensions, one towards regularization with label
statistics and one towards unsupervised label learning. Our main contributions are:

• Analysis of the asymptotic behavior of the assignment �ow.
Since the introduction of the assignment �ow, its convergence has hardly been studied.
The convergence towards integral assignment probabilities for data in general position
has merely been postulated and empirically veri�ed. In Chapter 3, we carry out a
purely mathematical investigation of the convergence using the recently introduced
(-parameterization [SS20]. We prove the postulated statement under weak assumptions
on the parameters. In addition, we analyze the stability of the limits depending on the
data. For limits that ful�ll a certain stability condition, we derive a criterion with which
convergence towards these limits can be determined at an early stage and which thus
provides a convergence guarantee. We also show that the assignment �ow converges
towards these stable limits with an exponential convergence rate. We extend the stability
analysis to the discrete scheme [Sav+17] and verify the validity of the convergence
guarantee for this discrete case as well. This contribution to the convergence analysis is
mostly published in the preprint [ZZS20].

• A new approach for enforcing label statistics by global convex constraints.
We consider convex constraints on the �lter statistics of the assignment probabilities.
These constraints induce label statistics on the resulting assignments. We incorporate
these constraints into the assignment �ow approach by modifying its vector �eld us-
ing logarithmic barrier functions. Suitable �lters for the constraints can be learned
by positive and negative examples. We formulate the �lter learning as a generalized
eigendecomposition. This contribution is published in the conference paper [ZRS18]
and it is chronologically the �rst contribution in this thesis.

• A novel approach for unsupervised label learning in the context of manifold-
valued images.
We consider the case that no labels for the assignment �ow are given in advance and
must be determined from data as well. In order to enable the labels to comply with the
regularization, we follow the approach of adapting labels in time during the labeling
process. To get reasonable initial labels in an e�cient way, they are determined by a
greedy approximation of :-center clustering, which provides a performance guarantee.
For the label adaptation we follow established clustering methods by adapting the labels
to the assignment probabilities. We present two di�erent �ows in the feature space for the
adaptation, each of which is coupled with the assignment �ow. We interpolate the two
resulting approaches using an additional parameter, so that we obtain a one-parameter
family of unsupervised assignment �ows. The approach is applicable for data on a
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Riemannian manifold. We concretize the approach for a number of manifolds occurring
in applications, such as the set of positive de�nite matrices. The �rst version of the
approach is published in the conference paper [Zer+18]. The elaborated one-parameter
family of unsupervised assignment �ows can be found in the journal paper [ZZPS20a].

This thesis is organized as follows. We provide mathematical background for subsequent
work in Chapter 2. This includes an overview of di�erential geometry, which is used in
several parts of the thesis, as well as a presentation of the assignment �ow approach [ÅPSS17]
on which the main part of the thesis is based. In addition, we also provide de�nitions and
statements that are needed for the stability analysis of equilibria of a dynamic system. These
statements are needed for the study of the asymptotic behavior of the assignment �ow.

In Chapter 3 we investigate the asymptotic behavior of the assignment �ow. For this
purpose, we �rst analyze in Section 3.2 the connection between the limits of the (-�ow and
the limits of the assignment �ow. Then we prove in Section 3.3 the convergence of the (-�ow
towards an equilibrium assuming symmetry of the parameters. We also demonstrate with
an example that the convergence statement need not hold without symmetry. In Section 3.4
we investigate the stability of the equilibria of the (-�ow. We show under weak assumptions
on the parameters that only integral equilibria can be stable and conclude that the S-�ow
almost surely converges towards integral equilibria. For exponentially stable equilibria we
estimate the basin of attraction in Section 3.4.2. In Section 3.5 we investigate the discrete
scheme [Sav+17] and carry out a stability analysis for its equilibria. At the end of the chapter
we discuss a generalization of the S-�ow and mention how the stability statements apply to
the generalization.

In Chapter 4, we discuss an extension of the assignment �ow approach, with which label
statistics can be induced. The label statistics are presented in Section 4.2.1 as convex constraints
on linear �lter statistics. Afterwards, the learning of �lters is discussed in Section 4.2.2. The
extension of the assignment �ow by the label statistics is done in Section 4.2.3. At the end, the
approach will be evaluated on the basis of academic experiments in Section 4.3 and an outlook
is given in Section 4.4.

Chapter 5 contains our extension of the assignment �ow for unsupervised label learning.
First, established clustering methods are summarized in Section 5.2 and extended in Section 5.3
for the case of data lying on a Riemannian manifold. The variants on manifolds are then
coupled with the assignment �ow in Section 5.4 and interpolated with one parameter. The
resulting approach is compared to another extension of the assignment �ow for unsupervised
clustering, namely the self-assignment �ow [ZZPS20b], in Section 5.5. We work out our
approach for di�erent manifolds in Section 5.6 and evaluate the resulting approaches with
numerous experiments in Section 5.7.

In Chapter 6 at the end of this thesis we provide a concluding summary of our results and
give an outlook for potential research directions.

1.4 Notation

Sets

The set of natural numbers, integers, real numbers and complex numbers are notated as usual
with ℕ, ℤ, ℝ and ℂ. Moreover, ℕ0 is the set of natural numbers including 0, i.e. ℕ0 = ℕ ∪ {0}.
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ℝ≥0 and ℝ>0 denote the set of nonnegative real numbers and positive real numbers. Open
intervals are denoted with parentheses, e.g. (0, 1), and closed intervals with square brackets,
e.g. [0, 1]. The latter should not be confused with the �nite set [=] B {1, . . . , =}. In this thesis
arg max and arg min are sets and not elements, i.e.

arg max
9 ∈�

0 9 =
{
9∗ ∈ � : 0 9∗ = max

9 ∈�
0 9

}
. (1.2)

The set C: (* ,+ ) consists of all :-times continuously di�erentiable functions 5 : * → + .
Calligraphic capital letters usually denote manifolds or metric spaces. In particular, examples
are the open probability simplex S (2.35), the assignment manifoldW (2.85) and the manifold
of positive de�nite 3 × 3 matrices P3 . An exception are the vertex neighborhoods N8 (2.71).

Matrix and Vector Notations

Vectors E ∈ ℝ= are understood as column vectors. The angle brackets 〈·, ·〉 denote the Euclidean
inner product, i.e. 〈D, E〉 = D>E for vectors D, E ∈ ℝ= and 〈* ,+ 〉 = tr(* >+ ) for matrices
* ,+ ∈ ℝ<×= . The 9-th standard basis vector in ℝ= is represented by 4 9 = (0, . . . , 1, . . . , 0)>.
The dimension of 4 9 should be clear from the context. 1= ∈ ℝ= is the constant vector of ones
and 1� ∈ ℝ= is the indicator vector for a subset� ⊆ [=], i.e. (1�)9 = 1 if 9 ∈ � and 0 otherwise.
Multiplication ?@ and division ?

@
for vectors ?, @ ∈ ℝ= are to be understood entrywise as well

as the elementary functions √? , 4@ = exp(@) and log(@). The entrywise product of matrices
is indicated by �. In some circumstances, this operator is also used for vectors, if it serves
the readability. The ⊗ operator denotes the Kronecker product of two matrices or vectors.
Diag(E) ∈ ℝ=×= is the diagonal matrix with the diagonal E ∈ ℝ= . For a matrix, ∈ ℝ<×= ,
,8 ∈ ℝ= denotes the 8-th row (as column vector) and, 9 ∈ ℝ< denotes the 9-th column.

Maps and Operators

The maps exp? and exp, refer to the maps (2.90) and (2.100a) and must not be confused
with the entrywise exponentiation exp (without subscript). The exponential mapping on a
Riemannian manifold is given as Exp? and the matrix exponential is given as expm. For a
function 5 , d5 will represent either the di�erential (2.4) or the Gâteaux (directional) derivative.
For the di�erential we use the notation d5? (E), while for the Gâteaux derivative we use the
notation d5 (G) [E]. Since both represent the same quantity, this should not lead to confusion.
More generally we enclose the arguments of a linear operator with square brackets, e.g. ![+ ].
We do this especially with the replicator operator ', : ℝ<×= → ℝ<×= (2.100b) in order to
distinguish it from its matrix representation, which we also denote as ', ∈ ℝ<=×<= . For a
function 5 : M → ℝ on a Riemannian manifold, grad 5 denotes the Riemannian gradient. The
Euclidean gradient (with respect to the coordinates of the ambient Euclidean space) is denoted
by ∇5 instead.
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In this chapter we present the preliminary material for the subsequent work. First, we sum-
marize basic de�nitions and statements from di�erential geometry, which are needed for the
discussion of unsupervised label learning on Riemannian manifolds in Chapter 5. Furthermore,
we discuss additional topics related to Riemannian geometry like information geometry which
prepare the introduction of the assignment �ow presented afterwards. The latter constitutes
the main part of the preliminary work, since all following chapters are based on it. Finally, we
give an overview of de�nitions and statements from stability theory of dynamical systems.
These statements are used to investigate the assignment �ow in Chapter 3.

2.1 Di�erential Geometry

We summarize relevant topics related to di�erential geometry in this section. Besides basic def-
initions, this particularly includes a discussion of �ows and divergence functions on manifolds
as well as the Riemannian mean. We also present a brief look into information geometry and
we discuss a class of Riemannian manifolds motivated by constrained optimization problems.

2.1.1 Basic Definitions

We give a brief overview of di�erential geometry to specify some terminology and notation. In
this overview, we assume the reader to be familiar with manifolds. For a detailed description
of the topic we refer to the textbooks [Lee13, Lee06, Lee18].

Vector and Covector Fields on Smooth Manifolds

Let M be a smooth =-dimensional manifold. We denote the set of all smooth functions
5 : M → ℝ by C∞(M,ℝ). The tangent space ofM at ? ∈ M is the =-dimensional vector
space)?M consisting of all derivations of C∞(M,ℝ) at ? . That means, E 5 ∈ ℝ is a directional
derivative of 5 ∈ C∞(M,ℝ) at ? for any E ∈ )?M. Using local coordinates G1, . . . , G= , any
tangent vector E ∈ )?M can be written as

E =
∑
8∈[=]

E8
m

mG8

���
?

with E1, . . . , E= ∈ ℝ. (2.1)

WheneverM is embedded into an ℝ# , we may also consider )?M as the set of all vectors
E ∈ ℝ# tangent toM at ? by identifying directions with corresponding directional derivatives.
The tangent bundle ofM is de�ned as disjoint union of all tangent spaces, i.e.

)M B
⋃
?∈M
{?} ×)?M, (2.2)
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2 Preliminaries

and it forms a smooth 2=-dimensional manifold. A vector �eld - onM is a functionM → )M
such that -? ∈ )?M for all ? ∈ M, where subscripts indicate the evaluation of the vector �eld
and {?} ×)?M is identi�ed with )?M. In local coordinates, vector �elds take the form

- =
∑
8∈[=]

- 8
m

mG8
with - 1, . . . , -= ∈ C∞(M,ℝ). (2.3)

We denote the set of all smooth vector �elds onM byX(M). With regard to the cotangent space
) ∗?M consisting of all linear forms )?M → ℝ, the cotangent bundle ) ∗M and the set X∗(M)
of all smooth covector �elds are de�ned correspondingly. For a smooth map � : M → N
between manifolds, the di�erential of � at ? is the linear map d�? : )?M → )� (?)N given by

d�? (E) (5 ) = E (5 ◦ � ) for all E ∈ )?M and 5 ∈ C∞(N ,ℝ). (2.4)

For functions 5 ∈ C∞(M,ℝ), the di�erential induces a smooth covector �eld d5 ∈ X∗(M)
with d5 (- ) = - 5 for vector �elds - ∈ X(M).

Riemannian Metric, Distance and Gradient

A Riemannian metric 6 onM is a family of inner products 6? for each tangent space)?M such
that 6? depends smoothly on ? , i.e., the function 6(-,. ) given by ? ↦→ 6? (-? , .?) is smooth
for any smooth vector �elds -,. ∈ X(M). The pair (M, 6) is called Riemannian manifold. By
means of the Riemannian metric some concepts from Euclidean geometry can be applied to
manifolds. It enables to de�ne the length of a tangent vector by

‖E ‖6 B
√
6? (E, E) ∀E ∈ )?M (2.5)

as well as the length of a (piecewise) smooth curve W : [0, 1] → M by

!6 (W) B
∫ 1

0

‖ ¤W (C)‖6 dC, (2.6)

where ¤W (C) = dWC
( d

dC
) ∈ )W (C )M denotes the directional derivative along W (C). Furthermore, the

Riemannian distance onM is de�ned by

36 (?, @) B inf
{
!6 (W) : piecewise smooth curve W : [0, 1] → M with W (0) = ? and W (1) = @} .

(2.7)
Finally, the Riemannian gradient of a function 5 ∈ C∞(M,ℝ) is the vector �eld

grad 5 ∈ X(M) (2.8a)

de�ned by
6(grad 5 , - ) = 3 5 (- ) = - 5 ∀- ∈ X(M). (2.8b)

Using the linear tangent-cotangent isomorphism1

6̂ : X(M) → X∗(M), 6̂(- ) (. ) = 6(-,. ), ∀-,. ∈ X(M) (2.9)

that associates with a vector �eld - ∈ X(M) the covector �eld 6̂(- ) = 6(-, ·), the Riemannian
gradient (2.8b) reads

grad 5 = 6̂ −1(3 5 ) . (2.10)
1The maps 6̂ and 6̂ −1 are sometimes denoted with ♭ and ♯ in the literature (‘musical isomorphism’). We stick to

the notation from [Lee13] here.
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Geodesics and Exponential Map

An a�ne connection ∇ onM is a map2

∇ : X(M) × X(M) → X(M), (-,. ) ↦→ ∇-., (2.11)

which is �∞(M)-linear in - , ℝ-linear in . and satis�es the product rule

∇- (5 . ) = 5 ∇-. + (- 5 ). for 5 ∈ C∞(M,ℝ). (2.12)

The a�ne connection describes directional derivatives of a vector �eld . and it allows to de�ne
the acceleration ∇ ¤W ¤W of a curve W . A geodesic with respect to ∇ is a curve W with vanishing
acceleration, i.e. ∇ ¤W ¤W ≡ 0. Geodesics are the generalization of straight lines from Euclidean
spaces. For any ? ∈ M and E ∈ )?M there exists a (locally) unique geodesic WE through
? = WE (0) with velocity E = ¤WE (0). The exponential map at ?

Exp? : +? →M, E ↦→ Exp? (E) = WE (1) (2.13)

with domain given by

+? =
{
E ∈ )?M : WE is de�ned on [0, 1]} (2.14)

is a di�eomorphism from some open neighborhood of 0 ∈ )?M into its image. Its inverse
Log? = Exp−1

? is called logarithmic map. On any Riemannian manifold (M, 6) there exists a
unique connection ∇6 called Levi-Civita connection which is both compatible with 6, i.e.

-6(., / ) = 6(∇6
-
., / ) + 6(-,∇6

-
/ ) for all -,., / ∈ X(M), (2.15)

and torsion-free, i.e.
∇6
-
. − ∇6

.
- ≡ [-,. ] . (2.16)

Here, the Lie bracket [-,. ] ∈ X(M) denotes the vector �eld satisfying

[-,. ] 5 = - (. 5 ) − . (- 5 ) for 5 ∈ C∞(M,ℝ). (2.17)

Geodesics with respect to the Levi-Civita connection are locally length minimizing, i.e., the
minimizing curve in (2.7) is a geodesic. Whenever no a�ne connection is speci�ed, geodesics
and exponential maps are considered with respect to the Levi-Civita connection.

2.1.2 Flows

We give a short de�nition of �ows on smooth manifoldsM. For a more detailed treatment of
�ows we refer to [Lee13, Chapter 9].

De�nition 2.1.1 (�ow). A �ow onM is a continuous map q : D →M, where D ⊆ ℝ ×M
is an open subset with {0} ×M ⊂ D, that satis�es the following group laws: for all ? ∈ M,

q (0, ?) = ?, (2.18)
2We use the symbol ∇ to denote the Euclidean gradient in the subsequent sections and chapters. Since a�ne

connections are used only in this preliminary section in order to de�ne geodesics, no notation con�ict can
occur.
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and for all B, C ∈ ℝ such that (B, ?), (C, q (B, ?)), (B + C, ?) ∈ D, it holds

q
(
C, q (B, ?)) = q (B + C, ?) . (2.19)

If D = ℝ ×M, then q is called a global �ow.

A global �ow is also termed (continuous-time) dynamical system (cf. [BS02]). In this work,
we are interested in (global) �ows generated by smooth vector �elds in the following sense.

De�nition 2.1.2. Let - ∈ X(M) be a smooth vector �eld onM.

(a) An integral curve of - is a di�erentiable curve W : I → M on an open interval I ⊆ ℝ

ful�lling
¤W (C) = -W (C ) for all C ∈ I. (2.20)

(b) A smooth �ow q : D → M is said to be generated by - if q (?) B q (·, ?) is an integral
curve of - for all ? ∈ M.

Simply put, a �ow generated by a vector �eld is a family of integral curves of that vector
�eld. An integral curve is called maximal if it cannot be extended to an integral curve on
any larger open interval. The following lemma states that a maximal integral curve exists for
all C ∈ ℝ if it stays within a compact subset. This criterion can be used to verify that a �ow
generated by a given vector �eld is global.

Lemma 2.1.3 (Escape Lemma [Lee13, Lemma 9.19]). Let W : I → M be a maximal integral
curve of a vector �eld - ∈ X(M) on a smooth manifoldM. Suppose I has a �nite upper bound,
i.e. 1 = supI < ∞. Then for any C0 ∈ I, W

([C0, 1)) is not contained in any compact subset ofM.

In the subsequent sections and chapters we will use the terms (global) �ow and dynamical
system interchangeably for the actual �ow as well as for the ODE (2.20) generating this �ow.

2.1.3 Statistical Models from the Viewpoint of Information Geometry

We give a brief overview of a subset of information geometry which deals with manifolds of
probability distributions. The considered class of Riemannian manifolds are statistical models
equipped with the Fisher information metric. For our overview we follow the textbook [CU14]
while also using some aspects from [AJLS17, Ama16].

The Framework

Let (X, Σ, `) be a measure space, that means, X is a set, Σ is a f-algebra of subsets of X, and
` : Σ → ℝ ∪ {±∞} is a measure on X. The set X is called sample space. In case of discrete
distributions, we consider the counting measure ` on a �nite or countable set X, and in case
of continuous distributions, ` is the Lebesgue measure on a set X ⊆ ℝ3 . In the following we
regard parameterized surfaces in the space of probability densities on X with respect to `, i.e.
in the space

P(X, `) =
{
5 ∈ L1(X, `) : 5 ≥ 0,

∫
X
5 d` = 1

}
. (2.21)
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De�nition 2.1.4 (statistical model). Let Ξ be an open subset of ℝ= or, more generally, a smooth
manifold of dimension =. We call the set Ξ the parameter space. Further, let

Ξ→ P(X, `), b ↦→ ?b (2.22)

be an injective C1-map such that3

m?b

mb1 , . . . ,
m?b

mb=
(2.23)

are linearly independent functions. The parameterized family

M =
{
?b : b ∈ Ξ} ⊂ P(X, `) (2.24)

is then called a (parametric) statistical model4 of dimension =.

The inverse map of (2.22), i.e. ?b ↦→ b , can be considered as local coordinates turningM
into a manifold. In the following we consider only probability density functions with full
support, i.e., we regard statistical models which are subsets of

P+(X, `) =
{
5 ∈ P(X, `) : 5 > 0

} ⊂ P(X, `) . (2.25)

To de�ne a Riemannian metric on M, we introduce a few notations �rst. We denote the
expectation of a function 5 ∈ L1(X, ?b`) with respect to the probability measure ?b` by

Eb [5 ] B
∫
X
5 (G)?b (G) d` (G). (2.26)

Further we use the log-likelihood function ; (b) B log?b as well as the shorthand m8 B m
mb8

.
The functions m8; (b), 8 ∈ [=] are called score functions and they ful�ll Eb [m8; (b)] = 0 assuming
m8; (b) ∈ L1(X, ?b`). In the following de�nition we assume m8; (b) ∈ L2(X, ?b`) for all 8 ∈ [=]
and all b ∈ Ξ.

De�nition 2.1.5. The Fisher information metric on a statistical modelM = {?b : b ∈ Ξ} is
de�ned by

6b (m8 , m9 ) = Eb
[
m8; (b)m9; (b)

]
, ∀8, 9 ∈ [=], ∀b ∈ Ξ. (2.27)

The Fisher information metric, also called Fisher-Rao metric, de�nes a Riemannian structure
onM, which is distinct for the following reasons. Up to scaling, this Riemannian metric is
unique in that it is invariant under su�cient statistics – cf. [AN00, Theorem 2.6]. In particular, it
is invariant under reparametrizations of the sample space which are trivial examples of su�cient
statistics. Additionally, the metric (2.27) transforms covariantly under reparametrizations of
the parameter space [CU14, Theorem 1.6.5], so that the geometry (e.g. Riemannian distance)
induced by the Fisher-Rao metric is independent of the parameterization of the statistical
modelM.

Using the Fisher-Rao metric 6, a one-dimensional family of a�ne connections onM can be
de�ned as follows.

3Since b ↦→ ?b ∈ L1 (X, `) maps into a Banach space, di�erentiability means Fréchet di�erentiability and the
(partial) derivatives are taken as Gâteaux-derivatives [AJLS17, De�nition C.1].

4A statistical model may also refer to the corresponding set of probability measures onX, i.e. the set {?b ` : b ∈ Ξ}.
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De�nition 2.1.6. The U-connection ∇(U) , U ∈ [−1, 1] on a statistical modelM = {?b : b ∈ Ξ}
is de�ned by

6
(∇(U)

m8
m9 , m:

)
= Eb

[ (
m8m9; + 1−U

2 (m8;) (m9;)
) (m:;)] for all 8, 9, : ∈ [=]. (2.28)

By the linearity of a�ne connections the above equation describes the U-connection completely.

This family of connections includes the Levi-Civita connection ∇6 of (M, 6) given by U = 0.
The two marginal connections are the mixture connection ∇(<) given by U = −1 and the
exponential connection ∇(4) given by U = 1.

Some Notable Examples

We start our examples with a class of statistical models which includes many common families
of probability distributions like the (multivariate) normal distribution, exponential distribution,
Bernoulli distribution and Poisson distribution.

De�nition 2.1.7. An exponential family is a parametric statistical model given by probability
density functions of the form

?\ (G) = exp
(
W (G) + 〈\, 5 (G)〉 −k (\ )), (2.29)

where \ = (\ 1, . . . , \=) are called natural parameters with domain

Θ =

{
\ ∈ ℝ= :

∫
X

exp
(
W (G) + 〈\, 5 (G)〉) d` (G) < ∞

}
, (2.30)

and W (G), 51(G), . . . , 5= (G) are functions on X such that the functions 1, 51, . . . , 5= are linearly
independent. The function

k (\ ) = log
( ∫
X

exp
(
W (G) + 〈\, 5 (G)〉) d` (G)

)
(2.31)

is called log-partition function.

We note that the log-partition functionk is strictly convex on the convex set Θ. Calculating
the Fisher-Rao metric (2.27) for an exponential family gives

6\ (m8 , m9 ) = Cov\ (58 , 59 ) = m8m9k (\ ) ∀8, 9 ∈ [=], (2.32)

where Cov\ denotes the covariance with respect to the probability measure ?\ `. Furthermore,
applying (2.28) with U = 1 results in 6\

(∇(4)
m8
m9 , m:

)
= 0. The latter equation is referred to as

∇(4) -�atness, i.e., a statistical model given by an exponential family is ∇(4) -�at.
Next we discuss categorial distributions which we will use later. These distributions form

an exponential family, but we may also choose a di�erent parameterization than (2.29).

Example 2.1.8. We consider discrete probability distributions on the �nite sample space
X = {G1, . . . , G=}. In particular, we use the counting measure on X, i.e. ` (�) = |�| for � ⊆ X.
We focus on the parameterization

?b (G8) =
{
b8 , 8 ∈ [= − 1],
1 −∑

9 ∈[=−1] b 9 , 8 = =,
(2.33)
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with parameter space

Ξ =

{
(b1, . . . , b=−1) ∈ ℝ=−1

>0 :
∑

8∈[=−1]
b8 < 1

}
. (2.34)

The statistical modelM = {?b : b ∈ Ξ} can be identi�ed with the open probability simplex

S B {
? ∈ ℝ= : ? > 0, 〈?, 1=〉 = 1

}
. (2.35)

The Fisher-Rao metric (2.27) now takes the form

6b (m8 , m9 ) =
{ 1
?b (G8 ) +

1
?b (G=) , 8 = 9,

1
?b (G=) , 8 ≠ 9

for 8, 9 ∈ [= − 1] . (2.36)

2.1.4 Hessian Riemannian Geometry

Now we discuss a particular class of Riemannian manifolds which are motivated by a con-
strained minimization problem and presented in [ABB04]. These manifolds are convex subsets
of ℝ= equipped with a Riemannian metric induced by the Hessian matrix of a strictly convex
function. For these manifolds, the tangent spaces, the Riemannian metric and the Riemannian
gradient can be expressed in the coordinates of the ambient space ℝ= , which simpli�es their
use in practice.

The Framework

Let � ⊆ ℝ= be an open and convex subset. Further, let � ∈ ℝ<×= be a full-rank matrix with
< ≤ = and let 1 ∈ ℝ< . The convex set

M = {G ∈ � : �G = 1} (2.37)

forms a smooth manifold whose tangent space at any G ∈ M is given by

)GM = ker� = {E ∈ ℝ= : �E = 0}. (2.38)

With the goal of solving the constrained minimization problem

min
G ∈M

5 (G) with 5 ∈ C1(ℝ=,ℝ) (2.39)

using a interior point �ow, a Riemannian structure onM is de�ned so that the trajectories
generated by the Riemannian gradient descent vector �eld

¤G (C) = − grad 5 |M (G (C)), G (0) ∈ M, (2.40)

remain in the relative interiorM of the feasible setM. To this end, we consider the Hessian
of a strictly convex function of a particular class de�ned below. For this purpose we denote
the domain of a function i : ℝ= → ℝ ∪ {∞} by domi = {G ∈ ℝ= : i (G) < ∞} and its interior
by int(domi).
De�nition 2.1.9 (Legendre type). Let i : ℝ= → ℝ ∪ {∞}, i . ∞ be lower semicontinuous
and convex. i is of Legendre type if

13
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(i) i is di�erentiable and strictly convex on int(domi),
(ii) ‖∇i (G 9 )‖ → ∞ as 9 → ∞ for every sequence (G 9 ) ⊂ int(domi) converging to a

boundary point of domi .

De�nition 2.1.10 (Legendre metric). Let i : ℝ= → ℝ ∪ {∞} be a function such that

(i) i is of Legendre type with int(domi) = � ,

(ii) i |� ∈ C2(�,ℝ) and the Hessian matrix ∇2i (G) is positive de�nite for all G ∈ � ,

(iii) the mapping � 3 G ↦→ ∇2i (G) is locally Lipschitz continuous.

Then the Riemannian metric 6G (D, E) = 〈D,� (G)E〉 on � given by the Hessian� (G) = ∇2i (G)
is called the Legendre metric induced by i .

The Legendre metric de�nes a Riemannian metric onM ⊂ � by restriction. The Riemannian
gradient of a function 5 ∈ C1(�,ℝ) with respect to this metric takes the form

grad 5 |M (G) = ΠG� (G)−1∇5 (G) ∈ )GM, (2.41)

where ΠG ∈ ℝ=×= denotes the 6G -orthogonal projection onto )GM = ker� given by

ΠG = �= −� (G)−1�>
(
�� (G)−1�>

)−1
� (2.42)

and ∇5 denotes the Euclidean gradient of 5 .
Besides the Riemannian structure on M, the Legendre type function i also induces a

coordinate transform fromM to a subset of ker�. For some choices of i , this subset turns
out to be the whole ker�, which enables to transform the constrained �ow (2.40) to an
unconstrained �ow in the vector space ker�.

De�nition 2.1.11 (Legendre transform). Let i ful�ll the assumption of De�nition 2.1.10. The
Legendre transform coordinates mapping onM associated with i is de�ned by

Ψi : M →M∗ B Ψi (M) ⊆ ker�, G ↦→ Ψi (G) = Π∇i (G), (2.43)

where Π = �= −�>(��>)−1� ∈ ℝ=×= denotes the orthogonal projection onto ker�.

Theorem 2.1.12 ([ABB04, Theorem 5.1]). Under the above de�nition and assumptions,M∗ is a
convex and (relatively) open subset of ker�, and Ψi is a C1-di�eomorphism fromM toM∗.

Some Notable Examples

For later reference we now discuss a couple of examples of this framework. First we sketch a
systematic method presented in [ABB04] to construct explicit Legendre metrics. Assume that
the convex set is given of the form

� =
{
G ∈ ℝ= : 58 (G) > 0 ∀8 ∈ � }, (2.44)

where � is a �nite set and 58 ∈ C3(ℝ=,ℝ) is a concave function for all 8 ∈ � . Further assume
that these functions ful�ll the following nondegeneracy condition:

span
{∇58 (G) : 8 ∈ � } = ℝ= for all G ∈ � . (2.45)

14
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Then a function i ful�lling the assumptions of De�nition 2.1.10 is given by

i (G) =
∑
8∈�

\ (58 (G)), (2.46)

where \ : ℝ→ ℝ ∪ {∞} is a Legendre type function satisfying

(i) either dom\ = ℝ>0 or dom\ = ℝ≥0,

(ii) \ ∈ C3(ℝ>0,ℝ),

(iii) limB→0+ \
′(B) = −∞,

(iv) \ ′′ > 0 on ℝ>0,

(v) either \ is nonincreasing or all 58 , 8 ∈ � are a�ne functions.

The function \ is called Legendre kernel of i . Examples of such kernels are the Boltzmann-
Shannon entropy

\0(B) = B log(B) − B with dom\0 = ℝ≥0 (2.47a)

as well as the log-barrier

\1(B) = − log(B) with dom\1 = ℝ>0. (2.47b)

We apply this construction to the open probability simplex

S =
{
? ∈ ℝ=>0 : 〈1=, ?〉 = 1

}
, (2.48)

whose tangent space is given by

)?S =
{
E ∈ ℝ= : 〈1=, E〉 = 0

}
C )0. (2.49)

Using the entropy \0 as kernel, we get the Legendre type function

i (?) =
∑
9 ∈[=]

? 9 log? 9 − ? 9 (2.50)

with domi = ℝ=≥0. The induced Legendre metric

6? (D, E) =
〈
D,Diag(?)−1E

〉 ∀D, E ∈ )0 (2.51)

is the Fisher-Rao metric (2.36) represented in the coordinates of the surrounding ℝ= . The
equation (2.41) for the Riemannian gradient on S now takes the form

grad 5 (?) = '?∇5 (?) with '? B Diag(?) − ??>. (2.52)

The Legendre transform coordinate mapping (2.43)

Ψi : S → )0, Ψi (?) = Π0 log(?) with Π0 B �= − 1
=
1=1

>
= (2.53)
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is a di�eomorphism between the manifold S and the vector space )0. Its inverse is

Ψ−1
i : )0 → S, Ψ−1

i (E) =
4E

〈4E, 1=〉 , (2.54)

where exponentiation is applied componentwise.
Finally, we mention the set of symmetric positive de�nite matrices,

P3 B
{
- ∈ ℝ3×3 : -> = -, - is positive de�nite

}
, (2.55)

which may be interpreted to be of the form (2.37). We regard it as an open subset of the vector
space of symmetric matrices

Sym3 B
{
- ∈ ℝ3×3 : -> = -

}
. (2.56)

The tangent space at - ∈ P3 is therefore )-P3 = Sym3 . The function

i (- ) =
{
− log det(- ), if - ∈ P3
∞, else

(2.57)

is a Legendre type function on the vector space Sym3 and the induced Legendre metric on P3 ,

6- (* ,+ ) = tr
(
-−1*-−1+

)
, (2.58)

is the so-called a�ne invariant Riemannian metric [PFA06]. This metric may also be referred
to as Fisher information metric, since it is the metric (2.27) corresponding to zero-mean
multivariate Gaussian distributions [Ama16, Section 4.5]. The Riemannian gradient of a
function 5 : P3 → ℝ with respect to this metric takes the form

grad 5 (- ) = -∇5 (- )- ∈ Sym3 , - ∈ P3 , (2.59)

where ∇5 (- ) ∈ Sym3 denotes the Euclidean gradient at - , and the matrices - and ∇5 (- ) are
multiplied as usual.

2.1.5 Divergence Functions

In this subsection we present divergence functions which we will use as surrogate functions for
(squared) distances. We follow the presentation of [ABB04] and [Ama16]. For a more detailed
description of Bergman divergences we refer to [CZ97, BB97].
Bregman divergences are distance-like functions of the form

�i : domi × int(domi) → ℝ≥0, �i (G,~) B i (G) − i (~) − 〈i (~), G − ~〉, (2.60)

induced by convex functions i : ℝ3 → ℝ ∪ {∞} of Legendre type – cf. De�nition 2.1.9. These
divergences �i satisfy

�i ≥ 0 and �i (G,~) = 0 ⇔ G = ~, (2.61)

which shows that�i behaves like a distance, but symmetry�i (G,~) = �i (~, G) is not required
and generally does not hold. If the function i is a Bregman function as de�ned below, then the
divergence �i is also useful for convergence proofs.
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De�nition 2.1.13 (Bregman function [ABB04, De�nition 4.1]). Let i : ℝ= → ℝ∪ {∞}, i . ∞
be lower semicontinuous and convex. i is called Bregman function with zone � if

(i) domi = � ,

(ii) i is continuous and strictly convex on � ,

(iii) i is continuously di�erentiable on � ,

(iv) {~ ∈ � : �i (0,~) ≤ W} is bounded for any 0 ∈ � and any W ∈ ℝ,

(v) �i (~,~ 9 ) → 0 as 9 →∞ for all ~ ∈ � and for every sequence (~ 9 ) ⊂ � with ~ 9 → ~.

Lemma 2.1.14 ([ABB04, Lemma 4.3]). If i is a Bregman function with zone� then for all ~ ∈ �
and all sequences (~ 9 ) ⊂ � with �i (~,~ 9 ) → 0 we have ~ 9 → ~.

Now we discuss divergence functions on manifolds. Let (M, 6) be a 3-dimensional Riemann-
ian manifold. A function � : M ×M → ℝ≥0 is a proper divergence function de�ned onM if,
for any chart* ⊂ M with local coordinates G : * → ℝ3 and ?, @ ∈ * , the function

�̃ (G,~) = �̃ (
G (?), G (@)) = � (?, @) (2.62a)

satis�es (2.61) and recovers the positive de�nite metric tensor by

� (?, @) ≈ 1
2

∑
8, 9 ∈[3 ]

68 9 (?)I8I 9 , (2.62b)

for I = G (@) − G (?) and small ‖I‖. We mention some examples for later reference. Firstly,
the function � (?, @) = 1

236 (?, @)2 de�nes a canonical divergence function on a Riemannian
manifold (M, 6) in terms of the squared Riemannian distance 32

6 . A more general de�nition of
a canonical divergence is used in information geometry, where the Levi-Civita connection is
replaced by another a�ne connection in order to de�ne a divergence function through a�ne
geodesics and corresponding squared distances. We refer to [AN00, Section 3.4], [AC10] and
[AJLS17, Section 4.4] for background and further details.

Moreover, with regard to the framework of Section 2.1.4, the Bregman divergence �i is a
proper divergence function on the Riemannian manifold (M, 6) whose Riemannian metric 6 is
the Legendre metric induced by the same Legendre type function i – cf. De�nition 2.1.10. As
speci�c examples we continue the two examples from Section 2.1.4. The Fisher-Rao metric
(2.51) on the open probability simplex S is induced by the entropy (2.50). The corresponding
Bregman divergence is the so-called Kullback–Leibler divergence

�KL(?, @) =
∑
9 ∈[=]

? 9 log
(? 9
@ 9

) + ? 9 − @ 9 = ∑
9 ∈[=]

? 9 log
(? 9
@ 9

)
, ? ∈ S, @ ∈ S. (2.63)

Since the entropy (2.50) is a Bregman function according to De�nition 2.1.13, the KL divergence
satis�es the convergence property stated in Lemma 2.1.14. We will use this property for the
convergence proof of the assignment �ow in Section 3.3. The second example is the a�ne
invariant metric (2.58) on the manifold P3 of positive de�nite matrices. The Riemannian
structure is induced by the log-determinant (2.57) which also induces the log-det divergence

�i (-,. ) = − log det(- ) + log det(. ) + tr
(
.−1(- − . )) (2.64a)

= − log det
(
.−1-

) + tr
(
.−1-

) − 3. (2.64b)
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A symmetrization of this divergence results in the Stein divergence [Sra13]

�S(-,. ) = 1
2�i

(
-, -+.2

) + 1
2�i

(
., -+.2

)
(2.65a)

= log det
(
-+.

2
) − 1

2 log det(-. ), (2.65b)

which is also a proper divergence function on P3 . We will study this and other concrete
divergence functions in connection with unsupervised label learning in Section 5.6, where
in some cases alternative divergences are required that serve as surrogate functions for the
(squared) Riemannian distance and are easier to evaluate computationally.

2.1.6 Riemannian Mean

We shortly mention the Riemannian mean which generalizes the arithmetic mean from Eu-
clidean spaces to Riemannian manifolds.

Let (M, 6) be a Riemannian manifold. The weighted Riemannian mean [Jos17, Def. 6.9.1] of
a collection of points ?1, . . . , ?= ∈ M with respect to weightsF = (F1, . . . ,F=) ∈ S is a point
@ ∈ M satisfying

�F (@) = inf
?∈M

�F (?), �F (?) = 1
2

∑
8∈[=]

F83
2
6 (?8 , ?), (2.66)

where 36 (@, ?) denotes the Riemannian distance (2.7). We have [Jos17, Lemma 6.9.4]

grad �F (?) = −
∑
8∈[=]

F8 Exp−1
? (?8) ∈ )?M, (2.67)

where Exp? denotes the Riemannian exponential map (2.13). Hence the optimality condition
for @ reads ∑

8∈[=]
F8 Exp−1

@ (?8) = 0. (2.68)

This equation is typically solved by the mean shift (�xed point) iteration

@ (C+1) = Exp@ (C )
( ∑
8∈[=]

F8 Exp−1
@ (C ) (?8)

)
, C ∈ ℕ0 (2.69)

with a suitable initialization @ (0) .
Eventually we note that the Riemannian mean can be generalized to a Riemannian mean

with respect to a divergence function � by replacing 1
23

2
6 in (2.66) by the divergence � . The

Riemannian gradient and the optimality condition grad �F (@) = 0 change accordingly.

2.2 Assignment Flow

In this section, we review the assignment �ow introduced in [ÅPSS17] as a geometric approach
to the image labeling problem. This �ow evolves on the manifold of row-stochastic matrices
whose elements assign prior data to observed measurements. The strict separation of assign-
ment manifold and feature space allows the data to lie in any metric space, while geometric
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averaging on the assignment manifold results in an unbiasedly spatially regularized labeling.
We refer to [Sch20] for an overview of recent work on the assignment �ow.

We start the review with a discussion of input data and assumptions of the framework. After
presenting the assignment manifold and the lifting map onto it, we de�ne the similarity map
which steers the assignment �ow. Eventually, we discuss the numerical integration of the
assignment �ow.

Prerequisite

Let (M, 3M) be a metric space and let data be given by observations

{I8}8∈� ⊂ M . (2.70)

The set � is assumed to form the vertex set of an undirected graph � = (� , �) with � ⊂ � × �
which describes the spatial relation of the data (2.70). Most of the time we consider manifold-
valued images so that� will be the grid graph of the image domain andM will be a Riemannian
manifold representing the feature space of the image. In that setting, the set � corresponds to
pixel locations and I8 ∈ M is the datum given at pixel 8 ∈ � . The graph� de�nes neighborhoods

N8 =
{
: ∈ � : (8, :) ∈ �} ∪ {8} (2.71)

with which we associate weights {l8: : : ∈ N8} satisfying

l8: > 0 ∀: ∈ N8 ,
∑
:∈N8

l8: = 1 ∀8 ∈ � . (2.72)

For example, these can simply be chosen to be the uniform weights

l8: =
1
|N8 | ∀: ∈ N8 ∀8 ∈ � . (2.73)

Besides the observations (2.70), we assume prede�ned prototypes (class representatives)

" = {< 9 }9 ∈� ⊂ M (2.74)

to be given, which we also call labels. We will discuss in Chapter 5 how these prototypes can
be learned and adapted within the framework. Last but not least we consider a dissimilarity
function �M : M ×M → ℝ≥0. For instance, this can be the distance function 3M . In case of
a Riemannian manifoldM, we may also choose a divergence function onM as discussed in
Section 2.1.5.

We consider the data labeling problem, i.e., the task of assigning each node 8 ∈ � a single
label< 9 (8) ∈ " . This labeling should meet two partly con�icting conditions. On the one hand
it should be faithful to the data in the sense that �M (I8 ,< 9 (8) ) is as small as possible. On the
other hand it should be spatially coherent, meaning that nodes in the same neighborhood N8
should get the same label if possible. By setting

,8 9 =

{
1, if label< 9 is assigned to node 8 ∈ � ,
0, otherwise,

(2.75)
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an labeling can be represented as an element of

W∗ B
{
, ∈ {0, 1}<×= : , 1= = 1<

}
, (2.76)

where< and = denote the number of vertices of the underlying graph � and the number of
labels indexed by � , respectively,

< = |� |, = = |� |. (2.77)

The approach [ÅPSS17] considers the probabilistic view of the labeling problem, i.e.,,8 9 =

Pr(< 9 |I8) represents the probability of assigning label< 9 to node 8 ∈ � . Each row,8 of the
matrix, is then an element of the probability simplex

Δ= B
{
? ∈ ℝ=≥0 : 〈?, 1=〉 = 1

}
. (2.78)

The assignment manifold discussed next is based on this view.

Assignment Manifold

The relative interior of Δ= is the open probability simplex

S = rint(Δ=) =
{
? ∈ ℝ=>0 : 〈?, 1=〉 = 1

}
. (2.79)

As discussed in Section 2.1.4, this is a smooth Riemannian manifold with tangent spaces

)?S = )0 =
{
E ∈ ℝ= : 〈E, 1=〉 = 0

}
, ? ∈ S, (2.80)

orthogonal projection Π0 : ℝ= → )0 given by the matrix

Π0 = �= − 1
=
1=1

>
= ∈ ℝ=×=, (2.81)

and Riemannian structure given by the Fisher-Rao metric (2.51)

6? (D, E) =
〈
D,Diag(?)−1E

〉
=

∑
9 ∈[=]

D 9E 9

? 9
for D, E ∈ )0. (2.82)

The barycenter of S is the uniform distribution

�S B 1
=
1= . (2.83)

The assignment manifold5 is de�ned as the product space

W B S × · · · × S︸        ︷︷        ︸
< times

(2.84)

which we identify with the space

W =
{
, ∈ ℝ<×=>0 : , 1= = 1<

}
. (2.85)

5The assignment manifold is sometimes called multinomial manifold in the literature – cf. [LL05].
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Thus, any element, ∈ W is a row-stochastic matrix, ∈ ℝ<×= with rows,8 ∈ S represent-
ing the assignment probabilities for node 8 ∈ � . We call the vectors,8 ∈ S assignment vectors.
The tangent space

T0 B )0 × · · · ×)0︸         ︷︷         ︸
< times

(2.86)

can be identi�ed with the space

T0 =
{
+ ∈ ℝ<×= : +1= = 0

}
. (2.87)

Thus, +8 ∈ )0 for all rows of + ∈ T0 ⊂ ℝ<×= . The orthogonal projection Π0 : ℝ<×= → T0 is
given by row-wise application of the projection (2.81). The induced Riemannian metric onW
is given by

6, (* ,+ ) =
∑
8∈�

6,8 (*8 ,+8) for* ,+ ∈ T0 (2.88)

which we also name Fisher-Rao metric. The uninformative distribution

�W B 1<�
>
S = 1

=
1<1

>
= (2.89)

forms the barycenter of the assignment manifoldW.

Li�ing Map

The authors of [ÅPSS17] proposed to approximate the Riemannian exponential map on S by
the lifting map6

exp? : )0 → S, (?, E) ↦→ exp? (E) =
?4E

〈?, 4E〉 , (2.90)

where exponentiation and multiplication are applied entrywise. Unlike the Riemannian expo-
nential map which is induced by the Levi-Civita connection, the lifting map exp? is de�ned
on the entire tangent space )0, and it is more convenient for numerical computations. Before
we continue with the properties of the lifting map, we mention two more maps related to this
map. The replicator operator is a linear mapping '? : ℝ= → )0 given by the matrix

'? = Diag(?) − ??> ∈ ℝ=×=, ? ∈ S. (2.91)

It is connected to replicator equations from evolutionary game dynamics [HS03] which take
the form

¤? = '? [� (?)] with a vector �eld � : S → ℝ= . (2.92)
This map also appears in the Riemannian gradient (2.52) and it satis�es

'? = '?Π0 = Π0'? . (2.93)

The second map is the exponential map corresponding to the U-connection with U = 1 from
information geometry – cf. De�nition 2.1.6. The map takes the form [AJLS17, Section 2.4]

Exp? : )0 → S, Exp? (E) =
?4

E
?〈

?, 4
E
?
〉 , ? ∈ S. (2.94)

6The lifting map exp? is denoted with lower case letters in order to distinguish it from the (Riemannian) exponential
map Exp? (2.13).
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This exponential map is de�ned on the entire tangent space )0 and it has the inverse

Exp−1
? : S → )0, Exp−1

? (@) = '?
[

log @

?

]
. (2.95)

With these two maps the lifting map (2.90) can also be written as

exp? = Exp? ◦ '? . (2.96)

We note that the lifting map extends to a map exp? : ℝ= = )0 ⊕ ℝ1= → S which does not
depend on the constant component of the argument, due to (2.96) and (2.93).

The following lemma summarizes some properties of the lifting map (2.90) which we will
use in the subsequent subsection as well as in Chapter 3.

Lemma 2.2.1 ([SS20, Lemma 3.1]). The following properties hold for exp? : ℝ= → S.

(a) The restriction of exp? to)0 is a di�eomorphism between)0 and S. Its inverse exp−1
? : S → )0

is given by
exp−1

? (@) = Π0 log @

?
. (2.97)

(b) The di�erential of exp? at E ∈ ℝ= is given by

d exp? (E) [D] = 'exp? (E) [D] for all D ∈ ℝ= . (2.98)

(c) If ℝ= is viewed as an Abelian group, then exp : ℝ= × S → S given by (E, ?) ↦→ exp? (E)
de�nes a Lie-group action, i.e.

exp? (D + E) = expexp? (E) (D) and exp? (0) = ? for all E,D ∈ ℝ= and ? ∈ S. (2.99)

We extend the lifting map (2.90) and the replicator operator (2.91) to corresponding maps
for the assignment manifoldW by applying these maps row-wise, i.e.

exp, : ℝ<×= →W, exp, (+ ) B
(
exp,1 (+1), . . . , exp,< (+<)

)
, (2.100a)

', : ℝ<×= → T0, ', [+ ] B
(
',1 [+1], . . . , ',< [+<]

)
, (2.100b)

for, ∈ W. The statements of Lemma 2.2.1 also apply accordingly to these maps.

Likelihood Map and Similarity Map

We use the lifting map (2.100a) to de�ne the components of the assignment �ow. Starting from
the distance matrix

� =

(
�M (I8 ,< 9 )

)
8∈� , 9 ∈�

∈ ℝ<×=≥0 (2.101)

storing the dissimilarities between observations {I8}8∈� (2.70) and prototypes {< 9 }9 ∈� (2.74)
with respect to a dissimilarity function �M , we de�ne the likelihood map ! : W → W by
lifting the distance matrix onto the assignment manifold, i.e.

!(, ) B exp,
( − 1

d
�
) ∈ W . (2.102)
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The scaling parameter d > 0 is used for normalizing the apriori unknown scale of the compo-
nents of � . The rows �8 ∈ ℝ=≥0 of the distance matrix � are called distance vectors. Similarly,
likelihood vectors are the rows !8 (, ) ∈ S of the likelihood matrix !(, ) ∈ W.

Next we de�ne the geometric mean of assignment vectors

�l8 (, ) B Exp,8

( ∑
:∈N8

l8: Exp−1
,8
(,: )

)
(2.103a)

= exp�S

( ∑
:∈N8

l8: exp−1
�S (,: )

)
∈ S, 8 ∈ � , (2.103b)

with respect to the neighborhoods (2.71) and weights (2.72). This map is an approximation of
the weighted Riemannian mean of the assignment vectors {,: : : ∈ N8} ⊂ S with respect to
the weights (l8: ):∈N8 ∈ Δ |N8 | – cf. Section 2.1.6. It is a closed-form solution of the equation
(2.68), where the Riemannian exponential map is replaced by the exponential map (2.94). The
map (2.103) de�nes a smoothing operator �l : W →W. Applying this map to likelihood
vectors yields the similarity map

( : W →W, ( (, ) = �l (!(, )) (2.104)

with similarity vectors (8 (, ) = �l8 (!(, )) ∈ S, 8 ∈ � . With regard to the data labeling problem,
the likelihood map (2.102) can be interpreted as a data �delity term, while the smoothing map
(2.103) serves as regularization.

Assignment Flow

The assignment �ow is induced by the system of nonlinear ODEs

¤, = ', [( (, )], , (0) = �W, (2.105)

which is a coupled system of replicator equations

¤,8 = ',8 [(8 (, )] =,8

(
(8 (, ) − 〈,8 , (8 (, )〉1=

)
, ,8 (0) = �S ∀8 ∈ � . (2.106)

A labeling, i.e. an integral assignment, is obtained from the �ow (2.105) by a trivial rounding
of, () ) ∈ W for a su�ciently large ) > 0. It was conjectured [ÅPSS17, Conjecture 1] that,
for data in ‘general position’ as they are typically observed in real scenarios, the assignment
�ow, (C) converges to an integral assignment, ∗ ∈ W∗ as C → ∞. We will con�rm this
conjecture in Chapter 3 under suitable assumptions on the weights {l8: : : ∈ N8}. For this,
we will use a reparameterization of the assignment �ow (2.105) which was recently proposed
in [SS20]. By collecting the weights (2.72) into a matrix Ω = (l8: )8,:∈� ∈ ℝ<×< , where we set
l8: = 0 for : ∉ N8 , the assignment �ow can be parameterized as follows.

Proposition 2.2.2 ((-parameterization [SS20, Proposition 3.6]). The assignment �ow (2.105) is
equivalent to the system

¤( = '( [Ω(], ( (0) = exp�W
( − 1

d
Ω�

)
, (2.107a)

¤, = ', [(], , (0) = �W . (2.107b)
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Remark 2.2.3. The assignment �ow was motivated in [ÅPSS17] as the Riemannian gradient
ascent �ow of the potential

� (, ) = 〈,,( (, )〉. (2.108)

The corresponding Riemannian gradient is given by grad � (, ) = ', [∇� (, )] – cf. equa-
tion (2.52). The approximation ∇� (, ) ≈ ( (, ) of the Euclidean gradient ∇� (, ) resulted in
the assignment �ow (2.105). We note that it was shown in [SS20, Theorem 3.5] that there exists
no potential � ∈ C1(W,ℝ) such that grad � (, ) = ', [( (, )]. In contrast, the (-�ow (2.107a)
possesses a potential under a symmetry assumption on Ω.

Numerical Integration

We adopt the idea from [Sav+17, ZSPS20] to parameterize the assignment �ow by, (C) =
exp�W (+ (C)), where + (C) is a �ow on the tangent space T0 solving

¤+ = Π0 [( (, )], , = exp�W (+ ), + (0) = 0. (2.109)

This reparameterization can be interpreted as Legendre transform coordinates – cf. equa-
tion (2.54). Its validity can be easily veri�ed using Lemma 2.2.1(b):

¤, =
d
dC exp�W (+ )

(2.98)
= ', [ ¤+ ] = ', ◦ Π0 [( (, )] (2.93)

= ', [( (, )], (2.110a)

, (0) = exp�W (+ (0)) = exp�W (0)
(2.99)
= �W . (2.110b)

Since the �ow (2.109) is a �ow in the vector space T0, any classical Runge–Kutta scheme can be
applied for numerical integration of (2.109). Applying the explicit Euler scheme with step size
ℎ > 0 and using, = exp�W (+ ) as well as Lemma 2.2.1(c) results in the following numerical
scheme for the assignment �ow [Sav+17]:

, (C+1) = exp, (C )
(
ℎ( (, (C ) )), , (0) = �W, C ∈ ℕ0. (2.111)

For an overview of di�erent numerical integration schemes for the assignment �ow we refer
to [ZSPS20].

2.3 Dynamical Systems and Stability

We give an overview of the theory of dynamical systems with a focus on stability of their
equilibria. The statements from this section will be used to investigate the assignment �ow
(2.107) and its discretization (2.111) in Chapter 3.

Informally, a dynamical system on a setM is a mapping q : ) × M → M ful�lling the
group law

q (0, G) = G, q (B + C, G) = q (
B, q (C, G)) for all G ∈ M and B, C ∈ ) . (2.112)

Here, the time set ) is either ℝ, ℝ≥0, ℤ or ℕ0. A point G∗ ∈ M is called equilibrium of the
dynamical system if q (C, G∗) = G∗ for all C ∈ ) .

In case of ) = ℝ or ) = ℝ≥0, the system is called continuous-time dynamical system or
�ow – cf. Section 2.1.2. For ) = ℤ or ) = ℕ0 we have a discrete-time dynamical system.
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We regard continuous-time and discrete-time dynamical systems separately. Firstly, we dis-
cuss continuous-time dynamical systems described by autonomous di�erential equations, i.e.,
q (C, G0) = G (C) is the trajectory of the system

¤G (C) = � (G (C)), G (0) = G0. (2.113)

An equilibrium G∗ is then a zero of the vector �eld � , i.e. � (G∗) = 0.
Secondly, we consider discrete-time dynamical systems generated by maps � : M →M, i.e.

q (C, G) = (� ◦ · · · ◦ �︸      ︷︷      ︸
C times

) (G), C ∈ ℕ0. (2.114)

In this case the equilibria coincide with the �xed points of the map � .

2.3.1 Continuous-Time Dynamical Systems from Di�erential Equations

We summarize some de�nitions and important statements which can be found in various
textbooks on dynamical systems, e.g. [Tes12, SC16, Per01, GH02]. This theory concerns
dynamical systems generated by vector �elds � ∈ C1(* ,ℝ=) on an open subset* ⊆ ℝ= . We
start with the de�nition of stability of an equilibrium.

De�nition 2.3.1 (stability). Let G∗ be an equilibrium point of the system ¤G (C) = � (G (C)), i.e.
� (G∗) = 0.

(a) G∗ is called stable, if for every open neighborhood *0 3 G∗ there exists a smaller neighbor-
hood *1 such that if G (C0) ∈ *1 for some C0 ∈ ℝ, then G (C) ∈ *0 for all C ≥ C0. If G∗ is not
stable, it is called unstable.

(b) G∗ is called attracting, if there exists an open neighborhood* ∗ 3 G∗, such that G (C) → G∗

as C →∞ if G (C0) ∈ * ∗ for some C0 ∈ ℝ.

(c) G∗ is called asymptotically stable, if it is stable and attracting.

(d) G∗ is called exponentially stable, if there exists constants U, V, X > 0 such that

‖G (C) − G∗‖ ≤ U4−V (C−C0) if ‖G (C0) − G∗‖ < X for some C0 ∈ ℝ. (2.115)

We note that exponential stability implies asymptotic stability. The stability of an equilibrium
point G∗ is particularly relevant for the following reason. The region of attraction of G∗ is the set
of all initial points G0 for which the trajectory of ¤G (C) = � (G (C)) starting at G0 converges to G∗
as C →∞. If G∗ is attracting then its region of attraction is an open neighborhood of G∗ [BS02,
Lemma 2.6.11]. This means that the convergence towards G∗ is stable under small perturbations
of the initial point G0. In contrast, a small perturbation of G0 could prevent convergence towards
an unstable equilibrium as discussed in the context of invariant manifolds below.

An important tool for stability analysis is the linearization of the system ¤G (C) = � (G (C))
at an equilibrium point. The next theorem therefore handles the linear case and summarizes
statements from [Per01, Section 1.4, Section 1.9]. It also provides the �rst example of invariant
manifolds. In this context, a setM is invariant under a �ow if any trajectory of the �ow
starting inM also remains inM for all time points.
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Theorem 2.3.2. Let � ∈ ℝ=×= . We consider the linear system

¤G (C) = �G (C), G (C0) = G0. (2.116)

(a) The system has the unique solution G (C) = 4�(C−C0)G0 with 4� = expm(�) denoting the matrix
exponential.

(b) Let {E 9 } ⊂ ℂ= be the generalized eigenvectors of � with corresponding eigenvalues {_ 9 } ⊂ ℂ,
i.e. E 9 ∈ ker(_ 9 �= −�): for some : ∈ ℕ. Then the subspaces

�s B span
{

Re(E 9 ), Im(E 9 ) : Re(_ 9 ) < 0
}
, (2.117a)

�u B span
{

Re(E 9 ), Im(E 9 ) : Re(_ 9 ) > 0
}
, (2.117b)

�c B span
{

Re(E 9 ), Im(E 9 ) : Re(_ 9 ) = 0
}

(2.117c)

are invariant under the �ow ¤G = �G and we have

ℝ= = �s ⊕ �u ⊕ �c. (2.118)

(c) We have limC→∞ 4�(C−C0)G0 = 0 if and only if G0 ∈ �s. In this case, there exist U, V > 0, such
that 4�(C−C0)G0

 ≤ U4−V (C−C0) ‖G0‖. (2.119)

(d) If G0 ∈ �u, then there exist U, V > 0 with4�(C−C0)G0
 ≥ U4V (C−C0) ‖G0‖ . (2.120)

Especially, limC→∞
4�(C−C0)G0

 = ∞ if G0 ≠ 0.

De�nition 2.3.3. The invariant subspaces (2.117) are called the stable, unstable and center
subspace of the linear system ¤G = �G .

For a hyperbolic equilibrium point as de�ned below, the following theorem provides a
link between a (nonlinear) system and its linearization at that equilibrium. Informally, the
theorem states that a system ¤G = � (G) behaves locally like its linearization ¤~ = m�

mG
(G∗)~ near a

hyperbolic equilibrium G∗.

De�nition 2.3.4 (hyperbolic). An equilibrium point G∗ of the system ¤G (C) = � (G (C)) is called
hyperbolic if all eigenvalues of the Jacobian matrix m�

mG
(G∗) have nonvanishing real part.

Theorem 2.3.5 (Hartman-Grobman Theorem). Let � ∈ C1(* ,ℝ=) with * ⊆ ℝ= being an
open subset. Suppose G∗ is a hyperbolic equilibrium for ¤G (C) = � (G (C)). Let � = m�

mG
(G∗). Then

there exist an open neighborhood *̃ 3 G∗, an open neighborhood + 3 0, and a homeomorphism
Ψ : *̃ → + with Ψ(G∗) = 0 such that

Ψ(G (C)) = 4�(C−C0)Ψ(G (C0)) (2.121)

for all initial values G (C0) ∈ *̃ of ¤G = � (G) and all times C such that G (C) is de�ned and belongs
to *̃ . Furthermore, the maps Ψ and Ψ−1 are U-Hölder continuous with some U = U (�) ∈ (0, 1).
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The proof of the Hartman-Grobman theorem can be found for example in [Per01, Section 2.8].
For the Hölder continuity statement we refer to [BR09]. A consequence of the U-Hölder conti-
nuity is that an exponential convergence rate of the linearized system implies an exponential
convergence rate of the original system, i.e., if ‖Ψ(G (C))‖ ≤ W4−VC with W, V > 0 then

‖G (C) − G∗‖ = ‖Ψ−1(Ψ(G (C))) − Ψ−1(0)‖ ≤ � ‖Ψ(G (C))‖U ≤ �WU4−UVC . (2.122)

The following theorem gives further insight based on the linearization of a system. It states
the existence of invariant manifolds that help in the analysis of stability and convergence.

Theorem 2.3.6 (The Center Manifold Theorem). Let � ∈ CA (* ,ℝ=) where* ⊆ ℝ= is an open
subset and A ≥ 1. Suppose that � (G∗) = 0 and the Jacobian matrix m�

mG
(G∗) has =s eigenvalues

with negative real part, =u eigenvalues with positive real part, and =c = = − =s − =u eigenvalues
with zero real part. Further, let �c, �s and �u be the center, stable and unstable subspaces of the
linearized system ¤~ (C) = m�

mG
(G∗)~ (C). Then

(i) there exists an =c-dimensional center manifoldMc(G∗) of class CA−1 tangent to the center
subspace �c at G∗,

(ii) there exists an =s-dimensional stable manifoldMs(G∗) of class CA tangent to the stable
subspace �s at G∗,

(iii) there exists an =u-dimensional unstable manifoldMu(G∗) of class CA tangent to the unstable
subspace �u at G∗,

such thatMc(G∗),Ms(G∗) andMu(G∗) are invariant under the �ow ¤G (C) = � (G (C)). While the
stable and unstable manifold are unique, the center manifold need not be.

We refer to [GH02, Theorem 3.2.1] or [Per01, Section 2.7] for this theorem. We note that
if the �ow starts at a point on the stable manifoldMs(G∗) then it converges to G∗ with an
exponential rate as C → ∞. There are two other invariant manifolds which are useful for
convergence analysis. Unfortunately, they are not listed in the textbooks mentioned above.
These manifolds were introduced in [Kel66, Kel67]. We present them in the following theorem.

Theorem 2.3.7. In addition to the statements of Theorem 2.3.6

(i) there exists a (=c + =s)-dimensional center-stable manifoldMcs(G∗) of class CA−1 tangent to
the subspace �c ⊕ �s at G∗,

(ii) there exists a (=c +=u)-dimensional center-unstable manifoldMcu(G∗) of class CA−1 tangent
to the subspace �c ⊕ �u at G∗,

such that the manifoldsMcs(G∗) andMcu(G∗) are invariant under the �ow ¤G (C) = � (G (C)). As
it is the case for the center manifold, the center-stable manifold and the center-unstable manifold
are not unique in general.

We note that in case of non-isolated equilibria there exists a center-stable manifoldMcs( ),
where  is a compact subset of a manifold of equilibria on which the dimensions =s, =c and =u
are constant [Fen79, Theorem 9.1]. This manifold is a center-stable manifold for all G∗ ∈  .
The same applies to the center-unstable manifoldMcu( ) and the center manifoldMc( ).
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The manifoldsMc( ),Mcs( ) andMcu( ) might not be unique in general but they possess
the following weak uniqueness property. If an integral curve G (C) of the vector �eld � stays
within a su�ciently small neighborhood of  for C ≥ 0, then this integral curve lies in any
center-stable manifoldMcs( ). Especially, everyMcs( ) (locally) contains all trajectories
converging to some G∗ ∈  as C → ∞. The same is true of the center-unstable manifold
Mcu( ) with integral curves staying in a neighborhood of  for C ≤ 0. Similarly, any center
manifoldMc( ) contains all integral curves remaining in a small neighborhood of  for all
C ∈ ℝ. This includes cycles near an equilibrium G∗.

The following example demonstrates the non-uniqueness of the center manifold. The
equilibrium G∗ = 0 of the vector �eld

¤G1 = G
2
1, ¤G2 = G2 (2.123)

has a unique one-dimensional unstable manifold and a (non-unique) one-dimensional center
manifold which are illustrated in Figure 2.1. Since the center manifold and the center-stable

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0
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1.0
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x 2

Figure 2.1: (Non-)Uniqueness of the center manifold. The plot shows the phase portrait of
the vector �eld (2.123) as well as the invariant manifolds for the equilibrium G∗ = 0. The unstable
manifold is shown as red curve, while any green curve represents a center manifold. Note that all
center manifolds coincide in the left half plane.

manifold coincide in this case, the corresponding uniqueness property applies here, i.e., the
center manifold contains all trajectories converging to G∗ = 0. This can be seen in the left half
plane in Figure 2.1 where all center manifolds coincide.

As an application of the center-stable manifold, we discuss the case when an equilibrium
point G∗ possesses a nontrivial unstable subspace, i.e. =u ≥ 1. In this case the center-stable
manifoldMcs(G∗) is low-dimensional, i.e., a small perturbation of a point inMcs(G∗) might
throw it out of the manifold. SinceMcs(G∗) contains all trajectories converging to G∗, this
means a small perturbation of the initial point G0 of a trajectory can prevent the convergence
towards the (unstable) equilibrium G∗.

As direct consequence of the Center Manifold Theorem we get the following statement.

Theorem 2.3.8. Let G∗ be an equilibrium point of the system ¤G (C) = � (G (C)) with � ∈ C1(* ,ℝ=).

(a) If all eigenvalues of the Jacobian matrix m�
mG
(G∗) have negative real part, then G∗ is exponen-

tially stable.

(b) If the Jacobian matrix m�
mG
(G∗) has an eigenvalue with positive real part, then G∗ is unstable.
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We note that the stability criteria presented in the above theorem concern �ows ¤G (C) =
� (G (C)) on an open subset of ℝ= . Since we want to use these statements for �ows onW, we
need a few more arguments. In [SC16, Section 6.8.4], a direct proof of Theorem 2.3.8(b) is
sketched. This proof gives more insight which becomes handy for our analysis. Therefore, we
summarize the core arguments of this direct proof in the following proposition.

Proposition 2.3.9. Let G∗ be an equilibrium point of ¤G (C) = � (G (C)) with � ∈ C1(* ,ℝ=). Then

(a) There exist a su�ciently small Y1 > 0 and a (real) similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
= �, (2.124)

such that

(i) Re(_) ≤ 0 for all eigenvalues _ of �sc,

(ii) Re(_) > 0 for all eigenvalues _ of �u,

(iii) 〈~sc, �sc~sc〉 ≤ Y1
4 ‖~sc‖2,

(iv) 〈~u, �u~u〉 ≥ Y1‖~u‖2.

(b) Suppose m�
mG
(G∗) has at least one eigenvalue _ with Re(_) > 0. Considering an a�ne coordinate

transform ~ = + −1(G − G∗) with + ∈ GL= (ℝ) from (a), the resulting �ow

¤~ = � (~) = + −1� (+~ + G∗), (2.125)

which has the equilibrium ~∗ = 0 with m�
m~
(0) = + −1 m�

mG
(G∗)+ = �, has the following property.

There exist [ > 0, X > 0 and Y > 0, such that if the �ow starts at some point in the open
truncated cone

*[,X =

{
~ =

( ~sc
~u

) ∈ ℝ= : ‖~sc‖2 < [‖~u‖2, ‖~‖ < X
}
⊂ �X (0) =

{
~ ∈ ℝ= : ‖~‖ < X},

(2.126)
then the solution will not cross the conical portion of m*[,X , i.e.{

~ ∈ ℝ= : ‖~sc‖2 = [‖~u‖2, ‖~‖ < X
}
, (2.127)

and it ful�lls ‖~ (C)‖ ≥ ‖~ (0)‖4YC as long as ~ (C) ∈ *[,X , i.e., ~ (C) leaves the ball �X (0) at
some time point. Especially, the equilibrium ~∗ = 0 is unstable. This property is accordingly
transferred to the equilibrium G∗ of ¤G (C) = � (G (C)) using G (C) = +~ (C) + G∗.

The proof of this proposition can be found in the appendix. We note that if m�
mG
(G∗) is

diagonalizable with real eigenvalues then the similarity transform in Proposition 2.3.9(a) is
just the diagonalization. In general, if E ∈ ℂ= is an eigenvector of m�

mG
(G∗) corresponding to

an eigenvalue _ ∈ ℂ with Re(_) > 0 and + ∈ GL= (ℝ) is given by Proposition 2.3.9(a), then
+ −1 Re(E) = ( 0

~u

)
and + −1 Im(E) = ( 0

~̃u

)
.

Last but not least we mention a theorem about the asymptotic behavior of a �ow. It states,
under certain conditions, the convergence towards an invariant set which is not necessarily a
singleton.
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Theorem 2.3.10 (LaSalle Invariance Principle). Let � : * → ℝ= be a vector �eld on an open
subset* ⊆ ℝ= de�ning the system

¤G (C) = � (G (C)), G (0) = G0 ∈ * . (2.128)

Let *c ⊂ * be a compact positively invariant set with respect to (2.128) and let + ∈ C1(* ,ℝ) be
a Lyapunov function on *c, i.e., ¤+ (G) B 〈∇+ (G), � (G)〉 ≥ 0 on *c. Further, let I be the largest
invariant set contained in {

G ∈ *c : ¤+ (G) = 0
}
. (2.129)

If G0 ∈ *c, then G (C) → I as C →∞.
References for this theorem are [HC08, Theorem 3.3] or [Wig03, Theorem 8.3.1]. We only

need the statement that the limit points of (2.128) are contained in (2.129) if G0 ∈ *c. We will
apply this theorem to the (-�ow (2.107a) with the compact invariant setW in Chapter 3.

2.3.2 Discrete-Time Dynamical Systems from Maps

We present de�nitions and statements regarding the stability of equilibria of discrete-time
dynamical systems G (C+1) = � (G (C ) ), where � : * → * is a C1 map on an open subset* ⊆ ℝ= .
As reference we consider the textbooks [Gal07, Ela05].

We have the same notions of stability as in the continuous-time case with corresponding
adaptation of the de�nition.

De�nition 2.3.11 (cf. [Ela05, De�nition 4.2]). Let G∗ ∈ ℝ= be an equilibrium point of the
system G (C+1) = � (G (C ) ), i.e. � (G∗) = G∗.
(a) G∗ is called stable, if for every neighborhood*0 3 G∗ there exists a smaller neighborhood

*1 such that if G (C0) ∈ *1 for some C0 ∈ ℤ, then G (C ) ∈ *0 for all C ≥ C0. If G∗ is not stable, it
is called unstable.

(b) G∗ is called attracting, if there exists a neighborhood* ∗ 3 G∗, such that limC→∞ G (C ) = G∗ if
G (C0) ∈ * ∗ for some C0 ∈ ℤ.

(c) G∗ is called asymptotically stable, if it is stable and attracting.

(d) G∗ is called exponentially stable, if there exists constants U, X > 0 and W ∈ (0, 1) such that

‖G (C ) − G∗‖ ≤ UWC−C0 if ‖G (C0) − G∗‖ < X for some C0 ∈ ℤ. (2.130)

As in the continuous-time case, exponential stability implies asymptotic stability. Analo-
gously to Theorem 2.3.8, the stability of an equilibrium point G∗ of the system G (C+1) = � (G (C ) )
can be determined via the spectrum of the Jacobian m�

mG
(G∗). However, the di�erence is that

the eigenvalue conditions Re(_) < 0 and Re(_) > 0 are replaced by |_ | < 1 and |_ | > 1,
respectively.

Theorem 2.3.12. Let G∗ be an equilibrium point of the system G (C+1) = � (G (C ) ).
(a) If all eigenvalues _ of the Jacobian matrix m�

mG
(G∗) have absolute value less than 1, i.e. |_ | < 1,

then G∗ is exponentially stable.
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(b) If the Jacobian matrix m�
mG
(G∗) has an eigenvalue _ with |_ | > 1, then G∗ is unstable.

The statements of the theorem can be found in [Ela05, Corollary 4.34, Theorem 4.38]. Again,
the theorem concerns dynamical systems on an open subset of ℝ= . Since we will regard
dynamical systems onW, we worked out a discrete-time version of Proposition 2.3.9. The
proof of the following proposition is in the appendix.

Proposition 2.3.13. Let G∗ be an equilibrium point of G (C+1) = � (G (C ) ). Then
(a) There exist a su�ciently small Y1 > 0 and a (real) similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
= �, (2.131)

such that

(i) |_ | ≤ 1 for all eigenvalues _ of �sc,

(ii) |_ | > 1 for all eigenvalues _ of �u,

(iii) ‖�sc~sc‖2 ≤ (1 + Y1
4 )2‖~sc‖2,

(iv) ‖�u~u‖2 ≥ (1 + Y1)2‖~u‖2.
(b) Suppose m�

mG
(G∗) has at least one eigenvalue _ with |_ | > 1. Considering an a�ne coordinate

transform ~ = + −1(G − G∗) with + ∈ GL= (ℝ) from (a), the resulting map

� (~) = + −1 (� (+~ + G∗) − G∗), (2.132)

which has the �xed point ~∗ = 0 with m�
m~
(0) = + −1 m�

mG
(G∗)+ = �, has the following property.

There exist [ > 0 and X > 0, such that if ~ (0) is a point in the open truncated cone *[,X =

�[ ∩ �X (0) with

�[ =

{
~ =

( ~sc
~u

) ∈ ℝ= : ‖~sc‖2 < [‖~u‖2
}
, (2.133a)

�X (0) =
{
~ ∈ ℝ= : ‖~‖ < X}, (2.133b)

then we have

(i)
� (~ (0) )2 ≥ (1 + Y1)

~ (0)2,

(ii) � (~ (0) ) ∈ �[ .
Hence, the sequence ~ (C+1) = � (~ (C ) ) eventually leaves the ball �X (0) at some time point.
Especially, the equilibrium ~∗ = 0 is unstable. This property is accordingly transferred to the
equilibrium point G∗ of � (G) using G (C ) = +~ (C ) + G∗.

We note that for some other theorems presented for continuous-time dynamical systems
there exist corresponding versions for discrete-time dynamics. Since we will not use them, we
only mention them. In the discrete-time case, the stable subspace �s of m�

mG
(G∗) corresponds to

the eigenvalues _ with |_ | < 1. Similarly, the center subspace �c and the unstable subspaces
�u correspond to |_ | = 1 and |_ | > 1, respectively [Gal07, De�nition 4.3]. An equilibrium G∗

is hyperbolic if m�
mG
(G∗) has no eigenvalue _ with |_ | = 1 [Gal07, De�nition 4.5]. Accordingly,

discrete-time versions of the Center Manifold Theorem [Wig03, Section 3.3] and the Hartman-
Grobman Theorem [Ela05, Theorem D.2] exist. However, both theorems assume � to be a
di�eomorphism.
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3 Asymptotic Behavior of the
Assignment Flow

3.1 Introduction and Overview

Motivation

The assignment �ow, which we have summarized in Section 2.2, was introduced in [ÅPSS17] as
a geometric approach to the image labeling problem. It was conjectured [ÅPSS17, Conjecture 1]
that, for data in ‘general position’ as they are typically observed in real scenarios (e.g. no
symmetry due to additive noise), the assignment �ow converges to an integral assignment. This
has been empirically veri�ed in numerous experiments. Mathematically, however, convergence
has hardly been studied. In this chapter we want to remedy this shortcoming and perform
a detailed mathematical analysis of the asymptotic behavior of assignment �ow. We prove
the conjecture under a positivity and symmetry assumption on the parameters {l8: : : ∈ N8},
8 ∈ � . To this end we use the (-parameterization (2.107), which was introduced in [SS20].
This parameterization has the advantage that it is de�ned on an open neighborhood ofW
containing the assignment manifoldW (2.85). This enables the common theory on continuous-
time dynamic systems to be used for analysis – cf. Section 2.3. Besides the continuous-
time assignment �ow, we also investigate the discrete scheme (2.111) introduced in [Sav+17].
For both cases we derive a criterion to verify convergence towards an exponentially stable
equilibrium of the (-�ow.

Organization

The detailed organization of this chapter is as follows. First, we recall the (-parameterization
in Section 3.2 and establish the relation between the asymptotic behavior of the assignment
�ow and that of the (-�ow, so that the rest of the chapter is mainly concerned with the latter.
In Section 3.3 we prove under a symmetry assumption on the parameters Ω = (l8: )8: that
the (-�ow always converges towards an equilibrium. We also show by an example that this
convergence statement need not apply without symmetry. Afterwards we examine the stability
of equilibria of the (-�ow (Section 3.4). Under a positivity assumption on the diagonal of
the parameter matrix Ω, we show that nonintegral equilibria are unstable and conclude that
the set of initial points for which the (-�ow converges towards those equilibria is negligible.
Furthermore, in Section 3.4.2 we give an estimation of the basin of attraction for exponentially
stable equilibria, which can be used as a convergence guarantee criterion. In Section 3.5 we
investigate the discrete scheme (2.111). We give estimates on the approximation error and we
show that our stability statements as well as the estimation for the basins of attraction from the
continuous case also apply to the discrete scheme. We discuss in Section 3.6 a generalization
of the (-�ow, where not only the rows of the matrix ( ∈ ℝ<×= are averaged, but general linear
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3 Asymptotic Behavior of the Assignment Flow

maps on ℝ<×= are considered. For this generalization, the previous convergence and stability
statements are transferred. Finally, we summarize the results in Section 3.7.

Notation

In this chapter we use the same notation as in Section 2.2, i.e., � is the set of data indices
and < = |� | is the number of data points. � is the set of label indices and = = |� | is the
number of labels. W ⊂ ℝ<×= is the assignment manifold (2.85) and T0 is its tangent space.
W∗ =W∩ {0, 1}<×= denotes the set of integral assignments. exp, is the lifting map (2.100a).
For a matrix ( ∈ ℝ<×= , the 8-th row is denoted by (8 , i.e., (Ω()8 is the 8-th row of the matrix
product Ω( with a matrix Ω ∈ ℝ<×< .

Furthermore, the :-th standard basis vector is denoted by 4: = (0, . . . , 1, . . . , 0)> ∈ ℝ= . The
dimension of this vector should be clear from the context, e.g. 48 ∈ ℝ |� | for a data index
8 ∈ � and 4 9 ∈ ℝ | � | for a label index 9 ∈ � . The constant vector of ones is denoted by
1= = (1, . . . , 1)> ∈ ℝ= and �= ∈ ℝ=×= denotes the identity matrix. For a subset � ⊂ [=] its
indicator vector is denoted by 1� ∈ {0, 1}= . The support of a vector E ∈ ℝ= is denoted by
supp E = {8 ∈ [=] : E8 ≠ 0}, i.e. supp,8 = { 9 ∈ � : ,8 9 ≠ 0} for an assignment matrix, ∈ W.
For two matrices of the same size, � � � denotes the Hadamard (entrywise) product. For
matrices � ∈ ℝ<×= , � ∈ ℝ?×@ , the matrix � ⊗ � ∈ ℝ<?×=@ denotes the Kronecker product of
these matrices with submatrices �8 9� ∈ ℝ?×@ , 8 ∈ [<], 9 ∈ [=] (cf. e.g. [Van00]). The latter
two operators will be analogously applied to vectors, i.e. E ⊗ F ∈ ℝ<= for vectors E ∈ ℝ< ,
F ∈ ℝ= .

3.2 The Y-Parametrization and its Implication on the
Assignment Flow

We recall the assignment �ow, which was presented in Section 2.2. Given a distance matrix
� ∈ ℝ<×=≥0 and a weighted adjacency matrix Ω = (l8: )8: ∈ ℝ<×< , the assignment �ow is
de�ned by the system

¤, = ', [( (, )], , (0) = �W = 1
=
1<1

>
= , (3.1)

where the similarity map ( (, ) = �l (!(, )) is a concatenation of the likelihood map
! : W →W, !(, ) = exp, (−�) and a smoothing operator�l : W →W (2.103) depending
on the weights l8: . In [SS20] it was shown that the similarity matrix ( (, ) ∈ W considered
as a function in time, i.e. ( (C) B ( (, (C)), is itself a solution of a system of ODEs and the
assignment �ow (3.1) can thus be reparameterized as follows.

Proposition 3.2.1 ((-parametrization [SS20, Proposition 3.6]). The assignment �ow (3.1) is
equivalent to the system

¤( = '( [Ω(], ( (0) = (0 = exp�W (−Ω�), (3.2a)
¤, = ', [(], , (0) = �W . (3.2b)

More precisely,, (C), C ≥ 0 solves (3.1) if and only if it solves (3.2).
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3.2 The (-Parametrization and its Implication on the Assignment Flow

The �ow induced by the equation (3.2a) is called the (-�ow. Based on the (-parameterization
we will analyze the asymptotic behavior of the assignment �ow (3.1). The �rst implication
from the (-parameterization is the following representation of the assignment �ow.

Proposition 3.2.2. Let C ↦→ ( (C) be the trajectory of the (-�ow (3.2a). Then the trajectory of the
assignment �ow (3.2b) is given by

, (C) = exp�W

(∫ C

0
( (g) dg

)
= exp�W

(∫ C

0
Π0 [( (g)] dg

)
, (3.3)

where Π0 : ℝ<×= → T0 is the orthogonal projection onto the tangent space.

Proof. We set �( (C) =
∫ C

0 ( (g)dg . Then, (C) = exp�W (�( (C)) and Lemma 2.2.1 implies

¤, (C) = d exp�W (�( (C))
[ ¤�( (C)] (2.98)

= 'exp�W (�( (C ))
[ ¤�( (C)] = ', (C ) [( (C)], (3.4a)

, (0) = exp�W (0)
(2.99)
= �W, (3.4b)

i.e., equation (3.2b) is ful�lled. The second equation of (3.3) follows from (2.96) and (2.93). �

Before we will discuss the implication of the equation (3.3), we show the following proposi-
tion, which legitimates to regard ( (C) for all time points C ∈ ℝ and therefore to inspect the
limit limC→∞ ( (C).
Proposition 3.2.3 (global existence and uniqueness). The solutions, (C), ( (C) to (3.2) are
unique and exist for all C ∈ ℝ.

Proof. The hyperplanes {( :
∑
9 (8 9 = 1} for 8 ∈ � and {( : (8 9 = 0} for 8 ∈ � , 9 ∈ � are

invariant under the �ow (3.2a), due to the replicator operator '( . Hence, ( (C) stays inW for
(0 ∈ W. By Lemma 2.1.3 (or [Tes12, Corollary 2.16]), the trajectory C ↦→ ( (C) exists for all
C ∈ ℝ. Equation (3.3) then implies the existence of, (C) for all C ∈ ℝ. The uniqueness of the
solutions follow by the local Lipschitz continuity of the right-hand side of (3.2a) and (3.2b),
respectively. �

Remark 3.2.4. While the domain of the assigment �ow (3.1) is limited toW, the (-�ow (3.2a)
can be considered onW. Furthermore, the domain of the (-�ow can be extended to an open
set* withW ⊂ * ⊆ ℝ<×= . In the latter case, although the existence for all C ∈ ℝ is no longer
guaranteed, this simpli�es the stability analysis of equilibria (∗ ∈ W, since common theory of
dynamical systems can be applied – cf. Section 2.3. This will be used in Section 3.4.

Now, we come to the main statement of this section, which motivates the detailed analysis
of the (-�ow in the subsequent sections. The following statement shows how the convergence
of the assignment �ow can be deduced by the convergence of the (-�ow.

Proposition 3.2.5. Let

V9 =
{
? ∈ Δ= : ? 9 > ?; , ∀; ∈ [=] \ { 9}

}
, 9 ∈ [=] (3.5)

denote the Voronoi cells of the vertices of Δ= in Δ= and suppose limC→∞ (8 (C) = (∗8 ∈ Δ= , for any
8 ∈ � . Then the following assertions hold.
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3 Asymptotic Behavior of the Assignment Flow

(a) If (∗8 ∈ V9∗ (8) for some label index 9∗ = 9∗(8) ∈ � , then there exist constants U8 , V8 > 0 such
that

‖,8 (C) − 4 9∗ (8) ‖1 ≤ U84−V8C , ∀C ≥ 0. (3.6)
In particular,

lim
C→∞,8 (C) = 4 9∗ (8) . (3.7)

(b) One has∫ ∞

0
‖(8 (C) − (∗8 ‖1 dC < ∞ =⇒ lim

C→∞,8 (C) =, ∗8 with supp(, ∗8 ) = arg max
9 ∈�

(∗8 9 .

(3.8)

Proof.

(a) Let V8 B 1
2 min

{
(∗
8 9∗ (8) − (∗8 9

}
9≠9∗ (8) > 0. Since

lim
C→∞ (8 9

∗ (8) (C) − (8 9 (C) = (∗8 9∗ (8) − (∗8 9 ≥ 2V8 > 0 ∀9 ∈ � \ { 9∗(8)}, (3.9)

there exists C1 ≥ 0 such that

(8 9∗ (8) (C) − (8 9 (C) > V8 ∀C ≥ C1, ∀9 ∈ � \ { 9∗(8)}. (3.10)

We estimate,8 (C) − 4 9∗ (8)


1 (3.11a)

= 1 −,8 9∗ (8) +
∑
9≠9∗ (8)

,8 9 = 2 − 2,8 9∗ (8)
(3.3)
= 2 − 2

exp
( ∫ C

0 (8 9∗ (8) (g) dg
)

∑
9 ∈� exp

( ∫ C
0 (8 9 (g) dg

) (3.11b)

= 2

∑
9≠9∗ (8) exp

( ∫ C
0 (8 9 (g) dg

)
∑
9 ∈� exp

( ∫ C
0 (8 9 (g) dg

) (3.11c)

= 2

∑
9≠9∗ (8) exp

( ∫ C
0

(
(8 9 (g) − (8 9∗ (8) (g)

)
dg

)
1 +∑

9≠9∗ (8) exp
( ∫ C

0
(
(8 9 (g) − (8 9∗ (8) (g)

)
dg

) (3.11d)

≤ 2
∑
9≠9∗ (8)

exp
( ∫ C

0

(
(8 9 (g) − (8 9∗ (8) (g)

)
dg

)
(3.11e)

= 2
∑
9≠9∗ (8)

exp
( ∫ C1

0

(
(8 9 (g) − (8 9∗ (8) (g)

)
dg +

∫ C

C1

( <−V8︷                ︸︸                ︷
(8 9 (g) − (8 9∗ (8) (g)

)
dg

)
(3.11f)

≤ 2
∑
9≠9∗ (8)

exp
( ∫ C1

0

(
(8 9 (g) − (8 9∗ (8) (g)

)
dg

)
· 4−V8 (C−C1) (3.11g)

= 24V8C1
∑
9≠9∗ (8)

exp
( ∫ C1

0

(
(8 9 (g) − (8 9∗ (8) (g)

)
dg

)
︸                                                       ︷︷                                                       ︸

CU8>0

·4−V8C , (3.11h)

which proves (3.6).
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3.2 The (-Parametrization and its Implication on the Assignment Flow

(b) Let � ∗(8) B arg max9 ∈� (∗8 9 . For any 9, ; ∈ � ∗(8), we have (∗8 9 = (∗8; and therefore∫ ∞

0

��(8 9 (C) − (8; (C)�� dC ≤ ∫ ∞

0

��(8 9 (C) − (∗8 9 �� dC + ∫ ∞

0

��(8; (C) − (∗8; �� dC (3.12a)

≤ 2
∫ ∞

0
‖(8 (C) − (∗8 ‖1 dC < ∞, (3.12b)

where the last inequality follows from the hypothesis of (3.8). Thus, the improper integral∫ ∞
0

(
(8 9 (C) − (8; (C)

)
dC ∈ ℝ exists. If 9 ∈ � ∗(8), we obtain

,8 9 (C) (3.3)
=

exp
( ∫ C

0 (8 9 (g) dg
)

∑
; ∈� exp

( ∫ C
0 (8; (g) dg

) (3.13a)

=

(
1 +

∑
; ∈� \� ∗ (8)

exp
( →−∞︷                        ︸︸                        ︷∫ C

0

(
(8; (g) − (8 9 (g)

)
dg

)
+

∑
; ∈� ∗ (8)\{ 9 }

exp
( ∫ C

0

(
(8; (g) − (8 9 (g)

)
dg

))−1
(3.13b)

−→
(
1 +

∑
; ∈� ∗ (8)\{ 9 }

exp
( ∫ ∞

0

(
(8; (g) − (8 9 (g)

)
dg

))−1

∈ (0, 1] for C →∞,

(3.13c)

whereas for any 9 ∈ � \ � ∗(8)

,8 9 (C) (3.3)
=

exp
( ∫ C

0 (8 9 (g) dg
)

∑
; ∈� exp

( ∫ C
0 (8; (g) dg

) (3.14a)

=

( ≥0︷                                            ︸︸                                            ︷∑
; ∈� \� ∗ (8)

exp
( ∫ C

0

(
(8; (g) − (8 9 (g)

)
dg

)
(3.14b)

+
∑

; ∈� ∗ (8)
exp

( ∫ C

0

(
(8; (g) − (8 9 (g)

)
dg︸                        ︷︷                        ︸

→∞

))−1

−→ 0 for C →∞.

(3.14c)

�

Proposition 3.2.5(a) states that if any subvector of the (-�ow converges to a point in a
Voronoi cell (3.5), then the corresponding subvector of, (C) converges exponentially fast to
the corresponding integral assignment. If the (-�ow itself already converges to an integral
assignment, then, (C) converges to the same assignment. We will show under some mild
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3 Asymptotic Behavior of the Assignment Flow

conditions on the parameters Ω that the (-�ow converges almost surely to integral assignments
(cf. Corollary 3.4.9 below).

Proposition 3.2.5(b) handles the case when the limit point (∗8 lies at the border of adjacent
Voronoi cells, that is the set arg max9 ∈� (∗8 9 is not a singleton. In this case, one can only state that
,8 (C) converges to some (possibly nonintegral) point, ∗8 without being able to predict precisely
this limit based on (∗8 alone. In contrast to (a), we also have to assume that the convergence of
the (-�ow is fast enough—see the hypothesis of (3.8). This assumption is reasonable, however,
because it is satis�ed whenever (∗8 is subvector of a hyperbolic equilibrium point of the (-�ow
(cf. Remark 3.4.11 below).

Example 3.2.6. We brie�y demonstrate what may happen when the assumption of (3.8) is
violated. Suppose (8 (C) and (∗8 are given by

(8 (C) = ©«
1
2 − 1

C+11
2 − 2

C+13
C+1

ª®¬ −→ (∗8 =
©«

1
21
2
0

ª®¬ for C →∞. (3.15)

The �rst component of (8 (C) converges faster than the second component. Since ‖(8 (C) −(∗8 ‖1 =
6
C+1 , the convergence rate assumption of (3.8) does not hold. Calculating,8 (C) due to (3.3)
gives

,8 (C) = 1
1 + 1

C+1 + (C + 1)44− 1
2 C

©«
1
1
C+1

(C + 1)44− 1
2 C

ª®¬ −→ , ∗8 =
©«
1
0
0

ª®¬ for C →∞, (3.16)

i.e.,8 (C) still converges, but we have supp, ∗8 ( arg max9 ∈� (∗8 9 unlike the statement of (3.8).
This example also shows that, in the case of Proposition 3.2.5(b), the limit, ∗8 may depend on
the trajectory (8 (C), rather than only on the limit point (∗8 as in case (a).

Proposition 3.2.5 makes explicit that the (-�ow largely determines the asymptotic behavior
of, (C). The next sections, therefore, focus on the (-�ow (3.2a) and on its dependency on
the parameters Ω. Even though the adjacency matrix Ω will be row-stochastic in the later
applications of the assignment �ow, we will assume a general matrix Ω ∈ ℝ<×< in the ongoing
analysis of the (-�ow and possibly restrict it in the following statements.

3.3 Convergence of the Y-Flow towards an Equilibrium

In this section we investigate whether the (-�ow converges towards a single point for C →∞.
We show �rst, under a symmetry assumption on the weights, that the (-�ow always converges
towards an equilibrium. Afterwards we present some academical examples that demonstrate
that convergence towards a point can fail if the symmetry assumption is violated. This also
con�rms that this assumption is not too strong.

3.3.1 Convergence to an Equilibrium for Symmetric Weights

In this subsection we make the basic assumption that the parameter matrix Ω has the form

Ω = Diag(F)−1Ω̂, with F ∈ ℝ<>0 and Ω̂> = Ω̂ ∈ ℝ<×< . (3.17)
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3.3 Convergence of the (-Flow towards an Equilibrium

Matrices of the form (3.17) include as special cases where Ω itself is symmetric or where
symmetric (nonnegative) weights Ω̂ were normalized, i.e. F = Ω̂1< . An instance of the latter
one are nonnegative uniform weights with symmetric neighborhoods, i.e.

l8: = 1
|N8 | ∀: ∈ N8 and : ∈ N8 ⇔ 8 ∈ N: , (3.18)

which we will consider in the subsequent chapters.
Under the symmetry assumption (3.17), we will prove the convergence of the (-�ow (3.2a)

towards an equilibrium. We will adapt the proof from [LA83] where the authors showed the
convergence of the replicator dynamics ¤? = '? (�?) on a (single) simplex Δ= with a symmetric
matrix �.

Remark 3.3.1. In case of (3.17), the (-�ow becomes a Riemannian gradient �ow with respect
to the (weighted) Fisher-Rao metric

6F, (* ,+ ) =
∑
8∈�

F8
〈
*8√
,8
,
+8√
,8

〉
, * ,+ ∈ T0, (3.19)

i.e. ¤( = '( [Ω(] = grad 5 (() with the potential 5 (() = 1
2 〈(, Ω̂(〉. This property will be the

main ingredient of the convergence proof.

Theorem 3.3.2 (convergence to equilibria). Let Ω be of the form (3.17). Then the (-�ow (3.2a)
converges to an equilibrium point (∗ = (∗((0) ∈ W, for any initial value (0 ∈ W.

Proof. First we note that, for Ω of the form (3.17), the (-�ow reads component-wise

¤(8 9 = 1
F8
(8 9

(
(Ω̂()8 9 − 〈(8 , (Ω̂()8〉

)
∀9 ∈ � , ∀8 ∈ � , (3.20)

and therefore equilibria (∗ ∈ W are characterized by

(Ω̂(∗)8 9 = 〈(∗8 , (Ω̂(∗)8〉 ∀9 ∈ supp (∗8 ∀8 ∈ � . (3.21)

Now, let Λ+((0) ⊂ W be the (positive) limit set of the (-�ow starting in (0, i.e.

Λ+((0) =
{
(∗ ∈ W : ∃(C: ):∈ℕ ⊂ ℝ≥0, C: →∞, ( (C: ) → (∗

}
. (3.22)

The set Λ+((0) ≠ ∅ is non-empty sinceW is compact.

Lemma 3.3.3. Every point (∗ ∈ Λ+((0) of the limit set (3.22) is an equilibrium of the (-�ow.

Proof. We use Theorem 2.3.10. Note thatW is compact and positively invariant with respect
to the (-�ow. The function

5 : ℝ<×= → ℝ, 5 (() = 〈(, Ω̂(〉 (3.23)

is a Lyapunov function of the (-�ow (3.2a) onW, since

d
dC 5 (( (C)) = 2〈Ω̂(, ¤(〉 = 2

∑
8∈�
〈(Ω̂()8 , ¤(8〉 〈1=,

¤(8 〉=0
= 2

∑
8∈�

〈(Ω̂()8 − 〈(8 , (Ω̂()8〉1=, ¤(8〉
(3.2a),(3.17)

=
∑
8∈�

2
F8

∑
9 ∈�

(8 9

(
(Ω̂()8 9 − 〈(8 , (Ω̂()8〉

)2
≥ 0 (3.24)

with equality only if ( satis�es the equilibrium criterion (3.21). By Theorem 2.3.10 this equality
holds for every point (∗ ∈ Λ+((0), i.e., (∗ is an equilibrium. �
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3 Asymptotic Behavior of the Assignment Flow

Next, we introduce some additional notation. Let (∗ ∈ Λ+((0) be an equilibrium. The
weighted Kullback-Leibler divergence is de�ned by

�FKL((∗, () B
{
−∑

8∈� F8
∑
9 ∈supp(∗

8
(∗8 9 log (8 9

(∗
8 9
, if supp (∗ ⊆ supp ( ,

∞, else.
(3.25a)

=
∑
8∈�

F8�KL((∗8 , (8) (3.25b)

with weightsF ∈ ℝ<>0 from (3.17) and the supports

supp ( = {(8, 9) ∈ � × � : (8 9 ≠ 0}, (3.26a)
supp (8 = { 9 ∈ � : (8 9 ≠ 0}. (3.26b)

Analogously to [LA83], we regard the index sets

�0(8) =
{
9 ∈ � : (Ω̂(∗)8 9 = 〈(∗8 , (Ω̂(∗)8〉

}
, (3.27a)

�−(8) =
{
9 ∈ � : (Ω̂(∗)8 9 > 〈(∗8 , (Ω̂(∗)8〉

}
, (3.27b)

�+(8) =
{
9 ∈ � : (Ω̂(∗)8 9 < 〈(∗8 , (Ω̂(∗)8〉

}
, (3.27c)

and de�ne (continuous) functions & : W → ℝ≥0 and + : W → ℝ≥0 ∪ {∞} by

& (() =
∑
8∈�

F8

∑
9 ∈�+ (8)

(8 9 , (3.28a)

+ (() = �FKL((∗, () + 2& (() . (3.28b)

The equilibrium criterion (3.21) implies

supp (∗8 ⊆ �0(8) and �−(8), �+(8) ⊆ � \ supp (∗8 ∀8 ∈ � , (3.29)

i.e. + ((∗) = & ((∗) = 0. Using the Lyapunov function (3.23), we have the following.

Lemma 3.3.4 (cf. [LA83, Proposition 2]). There exists Y > 0 such that, if ‖( (C) − (∗‖ < Y and
5 (( (C)) < 5 ((∗) with 5 given in (3.23), then d

dC+ (( (C)) < 0.

For reasons of readability, we postpone the proof of the lemma and continue the proof of the
theorem. Let (∗ ∈ Λ+((0) be the equilibrium from above and let (C: ):∈ℕ be a corresponding
sequence due to (3.22). We show that �FKL((∗, ( (C)) → 0 for C →∞, which is equivalent to the
assertion ( (C) → (∗ to be shown – cf. Section 2.1.5.

Choose Y > 0 according to the Lemma 3.3.4. There exists1 Y1 > 0 such that the (relatively)
open set * = {( ∈ W : + (() < Y1} is contained in {( ∈ W : ‖( − (∗‖ < Y}. The function
C ↦→ 5 (( (C)) is strictly increasing unless the orbit {( (C) : C ≥ 0} consists of an equilibrium.
Hence, 5 (( (C)) < 5 ((∗) for all C ≥ 0. Since ( (C: ) → (∗, we get ( (C:0) ∈ * for some :0 ∈ ℕ.
Since then C ↦→ + (( (C)) is decreasing, i.e. + (( (C)) < + (( (C:0)) < Y1 for all C > C:0 . Because
+ (( (C)) is decreasing and + (( (C: )) → + ((∗) = 0, we get

0 ≤ �FKL((∗, ( (C)) ≤ + (( (C)) → 0 for C →∞, (3.30)

which implies ( (C) → (∗ for C →∞. To complete the proof, it remains to prove Lemma 3.3.4.
1This follows by the fact that ( → (∗ if �FKL ((∗, () → 0.
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3.3 Convergence of the (-Flow towards an Equilibrium

Proof of Lemma 3.3.4. Since ( (C) ∈ W for all C ≥ 0, we have �FKL((∗, ( (C)) < ∞. Hence, we
can compute the time derivate

d
dC �

F
KL((∗, ( (C)) = −

∑
8∈�

F8

∑
9 ∈supp(∗

8

(∗8 9
¤(8 9
(8 9

(3.31a)

= −
∑
8∈�

∑
9 ∈supp(∗

8

(∗8 9
((Ω̂()8 9 − 〈(8 , (Ω̂()8〉) (3.31b)

∑
9 (
∗
8 9=1
= 〈(, Ω̂(〉 − 〈(∗, Ω̂(〉 (3.17)

= 〈(, Ω̂(〉 − 〈(, Ω̂(∗〉 (3.31c)
= 〈(, Ω̂(〉 − 〈(∗, Ω̂(∗〉 + 〈(∗, Ω̂(∗〉 − 〈(, Ω̂(∗〉 (3.31d)∑

9 (8 9=1
= 〈(, Ω̂(〉 − 〈(∗, Ω̂(∗〉 +

∑
8∈�

∑
9 ∈�

(8 9

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9

)
(3.31e)

(3.27)
= 〈(, Ω̂(〉 − 〈(∗, Ω̂(∗〉︸                  ︷︷                  ︸

5 (()−5 ((∗)<0

+
∑
8∈�

∑
9 ∈�− (8)

(8 9

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9︸                      ︷︷                      ︸

<0

)
+

∑
8∈�

∑
9 ∈�+ (8)

(8 9

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9︸                      ︷︷                      ︸

>0

)
.

(3.31f)

We now focus on & (() (3.28a) that is added to the KL-divergence to de�ne+ (() in (3.28b). We
have for each 9 ∈ �+(8)

〈(8 , (Ω̂()8〉 − (Ω̂()8 9 −→ 〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9 > 0 as ( → (∗. (3.32)

Since the limit is positive, there exists Y > 0 such that ‖( − (∗‖ < Y implies

〈(8 , (Ω̂()8〉 − (Ω̂()8 9 ≥ 3
4

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9

)
∀9 ∈ �+(8), ∀8 ∈ � . (3.33)

Consequently,

d
dC & (( (C))

(3.2a)
(3.28a)
=

∑
8∈�

∑
9 ∈�+ (8)

(8 9

(
(Ω̂()8 9 − 〈(8 , (Ω̂()8〉

)
(3.34a)

≤ −3
4
∑
8∈�

∑
9 ∈�+ (8)

(8 9

(
(Ω̂(∗)8 9 − 〈(∗8 , (Ω̂(∗)8〉

)
. (3.34b)

Substituting (3.31) and (3.34) into (3.28b), we �nally obtain

d
dC + (( (C)) =

d
dC �

F
KL((∗, ( (C)) + 2 · d

dC & (( (C)) (3.35a)

≤ 〈(, Ω̂(〉 − 〈(∗, Ω̂(∗〉 +
∑
8∈�

∑
9 ∈�− (8)

(8 9

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9

)
− 1

2
∑
8∈�

∑
9 ∈�+ (8)

(8 9

(
〈(∗8 , (Ω̂(∗)8〉 − (Ω̂(∗)8 9

) (3.35b)

< 0. (3.35c)

�
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3 Asymptotic Behavior of the Assignment Flow

3.3.2 Academic Examples for Non-Convergence towards Equilibria

In this subsection, we construct a family of (-�ows (3.2a) in terms of a class of nonnegative
parameter matrices Ω, that may violate assumption (3.17) which underlies Theorem 3.3.2.
Accordingly, for a small problem size = = 3, we explicitly specify �ows that exhibit one of the
following behaviors:

1. C ↦→ ( (C) converges towards a point (∗ ∈ W as C →∞;

2. C ↦→ ( (C) is periodic with some period C1 > 0;

3. C ↦→ ( (C) neither converges to a point nor is periodic.

These cases are discussed below as Example 3.3.9 and illustrated by Figure 3.1. They demon-
strate that assumption (3.17) is not too strong, because violation may easily imply that the
�ow fails to converge to an equilibrium.

Let D denote the set of doubly stochastic, circulant matrices. We consider the case< = |� | =
|� | = = and therefore have D ⊂ W. Let

% ∈ {0, 1}=×=, %8 9 =

{
1, if 8 − 9 ≡ 1 (mod=),
0, else

(3.36)

denote the permutation matrix that represents the =-cycle (1, . . . , =). ThenD is the convex hull
of the matrices {%, %2, . . . , %=} with %= = �= , and any element" ∈ D admits the representation

" =
∑
:∈[=]

`:%
: with ` ∈ Δ= . (3.37)

Since the matrices %, %2, . . . , %= ∈ ℝ=×= are linearly independent, the vector ` ∈ Δ= is uniquely
determined. We will call ` the representative of " ∈ D. The following lemma characterizes
two matrix products on D in terms of the corresponding matrix representatives.

Lemma 3.3.5. Let ` (1) , ` (2) ∈ Δ= be the representatives of any two matrices " (1) , " (2) ∈ D.
Then the element-wise Hadamard product and the ordinary matrix product, respectively, are given
by

" (1) � " (2) =
∑
:∈[=]

[:%
: with [ = ` (1) � ` (2) ∈ ℝ=≥0, (3.38a)

" (1)" (2) =
∑
:∈[=]

`:%
: with ` = " (1)` (2) ∈ Δ= . (3.38b)

Proof. We note that the :-th power of % is given by

(%: )8 9 =
{

1, if 8 − 9 ≡ : (mod=),
0, else.

(3.39)

This implies %: � %; = X:;%: for :, ; ∈ [=], with X:; denoting the Kronecker delta, and

" (1) � " (2) =
( ∑
:∈[=]

`
(1)
:
%:

)
�

( ∑
; ∈[=]

`
(2)
;
%;

)
=

∑
:,; ∈[=]

`
(1)
:
`
(2)
;
%: � %; =

∑
:∈[=]

`
(1)
:
`
(2)
:
%: .

(3.40)
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3.3 Convergence of the (-Flow towards an Equilibrium

As for (3.38b), we compute

" (1)" (2) =
∑

:,9 ∈[=]
`
(1)
:
`
(2)
9
%:+9 =

∑
8∈[=]

∑
:+9≡8 (mod=)

`
(1)
:
`
(2)
9
%8 (3.41a)

(3.39)
=

∑
8∈[=]

∑
:∈[=]

`
(1)
:
(%:` (2) )8 %8 =

∑
8∈[=]
(" (1)` (2) )8 %8 . (3.41b)

�

The following proposition shows that, in case of Ω ∈ D, the (-�ow on D can be expressed
by the evolution of the corresponding representative.
Proposition 3.3.6. Let Ω ∈ D and suppose the (-�ow (3.2a) is initialized at ( (0) ∈ D. Then
the solution ( (C) ∈ D evolves on D for all C ∈ ℝ. In addition, the corresponding representative
? (C) ∈ Δ= of ( (C) =

∑
:∈[=] ? (C)%: satis�es the replicator equation

¤? = '? (Ω?) . (3.42)

Proof. Let ( =
∑
:∈[=] ?:%: ∈ D with ? ∈ Δ= . Lemma 3.3.5 implies

( � (Ω() =
∑
:∈[=]

?: (Ω?): %: . (3.43)

Therefore, for any 8 ∈ [=],
〈(8 , (Ω()8〉 = 〈1=, (8�(Ω()8〉 =

〈
1=,

(
(�(Ω())

8

〉
=

∑
:∈[=]

?: (Ω?): 〈1=, (%: )8〉︸      ︷︷      ︸
=1

= 〈?,Ω?〉. (3.44)

Since this equation holds for any 8 ∈ [=], the right-hand side of the (-�ow (3.2a) can be
rewritten as

'( [Ω(] = ( � (Ω() − 〈?,Ω?〉( (3.43)
=

∑
:∈[=]

(
?: (Ω?): %: − 〈?,Ω?〉?:%:

)
(3.45a)

=
∑
:∈[=]

E:%
: with E = ? � (Ω?) − 〈?,Ω?〉? = '? (Ω?). (3.45b)

For ? ∈ Δ= , the vector E is tangent to Δ= , i.e., ¤( =
∑
: E:%

: is tangent to D. Hence, ( (C) stays
in D for all C ∈ ℝ. By (3.45), ¤( =

∑
:∈[=] ¤?:%: = '( [Ω(] is determined by ¤? = E = '? (Ω?),

whose solution ? (C) evolves on Δ= . �

The following proposition introduces a restriction of parameter matrices Ω ∈ D that ensures,
for any such Ω, that the product

∏
9 ∈[=] ? 9 changes monotonously depending on the �ow (3.42).

Proposition 3.3.7. Let Ω =
∑
:∈[=] `:%: ∈ D be parametrized by

` = U4= + V
=
1= +

∑
:<

⌊
=
2
⌋ W: (4: − 4=−: ) ∈ Δ=, U, V,W1, . . . , W b=2 c−1 ∈ ℝ. (3.46)

Suppose ? (C) ∈ S = rint(Δ=) solves (3.42). Then

d
dC

∏
9 ∈[=]

? 9 (C)

< 0, if U > 0
= 0, if U = 0
> 0, if U < 0

 , for ? (C) ≠ 1
=
1= . (3.47)
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3 Asymptotic Behavior of the Assignment Flow

Proof. Set c? B
∏

9 ∈[=] ? 9 . By virtue of (3.42) and 〈1=,Ω?〉 = 〈Ω>1=, ?〉 = 1 (Ω is doubly
stochastic and ? ∈ Δ=), we have

d
dC c? = c?

∑
9 ∈[=]

((Ω?)9 − 〈?,Ω?〉) = c? (1 − =〈?,Ω?〉) . (3.48)

Hence, since c? > 0 for ? ∈ S, d
dC c? has the same sign as 1

=
− 〈?,Ω?〉. Regarding the term

〈?,Ω?〉 =
∑
:∈[=]

`: 〈?, %:?〉, (3.49)

we have the following three cases:

(U) for all : < =, the inequality 〈?, %:?〉 ≤ 〈?, ?〉 = 〈?, %=?〉 holds, with equality if and only
if ? = 1

=
1= ;

(V)
∑
:∈[=] 〈?, %:?〉 = 〈?, 1=×= ?〉 = 1;

(W ) for all : ∈ [=], 〈?, %:?〉 = 〈?, %=−:?〉, since %−1 = %>.

Inserting (3.46) into (3.49) and applying (U), (V), (W) gives

〈?,Ω?〉 = U 〈?, ?〉 + V 1
=

and 〈?, ?〉 > 1
=

∑
:∈[=]
〈?, %:?〉 = 1

=
for ? ≠ 1

=
1= . (3.50)

Since 〈`, 1=〉 = U + V = 1, we further obtain

〈?,Ω?〉

> 1

=
, if U > 0

= 1
=
, if U = 0

< 1
=
, if U < 0

 , for all ? ∈ Δ= \ { 1
=
1=}. (3.51)

Combining (3.51) and (3.48) yields (3.47). �

Remark 3.3.8. Based on Proposition 3.3.7, we observe: If U > 0, then ? (C) moves towards
the (relative) boundary of the simplex Δ= , for any ? (0) ≠ 1

=
1= . If U < 0, then ? (C) converges

towards the barycenter 1
=
1= . For U = 0, the product

∏
9 ∈[=] ? 9 (C) is constant over time.

The scalars W: in (3.46) steer the skew-symmetric part of Ω. Consequently, if W: = 0 for all : ,
then Ω is symmetric and the (-�ow converges to a single point by Theorem 3.3.2. Depending
on the skew-symmetric part, the (-�ow may not converge to a point, as Example 3.3.9 below
will demonstrate for few explicit instances and = = 3. Note that, in this case = = 3, (3.46)
describes a parametrization rather than a restriction of Ω ∈ D.

Example 3.3.9. Let = = 3. The matrix Ω ∈ D takes the form

` = U43 + V

313 + W (41 − 42), (3.52)

Ω =
©«
`3 `2 `1
`1 `3 `2
`2 `1 `3

ª®¬ = U
©«
1 0 0
0 1 0
0 0 1

ª®¬ + V3 ©«
1 1 1
1 1 1
1 1 1

ª®¬ + W ©«
0 −1 1
1 0 −1
−1 1 0

ª®¬ (3.53)
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3.3 Convergence of the (-Flow towards an Equilibrium

with the constraint ` ∈ Δ3, i.e.

U + V = 1, U + V3 ≥ 0, V

3 ≥ |W |. (3.54)

We examine the behavior of the �ow (3.42), depending on the parameters U and W . Note, that
the �ow does not depend on the parameter V that merely ensures Ω to be row-stochastic.

Case U < 0. As already discussed (Remark 3.3.8), ? (C) converges to the barycenter in this
case. Depending on W , this may happen with (W ≠ 0) or without (W = 0) a spiral as depicted by
Figure 3.1 (a) and (b).

Case U = 0. We distinguish the two cases W = 0 and W ≠ 0. If W = 0, then we have Ω = 1
313×3

and therefore ¤? = '? (Ω?) ≡ 0, i.e., each point ?∗ ∈ Δ3 is an equilibrium. In contrast, if W ≠ 0,
then we have the (standard) rock-paper-scissors dynamics [SG16, Chapter 10]:

¤? = W
©«
?1(?3 − ?2)
?2(?1 − ?3)
?3(?2 − ?1)

ª®¬ ≠ 0, for ? ∈ Δ3 \ {41, 42, 43,
1
313}. (3.55)

Starting at a point ?0 ∈ rintΔ3 \ { 1
313}, the curve C ↦→ ? (C) moves along the closed curve{

? ∈ Δ3 :
∏

9 ? 9 =
∏

9 ?0, 9
}
, i.e., the curve C ↦→ ? (C) is periodic; see Figure 3.1 (c).

Case U > 0. We distinguish again the two cases W = 0 and W ≠ 0. If W = 0, then the �ow
reduces to ¤? = U'?? whose solution converges to

lim
C→∞? (C) =

1
| � ∗ |

∑
9 ∈� ∗

4 9 ∈ Δ3, with � ∗ = arg max
9 ∈[3]

? 9 (0) . (3.56)

As for the remaining case U > 0 and W ≠ 0, we distinguish U > |W | and U ≤ |W | as illustrated by
Figure 3.1 (e), (f) and (g). If U ≤ |W |, then we have a generalized rock-paper-scissors game [SG16,
Chapter 10]. The curve C ↦→ ? (C) spirals towards the boundary of the simplex Δ3 and does not
converge to a single point. In contrast, if U > |W |, then the �ow converges to a point on the
boundary. In fact, the vertices of the simplex are attractors.

Example 3.3.9 is devoted to the (-�ow (3.2a) that parametrizes the assignment �ow (3.2b),
as speci�ed by Proposition 3.2.2. The following examples illustrate how the assignment �ow
may behave if the (-�ow does not converge to an equilibrium point.

Example 3.3.10. This example continues Example 3.3.9. Accordingly, we consider the case
= = 3 and assume Ω ∈ D. Let the distance matrix � be given by

� =
©«
0 1 1
1 0 1
1 1 0

ª®¬ . (3.57)

Then, if Ω ∈ D, the initial value ( (0) = exp�W (−Ω�) of the (-�ow (3.2a) lies in D as well.
Hence, the above observations of Example 3.3.9 for the (-�ow hold. The resulting assignment
�ow C ↦→, (C) then also evolves in D which can be veri�ed using (3.3). As for the averaging
parameters Ω, we consider the following three matrices in D:

Ωcenter =
©«
0 0 1
1 0 0
0 1 0

ª®¬ , Ωcycle =
1
3
©«
1 0 2
2 1 0
0 2 1

ª®¬ , Ωspiral =
1
5
©«
2 0 3
3 2 0
0 3 2

ª®¬ . (3.58)
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3 Asymptotic Behavior of the Assignment Flow

(a) U < 0, W = 0 (b) U < 0, W ≠ 0 (c) U = 0, W ≠ 0

(d) U > 0, W = 0 (e) U > |W | > 0 (f) U = |W | > 0 (g) 0 < U < |W |
Figure 3.1: Phase portraits for the �ows ¤p = Xp (
p) of Example 3.3.9. Ω is parameterized
as speci�ed by (3.53). Parameter U controls whether the �ow evolves towards the barycenter
(U < 0) as in (a) and (b), or towards the boundary of the simplex (U > 0) as in (d)-(g). Parameter
W controls the rotational component of the �ow. In (c), the �ow neither evolves towards the
barycenter nor towards the boundary, and the rotational component of the �ow causes periodic
orbits. If U > 0, then the convergence of the �ow depends on the size of W . If 0 ≤ |W | < U as in (d)
and (e), then the �ow converges to a point on the boundary. If |W | ≥ U as in (f) and (g), then the
�ow spirals towards the boundary without converging to a single point.

e1

e2

e3

W1

W2

W3

e1

e2

e3

W1

W2

W3

e1

e2

e3

W2

Ωcenter Ωcycle Ωspiral

Figure 3.2: Trajectories of the assignment �ows in example 3.3.10. The input data is given
in (3.57) and (3.58). The �ow for the matrix Ωcenter converges to a point in the interior of the
assignment manifold. This limit point di�ers from the barycenter. The trajectory for the averaging
matrix Ωcycle is a closed curve. The trajectory for Ωspiral is spiraling towards the boundary of the
simplex. For the sake of clarity, the trajectory of only one data point is plotted for Ωspiral. The
trajectories for the other data points can be obtained from that one by permuting the label indices.
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3.4 Stability Analysis for Equilibria of the (-Flow

Figure 3.2 displays the trajectories of the assignment �ow for these averaging matrices. The
symmetry of these plots results from, (C) ∈ D.

Matrix Ωcenter corresponds to the parameters (U, V,W) = (− 1
2 ,

3
2 ,

1
2 ) of (3.53), for which the

(-�ow converges to the barycenter. As a consequence,, (C) converges to a point inW\{�W}.
Matrix Ωcycle corresponds to the parameters (U, V,W) = (0, 1, 1

3 ), for which the (-�ow has peri-
odic orbits. Since these orbits are symmetric around the barycenter, i.e.

∫ C1
0

(
( (C) −�W

)
dC = 0

with C1 being the period of the trajectory, the trajectory C ↦→ , (C) is also periodic as a
consequence of equation (3.3).

Finally, matrix Ωspiral corresponds to the parameters (U, V,W) = (0.1, 0.9, 0.3), for which the
(-�ow spirals towards the boundary of the simplex. It is not clear apriori if C ↦→, (C) does not
converge to a single point either. The trajectory of, (C) shown by Figure 3.2 suggests that the
assignment �ow also spirals towards the boundary of the simplex without converging to a
single point.

Remark 3.3.11. Examples 3.3.9 and 3.3.10 considered the special case< = |� | = |� | = = = 3.
We observed in further experiments similar behaviors also in the case = < <. For example,
it can be veri�ed, for = = 2 and Ω = Ωcycle from Example 3.3.10, that the (-�ow possesses a
(unstable) limit cycle, i.e. a periodic orbit.

The above examples also demonstrate that several symmetries in the input data are required,
e.g. Ω ∈ D and (0 ∈ D, in order to obtain nonconvergent orbits. However, small perturbations
like numerical errors or the omnipresent noise in real data will break these symmetries.
Therefore, it is very unlikely to observe such behavior of the (-�ow and the assignment �ow,
respectively, in practice.

3.4 Stability Analysis for Equilibria of the Y-Flow

In this section we will analyze the stability of equilibria of the (-�ow. For this, we will use
statements provided in Section 2.3.1. In particular, we will utilize the linearization of a system,
i.e., we consider the Jacobian matrix of the vector �eld of the (-�ow and examine its eigenvalues.
We will show under a positivity assumption on the diagonal of the parameter matrix Ω that
nonintegral equilibria are unstable and infer from this that the set of initial values of the (-�ow,
for which the �ow converge to a nonintegral equilibrium, is negligible. At the end of this
section, we will take a closer look at attracting equilibria and derive estimates for their basin of
attraction. As in the previous section, we assume a general matrix Ω ∈ ℝ<×< and, if necessary,
restrict it in the following statements.

3.4.1 Stability Analysis by Linearization

In this subsection we will use the shorthand � for the vector �eld of the (-�ow, i.e., the (-�ow
reads

¤( = � (() = '( [Ω(], ( (0) = (0 ∈ W . (3.59)

We will analyze the stability of equilibria by regarding the spectrum of the Jacobian matrix
m�
m(
((∗) at an equilibrium (∗ ∈ W, i.e. � ((∗) = 0. First we have to characterize the equilibria

and calculate the corresponding Jacobian matrix.
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3 Asymptotic Behavior of the Assignment Flow

Proposition 3.4.1 (equilibria). Let Ω ∈ ℝ=×= be an arbitrary matrix.

(a) A point (∗ ∈ W is an equilibrium of the (-�ow (3.59) if and only if

(Ω(∗)8 9 = 〈(∗8 , (Ω(∗)8〉, ∀9 ∈ supp (∗8 , ∀8 ∈ � , (3.60)

i.e., the subvectors (Ω(∗)8 are constant on supp (∗8 , for each 8 ∈ � .
(b) Every point (∗ ∈ W∗ is an equilibrium of the (-�ow (3.59).

(c) Let �+ ⊆ � be a non-empty subset of indices, and let 1�+ ∈ ℝ | � | be the corresponding indicator
vector with components (1�+)9 = 1 if 9 ∈ �+ and (1�+)9 = 0 otherwise. Then (∗ = 1

| �+ |1<1
>
�+

is an equilibrium. In particular, the barycenter �W = 1
<
1<1

>
= corresponding to �+ = � is an

equilibrium.

(d) The set E = {(∗ ∈ W : � ((∗) = 0} of all equilibria of the (-�ow (3.59) is a compact subset.

(e) For an index set Σ ⊆ � × � , let
EΣ =

{
(∗ ∈ E : supp (∗ = Σ

} ⊂ E (3.61)

denote the set of equilibria with given support Σ. This set is the relative interior of a convex
polytope. In particular, the set of all equilibria is a �nite union of convex polytopes, i.e.

E =
⋃

Σ⊆�×�
EΣ =

⋃
Σ⊆�×�

EΣ . (3.62)

Proof.

(a) Each equation of the system (3.59) has the form
¤(8 9 = (8 9

((Ω()8 9 − 〈(8 , (Ω()8〉), 8 ∈ � , 9 ∈ � . (3.63)
¤(8 9 = 0 implies that either (8 9 = (∗8 9 = 0, i.e. 9 ∉ supp((∗8 ), or the term in the round brackets
is zero, which is (3.60).

(b) The replicator matrix (2.91) satis�es '4 9 = 0, ∀9 ∈ � . This implies '(∗ = 0 and in turn
'(∗ [Ω(∗] = 0.

(c) Since Ω(∗ = 1
| �+ | (Ω1<)1>�+ , the subvectors (Ω(∗)8 , 8 ∈ � are constant on �+ = supp (∗8 , which

implies by (a) that (∗ is an equilibrium point.

(d) As the zero set of the continuous vector �eld � , the set E is a closed subset of the compact
setW and therefore itself compact.

(e) Using the equilibrium criterion (3.60), equilibria (∗ ∈ W are described by the following
set of linear equality and inequality constraints:

(Ω(∗)8 9 − (Ω(∗)8; = 0 ∀9, ; ∈ supp (∗8
〈(∗8 , 1=〉 = 1

(∗8 9 = 0 ∀9 ∈ � \ supp (∗8
(∗8 9 > 0 ∀9 ∈ supp (∗8


∀8 ∈ � . (3.64)

If supp (∗ is prescribed, then (3.64) de�nes the relative interior of a convex polytope. �
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3.4 Stability Analysis for Equilibria of the (-Flow

Remark 3.4.2. The set of equilibria characterized by Proposition 3.4.1 (b) and (c) may not
exhaust the set of all equilibrium points for a general parameter matrix Ω. For example, EΣ
in (e) does not have to be a singleton. However, we will show below that, under certain mild
conditions, any such additional equilibrium point must be unstable.

Lemma 3.4.3 (Jacobian matrix). Let � (() denote the vector �eld de�ning the (-�ow (3.59). Then,
after stacking ( row-wise, the Jacobian matrix of � is given by

m�

m(
=

©«
�1

. . .

�<

ª®®¬ +
©«
'(1

. . .

'(<

ª®®¬ · Ω ⊗ �= (3.65)

with block matrices �8 = Diag
((Ω()8 ) − 〈(8 , (Ω()8〉�= − (8 (Ω()>8 and '(8 given by (2.91).

Proof. The subvectors of � have the form

�8 (() = '(8 (Ω()8 =
(
Diag((8) − (8(>8

) (Ω()8 , 8 ∈ � . (3.66)

Hence, the directional derivative of �8 along + ∈ ℝ<×= is given by

d�8 (() [+ ] = d
dC �8 (( + C+ ) |C=0 (3.67a)

=
(
Diag(+8) −+8(>8 − (8+>8

) (Ω()8 + '(8 (Ω+ )8 (3.67b)
=

(
Diag

((Ω()8 ) − 〈(8 , (Ω()8〉�= − (8 (Ω()>8 )
+8 + '(8 (Ω+ )8 (3.67c)

= �8+8 + '(8 (Ω+ )8 . (3.67d)

We have d� (() [+ ] = m�
m(

vec(+ ) with vec(+ ) ∈ ℝ<= denoting the vector that results from
stacking the row vectors (subvectors) of + . Comparing both sides of this equation, with the
block matrices of the left-hand side given by (3.67), implies (3.65). �

Proposition 3.4.4 (eigenvalues of the Jacobian matrix). Let (∗ ∈ W be an equilibrium of the
(-�ow (3.59), i.e. � ((∗) = '(∗ [Ω(∗] = 0. Then regarding the spectrum f

(
m�
m(
((∗)) , the following

assertions hold.

(a) A subset of the spectrum is given by

f
(
m�
m(
((∗)) ⊇⋃

8∈�

{ − 〈(∗8 , (Ω(∗)8〉} ∪ {(Ω(∗)8 9 − 〈(∗8 , (Ω(∗)8〉} 9 ∈� \supp((∗
8
) . (3.68)

This relation becomes an equation if (∗ is integral, i.e. (∗ ∈ W∗.

(b) If (∗ = 1
| �+ |1<1

>
�+ with �+ ⊆ � and |�+ | ≥ 2, then

f
(
m�
m(
((∗)) = ⋃

8∈�

{
− (Ω1=)8| �+ |

}
∪

⋃
_∈f (Ω)

{
_
| �+ |

}
. (3.69)

(c) Assume the parameter matrix Ω with nonnegative diagonal elementsl88 , 8 ∈ � . If (∗8 ∉ {0, 1}=
and l88 > 0 hold for some 8 ∈ � , then the Jacobian matrix has at least one eigenvalue with
positive real part.
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3 Asymptotic Behavior of the Assignment Flow

Proof.

(a) Since f
(
m�
m(
((∗)>) = f (

m�
m(
((∗)) , we may alternatively regard the transpose of the Jacobian

m�
m(
((∗)> =

©«
�>1

. . .

�><

ª®®¬ + Ω> ⊗ �= ·
©«
'(∗1

. . .

'(∗<

ª®®¬ (3.70)

with �>8 = Diag
((Ω(∗)8 ) − 〈(∗8 , (Ω(∗)8〉�= − (Ω(∗)8(∗8 >. We have for each 8 ∈ � ,

�>8 1= = −〈(∗8 , (Ω(∗)8〉1=, '(∗
8
1= = 0, (3.71a)

�>8 4 9 =
((Ω(∗)8 9 − 〈(∗8 , (Ω(∗)8〉)4 9 , '(∗

8
4 9 = 0, ∀9∈ � \ supp (∗8 . (3.71b)

Hence, the transposed Jacobian possesses the following eigenpairs:

m�
m(
((∗)> · 48 ⊗ 1= = −〈(∗8 , (Ω(∗)8〉 · 48 ⊗ 1=, ∀8 ∈ � , (3.72a)

m�
m(
((∗)> · 48 ⊗ 4 9 =

((Ω(∗)8 9 − 〈(∗8 , (Ω(∗)8〉) · 48 ⊗ 4 9 , ∀9 ∈ � \ supp (∗8 , ∀8 ∈ � .
(3.72b)

If (∗ ∈ W∗, then | supp (∗8 | = 1 for each 8 ∈ � and therefore (3.72) speci�es all<= eigenpairs
and the entire spectrum, which proves (3.68). In this case, the eigenvectors of m�

m(
((∗) can

also be stated explicitly: Since '(∗ = 0, we have

m�
m(
((∗) =

©«
�1

. . .

�<

ª®®¬ . (3.73)

Each block �8 ful�lls

�8(
∗
8 = −〈(∗8 , (Ω(∗)8〉(∗8 , (3.74a)

�8 (4 9 − (∗8 ) =
((Ω(∗)8 9 − 〈(∗8 , (Ω(∗)8〉) (4 9 − (∗8 ) ∀9 ∈ � \ supp (∗8 . (3.74b)

Hence, the corresponding eigenvectors of m�
m(
((∗) are

48 ⊗ (∗8 , 48 ⊗ (4 9 − (∗8 ), ∀9 ∈ � \ supp (∗8 , ∀8 ∈ � . (3.75)

(b) Since Ω(∗ = 1
| �+ | (Ω1<)1>�+ for (∗ = 1

| �+ |1<1
>
�+ , we have

�8 = (Ω1<)8 ·
(

1
| �+ | Diag(1�+) − 1

| �+ | �= −
1
| �+ |21�+1

>
�+

)
, (3.76)

'(∗
8
= 1
| �+ | Diag(1�+) − 1

| �+ |21�+1
>
�+ (3.77)

for all 8 ∈ � , i.e., the Jacobian matrix simpli�es to

m�
m(
((∗) = Diag(Ω1<) ⊗ �0 + Ω ⊗ '(1

with �0 =
1
| �+ | Diag(1�+) − 1

| �+ | �= −
1
| �+ |21�+1

>
�+ . (3.78)
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3.4 Stability Analysis for Equilibria of the (-Flow

Let {(_8 ,F8)}8∈�̃ ⊂ ℂ × ℂ< be the set of all eigenpairs of Ω indexed by �̃ , and let
{E1, . . . , E | �+ |−1} be a basis of

{
E ∈ ℝ= : 〈E, 1�+〉 = 0, supp(E) ⊆ �+

}
. Note that |�̃ | < <

if and only if Ω is not diagonalizable. A short calculation shows

�04 9 = − 1
| �+ |4 9 , '(14 9 = 0, ∀9 ∈ � \ �+, (3.79a)

�01�+ = − 1
| �+ |1�+, '(11�+ = 0, (3.79b)

�0E 9 = 0, '(1E 9 =
1
| �+ |E 9 , ∀9 ∈ {1, . . . , |�+ | − 1}. (3.79c)

Hence, the Jacobian has the following<= − (< − |�̃ |) ( |�+ | − 1) eigenpairs:(
− (Ω1<)8| �+ | , 48 ⊗ 4 9

)
, ∀9 ∈ � \ �+, ∀8 ∈ � , (3.80a)(

− (Ω1<)8| �+ | , 48 ⊗ 1�+

)
, ∀8 ∈ � , (3.80b)(

_8
| �+ | ,F8 ⊗ E 9

)
, ∀9 ∈ {1, . . . , |�+ | − 1}, ∀8 ∈ �̃ . (3.80c)

If |�̃ | = <, we thus have a complete set of <= eigenpairs. If |�̃ | < <, we may consider
a diagonalizable perturbation Ω̃ of Ω. By the same argument, we get a complete set of
eigenpairs for the perturbed Jacobian matrix. Consequently, we obtain (3.69) by continuity
of the spectrum.

(c) We show that the real and imaginary parts of the corresponding eigenvector lie in the
linear subspace

T+ = T+((∗) =
{
+ ∈ ℝ<= : 〈+8 , 1=〉 = 0, supp+8 ⊆ supp (∗8 , ∀8 ∈ �

}
(3.81)

To this end, we show the two inclusions

im'(∗ ⊆ T+ ⊆ ker�, (3.82)

where '(∗ and � denote the block diagonal matrices

� =
©«
�1

. . .

�<

ª®®¬ , '(∗ =
©«
'(∗1

. . .

'(∗<

ª®®¬ . (3.83)

As for the �rst inclusion, we use the orthogonal projection onto T+ given by

ΠT+ =
©«
ΠT+,1

. . .

ΠT+,<

ª®®¬ with ΠT+,8 = Diag(1�8 ) − 1
| �8 |1�81

>
�8
, �8 = supp (∗8 ∀8 ∈ � .

(3.84)
One can verify that ΠT+'(∗ = '(∗ which implies im'(∗ ⊆ imΠT+ = T+, i.e. the �rst inclusion
of (3.82).
As for the second inclusion, we have to take into account that (∗ is an equilibrium point,
i.e. by (3.60)

(Ω(∗)8 9 = 〈(∗8 , (Ω(∗)8〉 ∀9 ∈ supp (∗8 ∀8 ∈ � . (3.85)
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3 Asymptotic Behavior of the Assignment Flow

Since � is a block diagonal matrix, it su�ces to examine each block

�8 = Diag
((Ω(∗)8 ) − 〈(∗8 , (Ω(∗)8〉�= − (∗8 (Ω(∗)>8 (3.86)

separately. Since

�84 9 = (Ω(∗)8 94 9 − 〈(∗8 , (Ω(∗)8〉4 9 − (Ω(∗)8 9(∗8 = −〈(∗8 , (Ω(∗)8〉(∗8 , ∀9 ∈ supp (∗8 (3.87)

is independent of 9 ∈ supp (∗8 , we get �8E = 0 for any E ∈ ℝ= with 〈E, 1=〉 = 0 and
supp E ⊆ supp (∗8 . This veri�es the second inclusion of (3.82).
As a consequence of the two inclusions (3.82), any eigenvector + of '(∗ (Ω ⊗ �=) corre-
sponding to a nonvanishing eigenvalue _ ≠ 0 has a real and imaginary part lying in
im'(∗ ⊆ T+ ⊆ ker�. Therefore, (_,+ ) is also an eigenpair of m�

m(
((∗) = � + '(∗ (Ω ⊗ �=). It

remains to show that

'(∗ (Ω ⊗ �=) =
©«
l11'(∗1 · · · l1<'(∗1
...

...

l<1'(∗< · · · l<<'(∗<

ª®®¬ (3.88)

has at least one eigenvalue with positive real part. Since the trace

tr
(
'(∗ (Ω ⊗ �=)

)
=

∑
8∈�

l88 tr
(
'(∗

8

)
=

∑
8∈�

l88

∑
9 ∈�
((∗8 9 − (∗8 9 2)︸                ︷︷                ︸

≥ 0, ∀8 ∈ �
> 0, for some 8 ∈ �

> 0 (3.89)

is positive by assumption, the existence of such an eigenvalue is guaranteed.

�

Next, we apply Theorem 2.3.8 and Proposition 3.4.4 in order to classify the equilibria of the
(-�ow.

Corollary 3.4.5 (stabilty of equilibria). Let Ω be a nonnegative matrix with positive diagonal
entries. Then, regarding the equilibria (∗ ∈ W of the (-�ow (3.59), the following assertions hold.

(a) (∗ ∈ W∗ is exponentially stable if, for all 8 ∈ � ,

(Ω(∗)8 9 < (Ω(∗)8 9∗ (8) for all 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.90)

(b) (∗ ∈ W∗ is unstable if, for some 8 ∈ � ,

(Ω(∗)8 9 > (Ω(∗)8 9∗ (8) for some 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.91)

(c) All equilibria (∗ ∉W∗ are unstable.
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3.4 Stability Analysis for Equilibria of the (-Flow

Proof.

(a) We apply Theorem 2.3.8(a) that provides a condition for stability of the (-�ow, regarded
as �ow on an open subset of ℝ<×= . Since the stability also holds on subsets, this shows
stability of the (-�ow onW.
By Proposition 3.4.4(a), the spectrum of m�

m(
((∗), for (∗ ∈ W∗, is given by the right-hand

side of (3.68) and, since Ω is nonnegative, is clearly negative if condition (3.90) holds.

(b) We take eigenvectors into account and invoke Proposition 2.3.9(b). By (3.75), the eigenvec-
tors are

484
>
9∗ (8) ∈ ℝ<×=, 48 (4 9 − 4 9∗ (8) )> ∈ T0, ∀9 ∈ � \ { 9∗(8)}, ∀8 ∈ � , (3.92)

and if the eigenvalue _ = (Ω(∗)8 9 − (Ω(∗)8 9∗ (8) is positive, then the corresponding eigen-
vector + = 48 (4 9 − 4 9∗ (8) )> ∈ T0 is tangent to W at (∗. By Proposition 2.3.9(b), there
exists an open truncated cone C ⊂ ℝ<×= such that X · + ∈ C, for su�ciently small
X > 0, and the (-�ow (3.59) is repelled from (∗ within (∗ + C. The (relatively) open subset
((∗ + C) ∩W ⊂ W is non-empty, since it contains (∗ + X ·+ . This shows the instability
of (∗.

(c) By the assumption on Ω, there is an eigenvalue with positive real part due to Proposi-
tion 3.4.4(c), and the real and imaginary part of the corresponding eigenvector lie in

T+ =
{
+ ∈ T0 : supp+ ⊆ supp (∗

} ⊆ T0. (3.93)

So the argument of (b) applies here as well using the real part of the eigenvector.

�

Remark 3.4.6 (selection of stable equilibria). For (∗ to be exponentially stable, Corollary 3.4.5(a)
requires that every averaged subvector (Ω(∗)8 has the same component as maximal component,
as does the corresponding subvector (∗8 . This means that the Ω-weighted average of the vectors
(∗9 within the neighborhood 9 ∈ N8 lies in the Voronoi-cell V9∗ (8) (3.5) corresponding to (∗8 .
Thus, Corollary 3.4.5 provides a mathematical and intuitively plausible de�nition of ‘spatially
coherent’ segmentations of given data, that can be determined by means of the assignment
�ow.

We now turn our attention to the consequences of the instability of equilibria.

Proposition 3.4.7. Let Ω be nonnegative with positive diagonal entries, and let (∗ ∈ W be an
equilibrium point of the (-�ow (3.59) which satis�es one of the instability criteria of Corollary 3.4.5
(b) or (c). Then the set of starting points (0 ∈ W for which the (-�ow converges to (∗ has measure
zero inW.

Proof. By Theorem 2.3.7, there exists a center-stable manifoldMcs((∗) which is invariant
under the (-�ow and tangent to �c ⊕ �s at (∗. Here, �c and �s denote the center and stable
subspace of m�

m(
((∗), respectively. Any trajectory of the (-�ow converging to (∗ lies inMcs((∗).

Therefore, it su�ces to show that the dimension of the manifoldMcs((∗) ∩W is smaller than
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3 Asymptotic Behavior of the Assignment Flow

the dimension ofW. Note thatMcs((∗) ∩W is a manifold since bothMcs((∗) andW are
invariant under the (-�ow. We have

dim
(Mcs((∗) ∩W

)
= dim

((�c ⊕ �s) ∩ T0
)
= dim(T0) − dim(�u ∩ T0) (3.94a)

= dim(W) − dim(�u ∩ T0), (3.94b)

where �u denotes the unstable subspace of m�
m(
((∗). Since m�

m(
((∗) has an eigenvalue with positive

real part and a corresponding eigenvector lying in T0 (cf. proof of Corollary 3.4.5), we have
dim(�u ∩ T0) ≥ 1 and therefore dim

(Mcs((∗) ∩W
) ≤ dim(W) − 1. �

Theorem 3.4.8. Let Ω be a nonnegative matrix with positive diagonal entries. Then the set
of starting points (0 ∈ W for which the (-�ow (3.59) converges to a nonintegral equilibrium
(∗ ∈ W, has measure zero inW.

Proof. Let E be the set of all equilibria of the (-�ow inW, which is a compact subset ofW.
If E contains only isolated points, i.e., E is �nite, then the statement follows from Proposi-
tion 3.4.7. In order to take also into account non�nite sets E of equilibria, we apply the more
general [Fen79, Theorem 9.1]. Some additional notation is introduced �rst.

Let EΣ be the set of equilibria with given support Σ ⊆ � × � as in Proposition 3.4.1(e). The set
EΣ is the relative interior of a convex polytope and therefore a manifold of equilibria. Further,
we de�ne for =s, =c, =u ∈ ℕ0 with =s + =c + =u =<= the set

E (=s,=c,=u) =
{
(∗ ∈ E : dim�s((∗) = =s, dim�c((∗) = =c, dim�u((∗) = =u

}
, (3.95)

where �c((∗), �s((∗) and �u((∗) denote the center, stable and unstable subspace of m�
m(
((∗).

This set can be written as countable union of compact sets which can be seen as follows. The
map

E → {
G ∈ ℝ<= : G1 ≤ G2 ≤ · · · ≤ G<=

}
, (∗ ↦→ Re

(
_
(
m�
m(
((∗)) ), (3.96)

where _(·) denotes the vector of eigenvalues, is a continuous map2 on a compact set and
therefore proper, i.e., preimages of compact sets under the map (3.96) are compact. It is clear
that the set*s ×*c ×*u with

*s =
{
G ∈ ℝ=s : G1 ≤ · · · ≤ G=B < 0

}
, (3.97a)

*c =
{
G ∈ ℝ=c : G = 0

}
, (3.97b)

*u =
{
G ∈ ℝ=u : 0 < G1 ≤ · · · ≤ G=D

}
(3.97c)

can be written as countable union of compact sets. The preimage of this set under the map (3.96)
is E (=s,=c,=u) .

To complete the proof, we now argue similar to the proof of Proposition 3.4.7: the existence of
nontrivial unstable subspaces for nonintegral equilibria implies that the center-stable manifold
has a smaller dimension.

Let Σ be the support of any nonintegral equilibrium and let E (=s,=c,=u) be such that the
intersection EΣ ∩ E (=s,=c,=u) ≠ ∅ is non-empty. As seen in the proof of Corollary 3.4.5(c), we

2This follows by the topological continuity of the spectrum – cf. e.g. [HJ12, Appendix D].
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3.4 Stability Analysis for Equilibria of the (-Flow

have �u((∗) ∩T0 ≠ {0} for any (∗ ∈ EΣ, i.e. =u ≥ 1. Since both EΣ and E (=s,=c,=u) can be written
as countable union of compact sets, this is also the case for their intersection, i.e., we have

EΣ ∩ E (=s,=c,=u) =
⋃
; ∈ℕ

 ; (3.98)

with  ; ⊆ EΣ compact. For any ; ∈ ℕ, there exists a center-stable manifoldMcs( ; ) containing
 ; , which is invariant under the (-�ow and tangent to �c((∗) ⊕ �s((∗) at any (∗ ∈  ; [Fen79,
Theorem 9.1]. Any trajectory of the (-�ow converging to a point (∗ ∈  ; lies inMcs( ; ).
Hence, analogous to the proof of Proposition 3.4.7, we have

dim
(Mcs( ; ) ∩W

)
= dim(W) − dim(�u((∗) ∩ T0) ≤ dim(W) − 1, (3.99)

with any (∗ ∈  ; , i.e.,Mcs( ; ) ∩W has measure zero inW. All trajectories converging to
an equilibrium (∗ ∈ EΣ ∩ E (=s,=c,=u) are contained in the countable union

⋃
; ∈ℕMcs( ; ) ∩W,

which has measure zero as well. Since there are only �nitely many such sets EΣ ∩ E (=s,=c,=u) ,
this completes the proof. �

In view of Theorem 3.4.8, the following corollary that additionally takes into account
assumption (3.17) of Theorem 3.3.2, is obvious.

Corollary 3.4.9 (convergence to integral assignments). Let Ω be a nonnegative matrix with
positive diagonal entries which also ful�lls the symmetry assumption (3.17). Then the set of
starting points (0 ∈ W, for which the (-�ow (3.59) does not converge to an integral assignment
(∗ ∈ W∗, has measure zero. If Ω is additionally invertible, then the set of distance matrices
� ∈ ℝ<×= for which the assignment �ow (3.1) does not converge to an integral assignment has
measure zero as well.

We brie�y discuss the assumption of Theorem 3.4.8. We consider a small dynamical system
that violates the basic assumption, that all diagonal entries of the parameter matrix Ω of the
(-�ow (3.59) are positive. As a consequence, an entire line of nonintegral equilibrium points
(∗ is locally attracting the �ow.

Example 3.4.10. Let< = |� | = 3 and = = |� | = 2, and let the parameters of the (-�ow (3.59)
be given by the row-stochastic matrix

Ω = (l8: )8,:∈[3] =
1
4
©«
0 2 2
1 2 1
1 1 2

ª®¬ , 8 ∈ � . (3.100)

One easily checks that any point (∗ on the line

L =

©«
? 1 − ?
1 0
0 1

ª®¬ : ? ∈ [0, 1]
 ⊂ W (3.101)

is an equilibrium of the (-�ow satisfying � ((∗) = 0. In particular, this includes nonintegral
points with ? ∈ (0, 1). The eigenvalues of the Jacobian matrix are given by3

f
(
m�
m(
((∗)) = {

0,− 1
2 ,−

?+2
4 ,−

?

2 ,−
1−?

2 ,− 3−?
4

} ⊂ ℝ≤0 (3.102)
3The eigenvalue 0 results from non-isolated equilibria, while the remaining �ve eigenvalues are given by Proposi-

tion 3.4.4(a).
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3 Asymptotic Behavior of the Assignment Flow

and are nonpositive. The phase portrait depicted by Figure 3.3 illustrates that L locally attracts
the �ow.

This small example demonstrates that violation of the basic assumption of Theorem 3.4.8—
here, speci�cally, l11 of (3.100) is not positive—leads to (-�ows for which Theorem 3.4.8 does
not apply: there is an (relatively) open set of starting points (0 ∈ W for which the (-�ow
converges to nonintegral equilibria (∗ ∈ L.
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Figure 3.3: Phase portrait for the �ow of Example 3.4.10. We graphically depict the (-�ow
with Ω given by (3.100), by its �rst column. This describes the �ow completely, since = = |� | = 2.
The left panel shows the phase portrait of the �ow within the planes {(21 = 1} and {(31 = 0}. The
plane {(11 =

1
2 } is depicted by the right panel. The line L of equilibria given by (3.101) is marked

red and located in the lower right vertex in the right plot. The phase portrait illustrates that this
line attracts the �ow within a small neighborhood.

We end this subsection with a remark on hyperbolic equilibria.

Remark 3.4.11 (consequences of hyperbolicity). If (∗ ∈ W is a hyperbolic equilibrium point,
i.e., the Jacobian matrix has no eigenvalue with vanishing real part, then the (-�ow locally
behaves as its linearization near (∗ by the Hartman-Grobman theorem (Theorem 2.3.5). Since
a linear �ow can only converge with an exponential convergence rate, this is also the case for
the (-�ow (3.59). More precisely, if the (-�ow converges to a hyperbolic equilibrium (∗ ∈ W
then there exist U, V > 0 such that ‖( (C) − (∗‖ ≤ U4−VC irrespective of whether (∗ is stable
or not. A direct consequence is

∫ ∞
0 ‖(8 (C) − (∗8 ‖1dC < ∞ for all 8 ∈ � , i.e., assumption of

Proposition 3.2.5(b) automatically holds if (∗ is hyperbolic.

3.4.2 Estimation of Basins of A�raction

We have shown in Corollary 3.4.5 that if a point (∗ ∈ W∗ satis�es the stability criterion (3.90)
then there exists an open neighborhood of (∗ such that the (-�ow starting in this neighborhood
eventually converge to (∗ with an exponential convergence rate. In this subsection we will
quantify this statement.
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3.4 Stability Analysis for Equilibria of the (-Flow

Proposition 3.4.12 (attracting region). Let Ω be a nonnegative matrix with positive diagonal
entries, and let (∗ ∈ W∗ satisfy (3.90). Furthermore, set

�((∗) B
⋂
8∈�

⋂
9≠9∗ (8)

{
( ∈ ℝ<×= : (Ω()8 9 < (Ω()8 9∗ (8)

}
with { 9∗(8)} = arg max

9 ∈�
(∗8 9 , (3.103)

which is an open convex polytope containing (∗. Finally, let Y > 0 be small enough such that

�Y ((∗) B
{
( ∈ W : max

8∈�
‖(8 − (∗8 ‖1 < Y

} ⊂ (
�((∗) ∩W)

. (3.104)

Then, regarding the (-�ow (3.59), the following holds: If ( (C0) ∈ �Y ((∗) for some point in time C0,
then ( (C) ∈ �Y ((∗) for all C ≥ C0 and limC→∞ ( (C) = (∗. Moreover, we have

‖(8 (C) − (∗8 ‖1 ≤ ‖(8 (C0) − (∗8 ‖1 · 4−V8 (C−C0) , ∀8 ∈ � , (3.105a)

where

V8 = min
( ∈�X ((∗)∩W

(8 9∗ (8) · min
9≠9∗ (8)

((Ω()8 9∗ (8) − (Ω()8 9 ) > 0 (3.105b)

and X > 0 is chosen small enough such that ( (C0) ∈ �X ((∗) ⊂ �Y ((∗).
Proof. For each 8 ∈ � , we have with (∗8 = 4 9∗ (8)

d
dC ‖(8 − (

∗
8 ‖1

∑
9 (8 9=1
=

d
dC

(
1 − (8 9∗ (8) +

∑
9≠9∗ (8)

(8 9

)
(3.106a)

=
d
dC (2 − 2(8 9∗ (8) ) (3.106b)

(3.2a)
= −2(8 9∗ (8)

((Ω()8 9∗ (8) − 〈(8 , (Ω()8〉) (3.106c)

≤ −2(8 9∗ (8)
(
(Ω()8 9∗ (8) − (8 9∗ (8) (Ω()8 9∗ (8) − max

9≠9∗ (8)
(Ω()8 9

∑
9≠9∗ (8)

(8 9

)
(3.106d)

= −2(8 9∗ (8) (1 − (8 9∗ (8) )
(
(Ω()8 9∗ (8) − max

9≠9∗ (8)
(Ω()8 9

)
(3.106e)

(3.106b)
= −(8 9∗ (8) ‖(8 − (∗8 ‖1 · min

9≠9∗ (8)
((Ω()8 9∗ (8) − (Ω()8 9 ) . (3.106f)

Choosing X > 0 such that ( (C0) ∈ �X ((∗) ⊂ �Y ((∗) ⊂ �((∗), it follows that V8 given by (3.105b)
is positive. Consequently

d
dC ‖(8 − (

∗
8 ‖1 ≤ −V8 ‖(8 − (∗8 ‖1 (3.107)

and by Gronwall’s Lemma (3.105a) holds. Hence, max8∈� ‖(8 − (∗8 ‖1 monotonically decreases
as long as ( (C) ∈ �X ((∗). This guarantees that ( (C) stays in �X ((∗) ⊂ �Y ((∗) and converges
towards (∗. �

Note that if ( (C) is close to (∗, then the convergence rate (3.105) of ( (C) is approximately
governed by

V8 ≈ min
9≠9∗ (8)

((Ω(∗)8 9∗ (8) − (Ω(∗)8 9 ) . (3.108)
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3 Asymptotic Behavior of the Assignment Flow

Proposition 3.4.12 provides a criterion for terminating the numerical integration of the
(-�ow and subsequent ‘save’ rounding to an integral solution. For this purpose, the following
proposition provides an estimate of Y de�ning (3.104).

Proposition 3.4.13. Let the same assumptions hold for Ω = (l8: ) ∈ ℝ<×< and (∗ ∈ W∗ as in
Proposition 3.4.12. A value Y > 0 that is su�cient small for the inclusion (3.104) to hold, is given
by

Yest = min
8∈�

min
9≠9∗ (8)

2 · (Ω(∗)8 9∗ (8) − (Ω(∗)8 9
(Ω1<)8 + (Ω(∗)8 9∗ (8) − (Ω(∗)8 9

> 0. (3.109)

Proof. Let ( ∈ W be a point such that

max
8∈�
‖(8 − (∗8 ‖1 < Y = Yest. (3.110)

We have to show that ( ∈ �((∗), with �((∗) given by (3.103).
Since ‖(8 − (∗8 ‖1 = 2 − 2(8 9∗ (8) , we have

(8 9∗ (8) > 1 − Y2 , (8 9 ≤
∑

;≠9∗ (8)
(8; = 1 − (8 9∗ (8) <

Y

2 , ∀9 ≠ 9∗(8) . (3.111)

Hence, for any 8 ∈ � and any 9 ≠ 9∗(8), we get with 9∗(:), : ∈ � similarly de�ned as 9∗(8)
in (3.90),

(Ω()8 9∗ (8) − (Ω()8 9
=

∑
:∈�

l8:(: 9∗ (8) −
∑
:∈�

l8:(: 9
(3.112a)

=
∑
:∈�

9∗ (:)=9∗ (8)

l8:

>1− Y2︷︸︸︷
(: 9∗ (8) +

∑
:∈�

9∗ (:)≠9∗ (8)

l8:

≥0︷︸︸︷
(: 9∗ (8) −

∑
:∈�

9∗ (:)=9

l8:

≤1︷︸︸︷
(: 9 −

∑
:∈�

9∗ (:)≠9

l8:

<
Y
2︷︸︸︷

(: 9 ,

(3.112b)

and by dropping the second nonnegative summand,

>

(
1 − Y2

) ∑
:∈�

9∗ (:)=9∗ (8)

l8: −
∑
:∈�

9∗ (:)=9

l8: −
Y

2
∑
:∈�

9∗ (:)≠9

l8: (3.112c)

and using that the rows of (∗ are unit vectors,

=

(
1 − Y2

)
(Ω(∗)8 9∗ (8) − (Ω(∗)8 9 −

Y

2
((Ω1<)8 − (Ω(∗)8 9 ) (3.112d)

= (Ω(∗)8 9∗ (8) − (Ω(∗)8 9 −
Y

2

(
(Ω1<)8 + (Ω(∗)8 9∗ (8) − (Ω(∗)8 9

)
(3.112e)

(3.109)≥ 0. (3.112f)

This veri�es ( ∈ �((∗). �
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3.4 Stability Analysis for Equilibria of the (-Flow

Figure 3.4 illustrates the sets �((∗) and �Y ((∗) de�ned by (3.103) and (3.104), for some
examples in the simple case of two data points and two labels. The beige and green regions
in the left panel illustrate that the condition ( (C0) ∈ �((∗) neither guarantees that the (-�ow
converges to (∗ nor to stay in �((∗). This demonstrates the need for the sets �Y ((∗), shown as
shaded squares in Figure 3.4. Note that �Y ((∗) ≠ ∅ only if (∗ ∈ �((∗) ≠ ∅, i.e. if the stability
condition (3.90) is ful�lled.

Ω =

(
0.55 0.45
0.25 0.75

)
Ω =

(
0.5 0.5
0.5 0.5

)
Ω =

(
0.25 0.75
0.75 0.25

)

0.0 0.2 0.4 0.6 0.8 1.0
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0.2
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Figure 3.4: Illustration of the approximation of the basins of attraction for the case
m = n = 2. The plots show the phase portrait of the (-�ow (3.59) for three di�erent row-stochastic
matrices Ω. The four points (∗ ∈ W∗ are marked with { , , , }, the corresponding sets
�((∗) (3.103) are shown as colored regions, and the balls �Y ((∗) (3.104) around the equilibria for
which convergence to the equilibria is guaranteed are shown as shaded squares, with Y = Yest ((∗,Ω)
from (3.109). Finally, the boundary between the basins of attraction is marked with a thick red
curve. In the center and right panel, only the constant labelings (∗ ∈ { ( 0 1

0 1
)
,
( 1 0

1 0
)} ful�ll the

stability criterion (3.90), i.e. (∗ ∈ �((∗). As for the other two points (∗ ∈ W∗, we have either
�((∗) = ∅ (center panel) or (∗ ∉ �((∗) ≠ ∅ (right panel).

If uniform weights Ω are used for averaging, then the estimate (3.109) can be cast into a
simple form that no longer depends on (∗.

Corollary 3.4.14. Let Ω = (l8: ) ∈ ℝ<×< be given by uniform weights l8: = 1
|N8 | , : ∈ N8 ,

8 ∈ � . Then the value Y > 0 that achieves the inclusion (3.104) can be chosen as

Yunif =
2

1 +max8∈� |N8 | > 0. (3.113)

Proof. Let 9∗(8) be de�ned as in (3.90). We have

(Ω(∗)8 9∗ (8) − (Ω(∗)8 9 =
|{: ∈ N8 : 9∗(:) = 9∗(8)}| − |{: ∈ N8 : 9∗(:) = 9}|

|N8 | . (3.114)

Since (3.114) is positive by assumption and its numerator is integral, we get

(Ω(∗)8 9∗ (8) − (Ω(∗)8 9 ≥
1
|N8 | . (3.115)

Monotonicity of the function G ↦→ G
1+G implies

2 · (Ω(
∗)8 9∗ (8) − (Ω(∗)8 9

1 + (Ω(∗)8 9∗ (8) − (Ω(∗)8 9
≥ 2 ·

1
|N8 |

1 + 1
|N8 |

=
2

1 + |N8 | (3.116)
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3 Asymptotic Behavior of the Assignment Flow

and hence Yunif ≤ Yest, with Yest given by (3.109). The assertion, therefore, follows from
Proposition 3.4.13. �

We will demonstrate the statements of Proposition 3.4.12 and Proposition 3.4.13 in Exam-
ple 3.5.14 in the next section, after we have veri�ed the validity of Proposition 3.4.12 also for
the discrete scheme discussed next.

3.5 Analysis of the Geometric Euler Discretization

In this section we examine the discretization of the assignment �ow. We con�ne ourselves
to the simplest geometric scheme worked out by [Sav+17] for numerically integrating the
assignment �ow (3.1) which reads

, (C+1) = exp, (C )
(
ℎ( (, (C ) )), C ∈ ℕ0, , (0) = �W (3.117)

where ℎ > 0 denotes a �xed step size and the iteration step C ∈ ℕ0 represents the point of time
Cℎ. The similarity map ( (, ) (2.104) can be expressed by [SS20, Lemma 3.2]

( (, ) = exp�W
(
Ω exp−1

�W (, ) − Ω�
)
, (3.118)

where exp−1
�W

: W → T0 is the inverse map of exp�W restricted to T0 – cf. Lemma 2.2.1(a).
Applying the scheme [Sav+17] to the (-�ow (3.59) that has the same structure as (3.1), yields
the iteration

( (C+1) = exp( (C )
(
ℎΩ( (C )

)
, C ∈ ℕ0, ( (0) = ( (�W) = exp�W (−Ω�) . (3.119)

Analogous to Section 3.2, we establish a relation between the discrete scheme of the assign-
ment �ow (3.117) and the discrete scheme of the (-�ow (3.119). Furthermore, we show that
the continuous �ows can be approximated arbitrarily accurately on a bounded time interval
by their discretization. Finally, we will verify the stability statements in Corollary 3.4.5 and
Proposition 3.4.12 also for the discrete scheme of the (-�ow.

3.5.1 Relation Between the Discrete Schemes of the Two Flows

This subsection is the discrete counterpart of Section 3.2, i.e., we establish the corresponding
statements for the discrete schemes (3.117) and (3.119).

Lemma 3.5.1. The sequences (, (C ) )C ∈ℕ0 and (( (C ) )C ∈ℕ0 generated by (3.117) and (3.119) satisfy
the relation

( (C ) = ( (, (C ) ) ∀C ∈ ℕ0, (3.120)

where ( (, ) denotes the similarity map (3.118).

Proof. We use mathematical induction. The case C = 0, i.e. ( (0) = ( (�W) = ( (, (0) ), is clear.
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3.5 Analysis of the Geometric Euler Discretization

For C > 0, we have

( (, (C+1) ) (3.117)
= (

(
exp, (C )

(
ℎ( (, (C ) )) ) (3.121a)

(2.99)
= (

(
exp�W

(
ℎ( (, (C ) ) + exp−1

�W (,
(C ) )

))
(3.121b)

(3.118)
= exp�W

(
ℎΩ( (, (C ) ) + Ω exp−1

�W (,
(C ) ) − Ω�

)
(3.121c)

(2.99)
= expexp�W

(
Ω exp−1

�W
(, (C ) )−Ω�

) (
ℎΩ( (, (C ) )) (3.121d)

(3.118)
= exp( (, (C ) )

(
ℎΩ( (, (C ) )) (3.121e)

(3.120)
= exp( (C )

(
ℎΩ( (C )

)
(3.121f)

(3.119)
= ( (C+1) . (3.121g)

�

A corollary of this lemma is the following discrete version of the (-parameterization (3.2).

Corollary 3.5.2. The scheme (3.117) is equivalent to the system

( (C+1) = exp( (C )
(
ℎΩ( (C )

)
, C ∈ ℕ0, ( (0) = exp�W (−Ω�), (3.122a)

, (C+1) = exp, (C )
(
ℎ( (C )

)
, C ∈ ℕ0, , (0) = �W . (3.122b)

Remark 3.5.3. The system (3.122) is numerically more stable than (3.117), since the calculation
of ( (, ) (3.118) involves the logarithm, which causes numerical issues for assignments near
the boundary ofW.

With the representation (3.122), we obtain the discrete counterparts of Proposition 3.2.2 and
Proposition 3.2.5.

Proposition 3.5.4. Let (( (C ) )C ∈ℕ0 be the sequence generated by (3.119). Then the sequence (3.117)
is given by

, (C ) = exp�W

(
ℎ

C−1∑
:=0

( (:)
)
= exp�W

(
ℎ

C−1∑
:=0

Π0
[
( (:)

] )
. (3.123)

Proof. We use mathematical induction. We have, (0) = exp�W (0) = �W and

exp�W

(
ℎ

C∑
:=0

( (:)
)

(2.99)
= expexp�W

(
ℎ

∑C−1
:=0 (

(: )
) (
ℎ( (C )

)
(3.124a)

(3.123)
= exp, (C )

(
ℎ( (C )

)
(3.124b)

(3.122b)
= , (C+1) . (3.124c)

�

Proposition 3.5.5. Let V8 (3.5) be the Voronoi cells of the vertices of Δ= in Δ= and suppose
limC→∞ (

(C )
8

= (∗8 ∈ Δ= , for any 8 ∈ � . Then the following assertions hold.
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3 Asymptotic Behavior of the Assignment Flow

(a) If (∗8 ∈ V9∗ (8) for some label index 9∗ = 9∗(8) ∈ � , then there exist constants U8 , V8 > 0 such
that , (C )

8
− 4 9∗ (8)


1 ≤ U84−V8ℎC ∀C ∈ ℕ. (3.125)

In particular,

lim
C→∞,

(C )
8

= 4 9∗ (8) ∈ Δ= . (3.126)

(b) One has∑
C ∈ℕ

( (C )
8
− (∗8


1 < ∞ =⇒ lim

C→∞,
(C )
8

=, ∗8 with supp(, ∗8 ) = arg max
9 ∈�

(∗8 9 .

(3.127)

The proof is analogous to the proof of Proposition 3.2.5, where the integral
∫ C

0 is replaced
by the sum ℎ

∑C−1
:=0. Therefore we skip the proof.

3.5.2 Approximation Error

Here, we establish estimates on the approximation error of the discrete schemes (3.117) and
(3.119).

Proposition 3.5.6. Let ! > 0 be the Lipschitz constant of the mapping � (3.59) de�ning the
(-�ow. Then there exists a constant � > 0 such that the solution ( (C) to the (-�ow (3.59) and the
sequence (( (C ) )C ∈ℕ0 generated by (3.119) satisfy the relation

( (Cℎ) − ( (C ) ≤ �( (Cℎ)ℎ ∀C ∈ ℕ0 with �( (Cℎ) = �

2! (1 + !ℎ) (4
!Cℎ − 1). (3.128)

Proof. For any C ∈ ℕ0, we set

. (C ) (g) = �g (( (C ) ) (3.119)
= exp( (C ) (gΩ( (C ) ) (3.129a)

and thus have

. (C ) (ℎ) = ( (C+1) , . (C ) (0) = ( (C ) , . (0) (0) = (0. (3.129b)

Formula (2.98) implies

¤. (C ) (g) = d
dg exp( (C ) (gΩ( (C ) ) = '. (C ) (g)

[
Ω( (C )

]
= � (. (C ) ), (3.130)

where we de�ned the shorthand � (. (C ) ).
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3.5 Analysis of the Geometric Euler Discretization

Now, with ( (C) solving the (-�ow (3.59), we estimate with any ) ≥ Cℎ,

( () ) − . (C ) () − Cℎ) (3.131a)

= ( (Cℎ) − . (C ) (0) +
∫ )−Cℎ

0

d
dg

(
( (Cℎ + g) − . (C ) (g))dg (3.131b)

(3.130),(3.59)
= ( (Cℎ) − . (C ) (0) +

∫ )−Cℎ

0

(
�
(
( (Cℎ + g)) −� (

. (C ) (g)) )dg (3.131c)

= ( (Cℎ) − . (C ) (0) +
∫ )−Cℎ

0

(
�
(
( (Cℎ + g)) − � (

. (C ) (g)) )dg

+
∫ )−Cℎ

0

(
�
(
. (C ) (g)) −� (

. (C ) (g)) )dg
(3.131d)

= ( (Cℎ) − . (C ) (0) +
∫ )−Cℎ

0

(
�
(
( (Cℎ + g)) − � (

. (C ) (g)) )dg

+
∫ )−Cℎ

0

∫ g

0

d
dg

(
�
(
. (C ) (g)) −� (

. (C ) (g)) )���
g=_

d_dg
(3.131e)

= ( (Cℎ) − . (C ) (0) +
∫ )−Cℎ

0

(
�
(
( (Cℎ + g)) − � (

. (C ) (g)) )dg

+
∫ )−Cℎ

0

∫ g

0

(
3�

(
. (C ) (_)) [� (

. (C ) (_)) ] − 3� (
. (C ) (_)) [� (

. (C ) (_)) ] )d_dg .

(3.131f)

We regard the integrand of the last integral. Since the mappings � given by (3.59) and � given
by (3.130) are both C1 andW is compact, there exists a constant � , independent of ( (C ) ∈ W
in (3.130), such that d� (. ) [� (. )] − d� (. ) [� (. )]

 ≤ � ∀. ∈ W . (3.132)

Hence,( () ) − . (C ) () − Cℎ)
≤

( (Cℎ) − . (C ) (0) + ∫ )−Cℎ

0

� (
( (Cℎ + g)) − � (

. (C ) (g))dg +�
∫ )−Cℎ

0

∫ g

0
d_dg

(3.133a)

≤
( (Cℎ) − . (C ) (0) + ! ∫ )−Cℎ

0
‖( (Cℎ + g) − . (C ) (g)‖dg + �2 () − Cℎ)

2. (3.133b)

Applying Gronwall’s inequality [Tes12, Lemma 2.7] yields( () ) − . (C ) () − Cℎ) ≤ (( (Cℎ) − . (C ) (0) + �2 () − Cℎ)2)4! ()−Cℎ) (3.134)

and setting ) = (C + 1)ℎ( ((C + 1)ℎ) − ( (C+1) (3.129b)
=

( ((C + 1)ℎ) − . (C ) (ℎ)
≤

(( (Cℎ) − . (C ) (0) + �ℎ2

2

)
4!ℎ

(3.129b)≤
(( (Cℎ) − ( (C ) + �ℎ2

2

)
4!ℎ . (3.135)
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Thus, mathematical induction over C ∈ ℕ results in( (Cℎ) − ( (C ) ≤ �ℎ2

2
∑
:∈[C ]

4!:ℎ =
�ℎ2

2 4!ℎ
4!Cℎ − 1
4!ℎ − 1

∀C ∈ ℕ. (3.136)

Eventually, using 4!ℎ ≥ 1 + !ℎ gives

4!ℎ

4!ℎ − 1
= 1 + 1

4!ℎ − 1
≤ 1 + 1

!ℎ
=

1 + !ℎ
!ℎ

(3.137)

and consequently the desired inequality. �

Proposition 3.5.7. Let �( (Cℎ) be the constant from Proposition 3.5.6. Further, let !̃ > 0 be the
Lipschitz constant of the lifting map exp�W and let �̃ = max

( ∈W ‖� (()‖ for the mapping �
(3.59) de�ning the (-�ow. Then the solution, (C) to the assignment �ow (3.1) and the sequence
(, (C ) )C ∈ℕ0 generated by (3.117) satisfy the relation, (Cℎ) −, (C ) ≤ �, (Cℎ)ℎ ∀C ∈ ℕ0 with �, (Cℎ) = !̃ · Cℎ ·

(
�( (Cℎ) + �̃2

)
. (3.138)

Proof. By Proposition 3.2.2 and Proposition 3.5.4, we have

, (Cℎ) = exp�W

( ∫ Cℎ

0
( (g) dg

)
, , (C ) = exp�W

(
ℎ

C−1∑
:=0

( (:)
)
. (3.139)

Hence, the Lipschitz continuity of exp�W implies, (Cℎ) −, (C ) ≤ !̃ ∫ Cℎ

0
( (g) dg − ℎ

C−1∑
:=0

( (:)
 (3.140a)

= !̃

 C−1∑
:=0

∫ (:+1)ℎ

:ℎ

( (g) − ( (:) dg
 (3.140b)

≤ !̃
C−1∑
:=0

∫ (:+1)ℎ

:ℎ

( (g) − ( (:) dg . (3.140c)

Each summand of the last term can be bounded by

∫ (:+1)ℎ

:ℎ

( (g) − ( (:) dg =

∫ (:+1)ℎ

:ℎ

( (:ℎ) − ( (:) + ∫ g

:ℎ

=� (( (_))︷︸︸︷
¤( (_) d_

 dg (3.141a)

≤
∫ (:+1)ℎ

:ℎ

(( (:ℎ) − ( (:) + ∫ g

:ℎ

� (( (_)) d_
)
dg (3.141b)

≤ ℎ
( (:ℎ) − ( (:) + ∫ (:+1)ℎ

:ℎ

(g − :ℎ)�̃ dg (3.141c)

(3.128)≤ �( (Cℎ)ℎ2 + �̃ℎ
2

2 . (3.141d)

Combining (3.140) and (3.141) results in (3.138). �

Remark 3.5.8. Proposition 3.5.6 and Proposition 3.5.7 imply that the discretizations (3.119)
and (3.117) can approximate the continuous �ows ( (C) and, (C) on a bounded time interval
C ∈ [0,) ] as accurately as required by su�ciently decreasing the step size ℎ > 0.
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3.5.3 Stability Analysis for Equilibria

In this subsection we will use the shorthand �ℎ (() = exp( (ℎΩ() for the mapping de�ning the
discrete scheme (3.119), i.e., the discrete scheme of the (-�ow reads

( (C+1) = �ℎ
(
( (C )

)
, �ℎ (() = exp( (ℎΩ(), C ∈ ℕ0, ( (0) = exp�W (−Ω�) . (3.142)

We will consider this scheme as discrete-time dynamical systems (cf. Section 2.3.2) and analyze
the stability of its equilibria (∗ ∈ W, which are the �xed points of the map �ℎ , i.e. �ℎ ((∗) = (∗.
Analogous to Section 3.4, we will examine the eigenvalues of the Jacobian matrix m�ℎ

m(
((∗) for

this analysis. We will adapt certain statements from Section 3.4 to the discrete scheme (3.142).

Proposition 3.5.9 (equilibria). Let Ω ∈ ℝ<×< be an arbitrary matrix. A point (∗ ∈ W is an
equilibrium of (3.142) if and only if

(Ω(∗)8 9 = 〈(∗8 , (Ω(∗)8〉 ∀9 ∈ supp (∗8 ∀8 ∈ � , (3.143)

i.e., the equilibria of the discrete scheme are precisely the equilibria of the (-�ow – cf. Proposi-
tion 3.4.1(a).

Proof. We have

�ℎ ((∗) = (∗ ⇔
(∗8 94

ℎ (Ω(∗)8 9

〈(∗
8
, 4ℎ (Ω(∗)8 〉 = (

∗
8 9 ∀9 ∈ � ∀8 ∈ �

⇔ 4ℎ (Ω(
∗)8 9 =

〈
(∗8 , 4

ℎ (Ω(∗)8 〉 ∀9 ∈ supp (∗8 ∀8 ∈ � .
(3.144)

The last equation states that the vector 4ℎ (Ω(∗)8 is constant on supp (∗8 . This is equivalent to
the vector (Ω(∗)8 being constant on supp (∗8 , i.e. to equation (3.143). �

Lemma 3.5.10 (Jacobian matrix). Let �ℎ denote the mapping in (3.142). Then, after stacking (
row-wise, the Jacobian matrix of �ℎ is given by

m�ℎ

m(
=

©«
�̃1

. . .

�̃<

ª®®¬ + ℎ
©«
'�ℎ,1 (()

. . .

'�ℎ,< (()

ª®®¬ · Ω ⊗ �= (3.145)

with block matrices '? = Diag(?) − ??> and

�̃8 = Diag(/8) − �ℎ,8 (()/>8 , /8 =
4ℎ (Ω()8

〈(8 , 4ℎ (Ω()8 〉
. (3.146)

Proof. The subvectors of �ℎ have the form

�ℎ,8 (() =
(8 � 4ℎ (Ω()8
〈(8 , 4ℎ (Ω()8 〉

, (3.147)
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3 Asymptotic Behavior of the Assignment Flow

Hence, the directional derivative of �ℎ,8 along + ∈ ℝ<×= is given by

d�ℎ,8 (() [+ ] = d
dC �ℎ,8 (( + C+ ) |C=0 (3.148a)

=
ℎ(Ω+ )8 � (8 � 4ℎ (Ω()8 ++8 � 4ℎ (Ω()8

〈(8 , 4ℎ (Ω()8 〉

− (8 � 4ℎ (Ω()8(〈(8 , 4ℎ (Ω()8 〉)2
〈
ℎ(Ω+ )8 � (8 ++8 , 4ℎ (Ω()8

〉 (3.148b)

= ℎ(Ω+ )8 � �ℎ,8 (() ++8 � /8
− �ℎ,8 (()

〈
ℎ(Ω+ )8 , �ℎ,8 (()

〉 − �ℎ,8 (()〈+8 , /8〉 (3.148c)

=

(
Diag(/8) − �ℎ,8 (()/>8

)
︸                         ︷︷                         ︸

=�̃8

+8 + ℎ'�ℎ,8 (() (Ω+ )8 . (3.148d)

We have d�ℎ (() [+ ] = m�ℎ
m(

vec(+ ) with vec(+ ) ∈ ℝ<= denoting the vector that results from
stacking the row vectors (subvectors) of + . Comparing both sides of this equation, with the
block matrices of the left-hand side given by (3.148), implies (3.145). �

Proposition 3.5.11 (eigenvalues of Jacobian matrix). Let (∗ ∈ W be an equilibrium of (3.142),
i.e. �ℎ ((∗) = (∗. Then regarding the spectrum f

( m�ℎ
m(
((∗)) , the following assertions hold.

(a) If (∗ ∈ W∗, then

f
( m�ℎ
m(
((∗)) = {0} ∪⋃

8∈�

{
4ℎ (Ω(

∗)8 9−ℎ (Ω(∗)8 9∗ (8 ) }
9 ∈� \{ 9∗ (8) } (3.149a)

and the corresponding eigenvectors are given by

48(
∗
8
> ∈ ℝ<×=, 48 (4 9 − (∗8 )> ∈ T0 ∀9 ∈ � \ supp (∗8 ∀8 ∈ � . (3.149b)

(b) If (∗ = 1
| �+ |1<1

>
�+ with �+ ⊆ � and |�+ | ≥ 2, then

f
( m�ℎ
m(
((∗)) = {0} ∪⋃

8∈�

{
4
− ℎ
| �+ | (Ω1<)8

} ∪ ⋃
_∈f (Ω)

{
1 + ℎ_

| �+ |
}
. (3.150)

(c) Assume the parameter matrix Ω with nonnegative diagonal elementsl88 , 8 ∈ � . If (∗8 ∉ {0, 1}=
and l88 > 0 hold for some 8 ∈ � , then the Jacobian matrix has at least one eigenvalue _ with
|_ | > 1. The real and imaginary part of the corresponding eigenvector lies in

T+ =
{
+ ∈ T0 : supp+ ⊆ supp (∗

}
. (3.151)

Proof. We start with some properties of the block matrices �̃8 (3.146). Since /8 � (8 = �ℎ,8 ((),
we get

�̃8(8 = 0, (3.152a)

�̃84 9 = /8 9
(
4 9 − �ℎ,8 (()

)
=

4ℎ (Ω()8 9

〈(8 , 4ℎ (Ω()8 〉
(
4 9 − �ℎ,8 (()

) ∀9 ∈ � . (3.152b)
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Now, let ( = (∗ be an equilibrium, i.e. �ℎ ((∗) = (∗. Equations (3.152) imply

�̃8 (4 9 − (∗8 ) =
4ℎ (Ω(

∗)8 9

〈(∗
8
, 4ℎ (Ω(∗)8 〉

(
4 9 − (∗8

) ∀9 ∈ � . (3.153)

By the equilibrium criterion (3.143), we have /8 9 = 1 for 9 ∈ supp (∗8 . Hence, the equation
(3.152b) also implies

�̃8E = E ∀E ∈ T+,8 =
{
E ∈ ℝ= : 〈E, 1=〉 = 0, supp E ⊆ supp (∗8

}
. (3.154)

We will use these equations to prove each particular statement.

(a) Since '(∗ = 0, we have

m�ℎ
m(
((∗) = �̃ =

©«
�̃1

. . .

�̃<

ª®®¬ . (3.155)

By equations (3.152a) and (3.153), the<= eigenpairs are given by
m�ℎ
m(
((∗) · 48 ⊗ (∗8 = 0, (3.156a)

m�ℎ
m(
((∗) · 48 ⊗ (4 9 − (∗8 ) =

4ℎ (Ω(
∗)8 9

〈(∗
8
, 4ℎ (Ω(∗)8 〉48 ⊗ (4 9 − (

∗
8 )

= 4ℎ (Ω(
∗)8 9−ℎ (Ω(∗)8 9∗ (8 )48 ⊗ (4 9 − (∗8 ) ∀9 ∈ � \ { 9∗(8)}.

(3.156b)

(b) Let {(_8 ,F8)}8∈�̃ ⊂ ℂ × ℂ< be the set of all eigenpairs of Ω. We have |�̃ | < < if and
only if Ω is not diagonalizable. Further, let {E1, . . . , E | �+ |−1} be a basis of the vector space{
E ∈ ℝ= : 〈E, 1�+〉 = 0, supp(E) ⊆ �+

}
. We have '(∗

8
E 9 =

1
| �+ |E 9 . Using the equations (3.152a),

(3.153) and (3.154), we get<= − (< − |�̃ |) ( |�+ | − 1) eigenpairs:
m�ℎ
m(
((∗) · 48 ⊗ (∗8 = 0 ∀8 ∈ � , (3.157a)

m�ℎ
m(
((∗) · 48 ⊗ (4 9 − (∗8 ) = 4−

ℎ
| �+ | (Ω1<)848 ⊗ (4 9 − (∗8 ) ∀9 ∈ � \ �+, ∀8 ∈ � , (3.157b)

m�ℎ
m(
((∗) ·F8 ⊗ E 9 =

(
1 + _ℎ

| �+ |
)
F8 ⊗ E 9 , ∀8 ∈ �̃ , ∀9 ∈ {1, . . . , |�+ | − 1}. (3.157c)

If |�̃ | =<, we have a full set of<= eigenpairs. If |�̃ | < <, the stated spectrum follows by a
perturbation of the matrix Ω and the continuity of the spectrum as argued in the proof of
Proposition 3.4.4(b).

(c) Analogous to the proof of Proposition 3.4.4(c), we have the inclusions

im'(∗ ⊆ T+ ⊆ ker
(
�̃ − �<=

)
, (3.158)

where the second inclusion follows by (3.154). In that proof it was also shown that the
matrix '(∗ (Ω ⊗ �=) possesses an eigenvalue _0 with Re(_0) > 0 and the real and imaginary
part of the corresponding eigenvector lying in T+. The inclusions (3.158) imply, that this
eigenvector is an eigenvector of m�ℎ

m(
((∗) = �̃ + ℎ'(∗ (Ω ⊗ �=) to the eigenvalue _ = 1 + ℎ_0.

Eventually, we have |_ | = |1 + ℎ_0 | ≥ Re(1 + ℎ_0) > 1.
�
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3 Asymptotic Behavior of the Assignment Flow

Corollary 3.5.12 (stability of equilibria). Let Ω be a nonnegative matrix with positive diagonal
entries. Then, regarding the equilibria (∗ ∈ W of (3.142), the following assertions hold.

(a) (∗ ∈ W∗ is exponentially stable if, for all 8 ∈ � ,

(Ω(∗)8 9 < (Ω(∗)8 9∗ (8) for all 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.159)

(b) (∗ ∈ W∗ is unstable if, for some 8 ∈ � ,

(Ω(∗)8 9 > (Ω(∗)8 9∗ (8) for some 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.160)

(c) All equilibria (∗ ∉W∗ are unstable.

Note that the same stability statements hold for the discrete scheme (3.142) as for the
continuous (-�ow (3.59). The proof of this corollary proceeds analogously to the proof of
Corollary 3.4.5 with Theorem 2.3.8, Proposition 3.4.4 and Proposition 2.3.9 replaced by the
discrete counterparts Theorem 2.3.12, Proposition 3.5.11 and Proposition 2.3.13.

Proposition 3.5.13. Let Ω, (∗ ∈ W∗, �((∗) and �Y ((∗) be as in Proposition 3.4.12. Then, for
the sequence (( (C ) )C ∈ℕ0 generated by (3.119), the following holds. If ( (C0) ∈ �Y ((∗) for some time
point C0 ∈ ℕ, then ( (C ) ∈ �Y ((∗) for all C ≥ C0 and limC→∞ ( (C ) = (∗. Moreover, we have( (C )

8
− (∗8


1 ≤

( (C0)
8
− (∗8


1 · W

C−C0
8

(3.161)

with W8 ∈ (0, 1), for each 8 ∈ � .
Proof. Let

V8 = V8 (() B min
{(Ω()8 9∗ (8) − (Ω()8 9 } 9≠9∗ (8) . (3.162)

For ( ∈ �((∗), we have V8 (() > 0 and with (∗8 = 48 9∗ (8) , �ℎ,8 (() ∈ Δ= ,�ℎ,8 (() − (∗8 1 = 2 − 2�ℎ,8 9∗ (8) (() (3.163a)

= 2 − 2
(8 9∗ (8)

(8 9∗ (8) +
∑
9≠9∗ (8) (8 94ℎ (Ω()8 9−ℎ (Ω()8 9∗ (8 )

(3.163b)

≤ 2 − 2
(8 9∗ (8)

(8 9∗ (8) + (1 − (8 9∗ (8) )4−ℎV8
(3.163c)

= ‖(8 − (∗8 ‖1
4−ℎV8

(8 9∗ (8) + (1 − (8 9∗ (8) )4−ℎV8︸                           ︷︷                           ︸
<1

. (3.163d)

Choosing X > 0 with ( (C0) ∈ �X ((∗) ⊂ �Y ((∗), we set

W8 = max
( ∈�X ((∗)

4−ℎV8 (()

(8 9∗ (8) + (1 − (8 9∗ (8) )4−ℎV8 (()
∈ (0, 1) . (3.164)

and thus get ‖�ℎ,8 (() − (∗8 ‖1 ≤ W8 ‖(8 − (∗8 ‖1 for ( ∈ �X ((∗), which implies �ℎ (�X ((∗)) ⊆ �X ((∗)
and the exponential convergence rate (3.161) of ( (C ) . �
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3.5 Analysis of the Geometric Euler Discretization

We conclude this subsection with an illustrative application of Corollary 3.5.12 and Proposi-
tion 3.5.13. We design and construct a small academical example that, despite its simplicity,
illustrates the following important points:

• the attracting region �Y ((∗) due to Corollary 3.4.14, here for the special case of uni-
form averaging parameters Ω (and likewise more generally for nonuniform Ω (Proposi-
tion 3.4.13)), that enables to terminate the numerical scheme and rounding to the correct
labeling;

• the in�uence of Ω on the spatial shape of patterns created through data labeling, which
provides the basis for pixel-accurate ‘semantic’ image labeling;

• undesired asymptotic behavior of the numerically integrated assignment �ow—cf. Re-
mark 3.5.15 below—cannot occur when using proper geometric numerical integration,
like the scheme (3.117) or any scheme devised by [ZSPS20].

Example 3.5.14. We consider a 12 × 12 RGB image D : � → [0, 1]3 shown by Figure 3.5.

input image (∗

Figure 3.5: Illustration of input and output of Example 3.5.14. The input image consisting
of three colors, which was used for computing the distance matrix � , is shown on the left. This
distance matrix was used to initialize the (-�ow, whose limit is illustrated by the image on the
right. This is a minimal example that demonstrates how stability conditions (3.90) constrain spatial
shape.

The three unit vectors 4 9 , 9 ∈ � = [3] de�ne the labels that are marked by the colors red,
green and blue. For spatial regularization we used 3 × 3 neighborhoods N8 , 8 ∈ � with uniform
weights l8: = 1

|N8 | , : ∈ N8 , with shrunken neighborhoods if they intersect the boundary
of the underlying quadratic domain. The distance matrix � that initializes the (-�ow by
(0 = exp�W (−Ω�), was set to �8 9 = 10 · ‖D8 − 4 9 ‖, 8 ∈ � , 9 ∈ � .

Adopting the termination criterion from [ÅPSS17], we numerically integrated the (-�ow
using the scheme (3.119), until iteration ) when the average entropy dropped below 10−3, i.e.

− 1
< log=

∑
8∈� , 9 ∈�

(
() )
8 9

log ( () )
8 9

< 10−3. (3.165)

The resulting assignment ( () ) was rounded to the integral assignment (∗ ∈ W∗ depicted by
the right panel of Figure 3.5. We observe the following.

(i) The resulting labeling (∗ di�ers from the input image although exact (integral) input data
are used.
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3 Asymptotic Behavior of the Assignment Flow

This conforms to Corollary 3.5.12(b), which enables to recognize the input data as un-
stable. As a consequence, the green and blue labels at the corners of the corresponding
quadrilateral shapes in the input data are replaced by the �ow. The resulting labeling (∗
is stable, as one easily veri�es using Corollary 3.5.12(a).

(ii) Using the estimate (3.113) which is the special case of (3.109) in the case of uniform
weights, we computed

Yest = Yunif = 0.2. (3.166)
Since the distance between (∗ and the assignment ( () ) obtained after terminating numer-
ical integration due to (3.165), satis�ed

max
8∈�

( () )
8
− (∗8


1 ≈ 0.00196 < Yest, (3.167)

we had the guarantee due to Proposition 3.5.13 that ( (C ) converges for C > ) to (∗,
i.e. that no label indicated by ( () ) can change anymore. In addition, Proposition 3.5.5
guarantees that the discrete schema (3.117) of the assignment �ow converges to (∗
as well. With regard to Proposition 3.5.6, the estimate (3.167) implies for su�ciently
small step size ℎ > 0 that the continuous (-�ow ( (ℎ) ) also lies in the attracting region
�Y ((∗). Proposition 3.4.12 then states the convergence of the (-�ow to (∗. Eventually, the
continuous assignment �ow (3.1) converge to (∗ by Proposition 3.2.5.

Remark 3.5.15 (numerical integration and asymptotic behavior). The authors of [ÅPSS17]
adopted a numerical scheme from [LA83] which, when adapted and applied to (3.1), was shown
in [BFPS17] to always converge to a constant solution as C →∞, i.e., a single label is assigned
to every pixel, which clearly is an unfavorable property. This strange asymptotic behavior
resulted from the fact that the adaption of the discrete scheme of [LA83] implicitly uses di�erent
step sizes for updating the �ow (8 at di�erent locations 8 ∈ � .

Our results in this chapter show that the continuous-time assignment �ow does not exhibit
this asymptotic behavior, under appropriate assumptions on the parameter matrix Ω. In
addition, point (ii) above and Proposition 3.5.13 show that using a proper geometric scheme
from [ZSPS20] turns condition (3.165) into a sound criterion for terminating the numerical
scheme, followed by save rounding to an integral labeling.

3.6 Generalization of the Y-Flow

In this section we consider a general class of �ows of the form
¤( = '(

[
V[(]], ( (0) = (0, (3.168)

where V : ℝ<×= → ℝ<×= is a linear map, i.e., we have vec(V[(]) = "V vec(() with a matrix
"V ∈ ℝ<=×<= . We will write this map component-wise in the form

V8 9 [(] =
∑
:∈�

∑
; ∈�

a8 9,:;(:; , a8 9,:; ∈ ℝ. (3.169)

The (-�ow (3.59) is therefore a special case with

a8 9,:; =

{
l8: , if 9 = ; ,
0, else.

(3.170)
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3.6 Generalization of the (-Flow

While the (-�ow only considers interactions between pixels, (3.168) also allows interactions
between labels.

Since this class of �ows might be of interest in future application, we transfer certain
statements from Section 3.3 and Section 3.4 and present them in brief below. Since the proofs
do not change signi�cantly and therefore do not provide any additional insight, we omit them.

Proposition 3.6.1 (equilibria). A point (∗ ∈ W is an equilibrium point of (3.168) if and only if

V8 9 [(∗] =
〈
(∗8 ,V8 [(∗]

〉 ∀9 ∈ supp (∗8 , ∀8 ∈ � . (3.171)

Theorem 3.6.2 (convergence to equilibria). Assume V ful�lls the symmetry assumption

a8 9,:; =
â8 9,:;

F8
with â8 9,:; = â:;,8 9 , F8 > 0 ∀8, : ∈ � , ∀9, ; ∈ � . (3.172)

Then the �ow (3.168) converges to an equilibrium (∗ = (∗((0) ∈ W for any initial value (0 ∈ W.

Lemma 3.6.3 (Jacobian matrix). Let � (() = '( [V[(]] denote the vector �eld de�ning the �ow
(3.168). Then, after stacking ( row-wise, the Jacobian matrix of � is given by

m�

m(
=

©«
�1

. . .

�<

ª®®¬ +
©«
'(1

. . .

'(<

ª®®¬ ·"V (3.173)

with block matrices �8 = Diag
(
V8 [(]

) − 〈(8 ,V8 [(]〉�= − (8V8 [(]> and '(8 = Diag((8) − (8(>8 .
Proposition 3.6.4 (eigenvalues of Jacobian matrix). Let (∗ ∈ W be an equilibrium point of
(3.168). Then regarding the spectrum f

(
m�
m(
((∗)) , the following assertions hold.

(a) If (∗ ∈ W∗, then

f
(
m�
m(
((∗)) = ⋃

8∈�

{ − 〈(∗8 ,V8 [(∗]〉} ∪ {
V8 9 [(∗] − 〈(∗8 ,V8 [(∗]〉

}
9 ∈� \supp(∗

8

(3.174)

and the corresponding eigenvectors are given by

48(
∗
8
> ∈ ℝ<×=, 48 (4 9 − (∗8 )> ∈ T0 ∀9 ∈ � \ supp (∗8 ∀8 ∈ � . (3.175)

(b) All nonvanishing eigenvalues of '(∗"V are also eigenvalues of m�
m(
((∗) = � + '(∗"V with the

same corresponding eigenvectors. Further, we have

tr
(
'(∗"V

)
=

∑
8∈�

∑
9 ∈�

(∗8 9 ·
(
a8 9,8 9 −

∑
; ∈�

a8 9,8;(
∗
8;

)
. (3.176)

If the operator V ful�lls

a8 9,8 9 > a8 9,8; ∀; ∈ � \ { 9} ∀9 ∈ � ∀8 ∈ � (3.177)

and the equilibrium (∗ is nonintegral, i.e. (∗ ∉ W∗, then the trace (3.176) is positive and
thus m�

m(
((∗) has an eigenvalue with positive real part. The real and imaginary part of the

corresponding eigenvector lies in

T+ =
{
+ ∈ T0 : supp+ ⊆ supp (∗

}
. (3.178)
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3 Asymptotic Behavior of the Assignment Flow

We note that in the case of the (-�ow (3.170) the condition (3.177) means the positivity of
the diagonal of the parameter matrix Ω = (l8: ).

Corollary 3.6.5 (stability of equilibria). Let V ful�ll a8 9,:; ≥ 0 and (3.177). Then regarding the
equilibria (∗ ∈ W of the �ow (3.168), the following assertions hold.

(a) (∗ ∈ {0, 1}<×= is exponentially stable if, for all 8 ∈ � ,

V8 9 [(∗] < V8 9∗ (8) [(∗] for all 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.179)

(b) (∗ ∈ {0, 1}<×= is unstable if, for some 8 ∈ � ,

V8 9 [(∗] > V8 9∗ (8) [(∗] for some 9 ∈ � \ { 9∗(8)} with { 9∗(8)} = arg max
9 ∈�

(∗8 9 . (3.180)

(c) All equilibria (∗ ∉W∗ are unstable.

Theorem 3.6.6. Let V ful�ll a8 9,:; ≥ 0 and (3.177). Then the set of starting points (0 ∈ W for
which the �ow (3.168) converges to a nonintegral equilibrium (∗ ∈ W, has measure zero inW.

3.7 Summary

In this chapter, we analyzed the convergence of the assignment �ow based on the (-parametri-
zation [SS20]. We showed that the limits of the assignment �ow are obtained by rounding the
limits of the (-�ow to integral assignments, whenever rounding is uniquely possible (Proposi-
tion 3.2.5). In particular, integral limits of the (-�ow are also limits of the assignment �ow. We
focused then on the convergence of the (-�ow. We proved under a symmetry assumption on the
parameters Ω that the (-�ow always converges towards an equilibrium (Theorem 3.3.2). This
symmetry assumption is ful�lled for uniform weights (3.18) with according neighborhoods,
which we will use in the following chapters. We also demonstrated in Example 3.3.9 that
convergence can fail without this symmetry assumption. Later in this chapter we examined
the stability of equilibria of the (-�ow in order to clarify to which equilibrium the �ow may
converge. We showed under positivity assumption on the diagonal of the parameter matrix Ω
that nonintegral equilibria are unstable (Corollary 3.4.5) and concluded that the convergence
towards them is only valid for a null set of initial values of the (-�ow (Theorem 3.4.8). This
positivity assumption is ful�lled for uniform weights (3.18) as well. For equilibria that meet the
stability criterion (3.90) and are thus exponentially stable, we derived an estimate for their basin
of attraction (Proposition 3.4.12, Proposition 3.4.13) that can be used in practical application
as a termination criterion and provide a guarantee for rounding. After the investigation of
the continuous �ow, we dealt with the geometric Euler discretization [Sav+17]. We saw that
on a bounded time interval the discrete scheme approximates the continuous �ow accurately
for su�ciently small step size ℎ > 0 (Proposition 3.5.6, Proposition 3.5.7). Furthermore, we
veri�ed the stability statements on equilibria of the continuous (-�ow also for the discrete
scheme (Corollary 3.5.12). In particular, the estimates for the basin of attraction of the expo-
nentially stable equilibria also apply and thus provide convergence guarantees for the discrete
scheme as well (Proposition 3.5.13). This convergence guarantee was used in Example 3.5.14 to
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3.7 Summary

demonstrate that the assignment �ow converges to a nonconstant labeling. At the end of the
chapter we discussed a generalization of the continuous (-�ow, where the �tness interacts not
only between pixels but also between labels. For this �ow we listed how certain statements
previously stated for the (-�ow are transferred. These include conditions for guaranteed
convergence to equilibria (Theorem 3.6.2) as well as the instability of nonintegral equilibria
(Corollary 3.6.5, Theorem 3.6.6).
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4 Label Statistics by Global Filtering
Constraints

4.1 Introduction and Overview

Motivation

The discriminative power of �lter statistics for object detection and classi�cation is well known
[Low04, MY09] and has been widely explored in the literature. The generative power of �lter
statistics for representing image structure, on the other hand, has been less explored during
the recent years. Early seminal work on generative aspects of �lter statistics includes [ZM97]
and [PS00] and many references in these papers. In the former case, heavy-tailed empirical
�lter statistics are imposed on the variational problem of learning the parameters of a Gibbs-
Boltzmann distribution. In the latter case, several hundred �lter constraints form nonlinear
submanifolds (level sets) onto which a given image has to be projected. While both works
impressively demonstrate the generative power of �lter statistics, exploiting these statistics as
prior knowledge for inference and reproducibility of results has remained a challenge from the
viewpoint of algorithm design and numerical optimization.

In this chapter, we focus on a mathematically sound and numerically tractable approach
to impose �lter statistics on labeled image structure, i.e., we consider �lter constraints in
label space rather than in image space. The simplest constraint, for example, imposes lower
and upper bounds on the area occupied by some label, without specifying the corresponding
locations. More general constraints arise from replacing the ‘identity �lter’ by linear �lters
learned o�ine through a simple generalized eigenvalue technique and imposing similar linear
statistical constraints. To incorporate such constraints into an algorithm for image labeling in a
numerically tractable and reproducible way, we adopt the assignment �ow approach presented in
Section 2.2 and take �ltered label statistics into account by using standard log-barrier functions
[NN94, BV04].

Organization

Section 4.2 details our contribution. First we mention the considered global �lter constraints
(Section 4.2.1) and then discuss how we learn �lters for label statistics (Section 4.2.2) and
take corresponding empirical constraints into account during inference for image labeling
(Section 4.2.3). We do not focus on any speci�c application in this chapter. Rather, the proof-
of-concept experiments discussed in Section 4.3 are supposed to demonstrate how statistics
gathered by linear �lters of small support can enhance image labeling, represent primitive shape
information and support spatial pattern formation, by extending the assignment �ow approach
through corresponding convex constraints.

75



4 Label Statistics by Global Filtering Constraints

Notation

We use the notation from Section 2.2, i.e., = is the number of labels and � = [=] = {1, . . . , =} is
the set of label indices. The set of pixel indices is � = [<], where< =<1<2 is the number of
pixels of an<1 ×<2 image. For a matrix, ∈ ℝ<×= ,,8 ∈ ℝ= is the 8-th row and, 9 ∈ ℝ< is
the 9-th column, with the latter representing a<1 ×<2 grayscale image. This also applies to
? × ? �lters 5 ∈ ℝ?2×= , i.e., 5 9 ∈ ℝ?2 represents a ? × ? �lter. The convolution of the ? × ?
�lter 5 9 with the<1 ×<2 image, 9 is denoted with 5 9 ∗, 9 ∈ ℝ< , whereby the �lter result is
again regarded as a vector.

4.2 Label Assignment with Global Constraints

In this section, we discuss how �lter constraints can be incorporated into the assignment �ow
approach from Section 2.2 which evolves on the assignment manifoldW ⊂ ℝ<×= . First we
present the considered global �lter constraints on assignment matrices, ∈ W and then
explain the adaption of the vector �eld of the assignment �ow taking these constraints into
account.

4.2.1 Filter Constraints

In order to incorporate some prior knowledge about labelings, we consider linear ? × ? �lters
5 ∈ F ⊂ ℝ?2×= operating on assignment matrices, ∈ W. For each label 9 ∈ � , we have a
? × ? �lter ℎ 9 ∈ ℝ?2 in the usual sense, and the �lter operation is given by

5 ∗, B
∑
9 ∈�

5 9 ∗, 9 , (4.1)

with the common convolution of the ‘label images’, 9 , 9 ∈ � with a ? × ? �lter on the right-
hand side. The space of �lters F will be speci�ed in Section 4.2.2. To avoid complications at
and close to the boundary of the image region, we only take into account �lter results (5 ∗, )8
at interior pixels 8 where the ? × ? �lter support (centered at 8) does not overlap with the
boundary. At the remaining pixels the �lter result is set to 0.

The �lter result (5 ∗, )8 at a pixel 8 ∈ � depends on the assignment within a ?×? neighborhood
of 8 and hence re�ects the local spatial relation of the labels. Our objective is to control label
assignments by constraining the �lter results for a set{

5 (:) ∈ F : : ∈  }
(4.2)

of | | �lters in order to take into account statistical prior information about the local geometry
of labelings. Motivated by [BGGS17], where the ℓ1-norm of the �lter results of a grayscale
image was considered in connection with non-smooth sparse regularization, we consider
here the ℓ2-norm of �lter results which conforms to our smooth label assignment approach of
Section 2.2.

Speci�cally, we consider global convex constraints of the form

2low ≤ 1
<
, >1< ≤ 2up, (4.3a)

‖ 5 (:) ∗, ‖2 ≤ 3 (:) , : ∈  , (4.3b)
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where the parameter vectors 2low, 2up ∈ ℝ= impose lower and upper cardinality bounds for the
assignment of each label 9 ∈ � = [=] to the range of pixels � = [<], whereas the parameters
3 (:) of (4.3b) constrain the output energy of each �lter 5 (:) , : ∈  . To ensure that the region
of feasible assignments, has a non-empty interior, we require

2low < 2up, 〈2low, 1=〉 < 1 < 〈2up, 1=〉 and 3 (:) > 0, : ∈  . (4.4)

As alternative to the ℓ2-norm de�ning (4.3b), we also used a smooth approximation of the
ℓ1-norm denoted by

‖G ‖1,Y =
∑
8∈�
|G8 |Y, |G8 |Y =

√
G2
8
+ Y2 − Y. (4.5)

4.2.2 Space of Filters and Filter Learning

We discuss how to choose �lters for given classes of labelings and corresponding example
data. First of all, we restrict the space of all possible ? × ? �lters in order to eliminate some
redundant degrees of freedom. To this end, we consider the decomposition of the space of all
�lters

ℝ?2×= = F0 ⊕ F1 ⊕ F2 (4.6)

into subspaces given by1

F0 =
{
5 ∈ ℝ?2×= : 5 9 = 5 ; , mean(5 9 ) = 0, ∀9, ; ∈ � }, (4.7a)

F1 =
{
5 ∈ ℝ?2×= : 〈58 , 1=〉 = 0, ∀8 ∈ [?2], mean(5 9 ) = 0, ∀9 ∈ � }, (4.7b)

F2 =
{
5 ∈ ℝ?2×= : 58 = 5: , ∀8, : ∈ [?2]} . (4.7c)

These spaces are orthogonal to each other with respect to the Euclidean inner product. The
space F2 consists of all �lters 5 that are constant for each label, i.e. 5 9 = 2 9 · 1?2 for each 9 ∈ �
with 2 ∈ ℝ= . The space F0 consists of all zero-mean �lters, which do not distinguish between
labels. For any �lter 5 ∈ F0, we have 5 ∗, = 5 1 ∗∑9,

9 = 5 1 ∗ 1< = 0 for all, ∈ W, i.e.,
the subspace F0 does not represent any useful information for our purpose.

Thus, we can choose either F = F1 or F = F1 ⊕ F2 as the actual space of �lters. Our choice
is

F = F1, dimF = dimF1 = (?2 − 1) (= − 1) (4.8)

for two reasons. Firstly, we use this framework for segmentation, where larger homogenous
regions occur (e.g., background). Filters which return a small ℓ2-norm for such labelings have
(approximately) a zero-mean and therefore belong to F1. Secondly, we will use an inner point
approach which requires a feasible initialization. In case of zero-mean �lters, we can simply
use constant assignments as initial assignment. As a result, we do not need an additional
initialization process on which the �nal result might depend. This conforms to the philosophy
to start the assignment �ow without any bias at the barycenter �W ∈ W.

For learning the �lters, we assume that sets I+,I− ⊂ W for favorable and unfavorable
label assignments are given. We are looking for �lters 5 ∈ F such that ‖ 5 ∗, ‖2 is smaller for

1Notation: Filters 5 are matrix-valued (image vectors × labels) with rows 58 and columns 5 9 . Superscripts in
brackets 5 (:) index members of a collection of �lters.
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4 Label Statistics by Global Filtering Constraints

, ∈ I+ than for, ∈ I−. For simplicity, we choose

mean, ∈I+ ‖ 5 ∗, ‖22
mean, ∈I− ‖ 5 ∗, ‖22

< 1 (4.9)

as criterion for �lters 5 ∈ F , which leads to a generalized eigenvalue problem. Speci�cally, let{
4F
8

: 8 = 1, . . . , dimF }
be an orthonormal basis of F and consider the map

" : W → ℝdim F×dim F, " (, )8 9 =
〈
4F8 ∗,, 4F9 ∗,

〉
. (4.10)

Then we have
mean, ∈I+ ‖ 5 ∗, ‖22
mean, ∈I− ‖ 5 ∗, ‖22

=
G>�+G
G>�−G

(4.11)

with�± = mean, ∈I± " (, ) and 5 =
∑
8 G8 4

F
8

. As a consequence, a set of linearly independent
�lters satisfying the criterion (4.9) is given by the generalized eigenvectors of the matrix pencil
(�+, �−) corresponding to eigenvalues less than 1. The �lters corresponding to eigenvalues
greater than 1 might also focus on useful features as can be seen, for example, in Figure 4.7
(d), where the last 16 �lters correspond to eigenvalues greater than 1. These �lters can be
used additionally, since they further restrict the assignment and therefore may prevent some
assignments, which were not taken into account by I−.

Having determined a set of �lters as generalized eigenvectors, we normalize them in a
post-processing step so as to meet the condition 5 ∗, ∈ [−1, 1]< for all, ∈ W, i.e.

‖ 5 ‖F = 1, ‖ 5 ‖F B max
{
−

∑
8∈[?2 ]

min
9 ∈�

58 9 ,
∑
8∈[?2 ]

max
9 ∈�

58 9

}
. (4.12)

4.2.3 Adaption of the Assignment Flow

In order to take into account the constraints (4.3), we follow the approach in [AL10] by using
log-barrier functions [NN94, BV04]. Given the parameters in (4.4) and �lters 5 (:) , : ∈  , these
functions read

�low(, ) = −
〈
1=, log

( 1
<
, >1< − 2low

)〉
, (4.13a)

�up(, ) = −
〈
1=, log

(
2up − 1

<
, >1<

)〉
, (4.13b)

��lter(, ) = −
∑
:∈ 

log
((3 (:) )2 − ‖ 5 (:) ∗, ‖22 ) . (4.13c)

Summing up these functions yields the overall barrier function

�(, ) = �low(, ) + �up(, ) + ��lter(, ) (4.14)

for the constraints (4.3). We complement the similarity map (2.104)

(g (, ) = ( (, ) + g∇�(, ), g > 0 (4.15)

which steers the assignment �ow (2.105). This adaptation is due to the observation that the
assignment �ow was originally introduced as a Riemannian gradient �ow of � (, ) = 〈,,( (, )〉
with ∇� (, ) ≈ ( (, ) and that (4.15) corresponds to the gradient of �g (, ) = � (, ) + g�(, ).
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The barrier parameter g > 0 goes to 0 during the evolution of the �ow, so that the modi�ed
assignment �ow takes the form

¤, (C) = ', (C )
[
(g (C ) (, (C))

]
= ', (C )

[
( (, ) + g (C)∇�(, )], (4.16)

where g : ℝ≥0 → ℝ>0 is a monotonously decreasing function with limC→∞ g (C) = 0. This �ow
is initialized at

,8 (0) = 2low + 1 − 〈2low, 1=〉
〈2up, 1=〉 − 〈2low, 1=〉 (2up − 2low), ∀8 ∈ � . (4.17)

Since we use zero-mean �lters due to (4.8) and (4.7), the initialization (4.17) is strictly feasible
for (4.3).

It remains to specify the gradients of the barrier functions that are required to evaluate the
vector �eld in (4.16). The gradient ∇�(, ) ∈ ℝ<×= of the barrier function (4.14) is given by

∇�low(, )8 = − 1
<

1
1
<
, >1< − 2low

, ∇�up(, )8 = 1
<

1
2up − 1

<
, >1<

(4.18)

for each pixel 8 ∈ � , and by

∇��lter(, ) 9 = 2
∑
:∈ 

5 (:), 9 ★ (5 (:) ∗, )
(3 (:) )2 − ‖ 5 (:) ∗, ‖22

(4.19)

for any label 9 ∈ � with 5 (:), 9 ∈ ℝ?2 being the 9-th layer (column) of the :-th �lter. Here,
★ denotes the cross-correlation operation, i.e. convolution with the mirrored �lter. This
convolution is performed on the whole image with zero-padding.

If the approximated ℓ1-norm (4.5) is used instead of the ℓ2-norm, the barrier function takes
the form

��lter(, ) = −
∑
:∈ 

log
(
3 (:) − ‖ 5 (:) ∗, ‖1,Y

)
(4.20)

with the Euclidean gradient given by

∇��lter(, ) 9 =
∑
:∈ 

5 (:), 9 ★∇‖ 5 (:) ∗, ‖1,Y
3 (:) − ‖ 5 (:) ∗, ‖1,Y

, ∇‖G ‖1,Y = G√
G · G + Y21<

, (4.21)

where the operations of the latter right-hand side apply componentwise.

4.3 Experiments

In this section, we investigate the in�uence of the �lter constraints on the labeling result. We
test the new approach on several academic labeling scenarios and compare the results to those
obtained without using these constraints.
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Setup

We represent assignments by choosing for each label 9 ∈ � some color 2 ( 9) ∈ [0, 1]3 in the RGB
color space. Then an assignment, ∈ W ⊂ ℝ<×= is represented by the color image D ∈ ℝ<×3

given by D8 =
∑
9 ∈� ,8 92

( 9) ∈ [0, 1]3 for each pixel 8 ∈ � .
We consider three di�erent data sets in order to check the e�ect of constraints on (a) primitive

shape information, (b) spatial relations (inclusion of regions), and (c) the separation of fore-
and background each de�ned by several labels.

The �rst data set (a) contains binary rectangles and ellipses. Filters of size 3× 3 were trained
for rectangles against ellipses, i.e., all assignments in a set I+ represent rectangles, while
assignments in the complement set I− represent ellipses. The second data set (b) comprises
three labels (white, orange, black) forming white ellipses overlapped by orange ellipses on black
background (see Figure 4.2 for illustration). All ellipses have varying radii, orientation and
position. Filters of size 5 × 5 were used to separate the positive class I+ de�ned by inclusions
of regions, whereas these topological relations are violated in the negative class I−. The third
data set (c) consists of Voronoi diagrams, with each polygon labeled by either one of three
foreground labels (red, green, blue) and likewise for the background (black, gray, white). Both
foreground and background are connected and the foreground is located in the center of the
image domain. The negative class I− is de�ned by randomly labeled Voronoi diagrams.

Implementation Details

For numerical integration, we used the geometric explicit Euler discretization (2.111) with
according modi�cations. An adaptive step size ℎ > 0 determined by backtracking line search
was used for the discretization in order to keep the assignment matrices, (C ) feasible. As
maximal step size we chose ℎ = 1, which produced satisfying results. As is common for interior
point methods, we used an exponential function g (C) = g04

−UC with U > 0 as the barrier
parameter function. In our experiments, U = 0.1 and g0 = 100 turned out to be an appropriate
choice. We terminated the iteration either after 5000 steps or when both the average entropy
− 1
< log=

∑
8∈�

∑
9 ∈� ,

(C )
8 9

log, (C )
8 9

dropped below the threshold 10−3 and g dropped below 10−10.

Results

(a) For the binary data set (rectangles/ellipses), the �lter space F has dimension 8. We used
the four �lters corresponding to the eigenvalues less than 1. Inspecting these �lters reveals
discrete versions of the partial derivatives mG~ , mGG~ , mG~~ and mGG~~ . The upper bounds for
the �lter constraints were set to 3 = 2‖ℎ ∗, ‖, where, is an assignment representing two
rectangles. Figure 4.1 illustrates that using the �lter constraints enables to remove noise, to
regularize the rectangle, and to rectify the ellipse by imposing local shape constraints.
(b) For the second data set, we used all 48 �lters obtained by the generalized eigenvalue

problem. The �rst 24 �lters corresponding to eigenvalues less than 1 contribute to separating
the orange region from the background. The remaining 24 �lters regularize the boundary
of the white region (see Figure 4.3). The upper bounds for the �lter constraints were set to
3 = max, ∈I+ ‖ 5 ∗, ‖. The bounds 2low and 2up were set in a similar way. We used the distance
matrix �8 9 = 1

=
‖,̃8 − 4 9 ‖2, where the matrix ,̃ ∈ ℝ<×= was obtained by adding white noise

(f2 = 4) to the ground truth assignment. Figure 4.4 demonstrates that the constraints notably
improve the results, and that in addition to the �lter constraints, cardinality constraints are
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essential to preserve thin structure. In order to demonstrate the potential of the constraints for
spatial pattern formation, we repeated the experiments with pure noise as input data. Figure 4.5
demonstrates the strong regularizing e�ect of the constraints.

(c) For the Voronoi data set, the �lters determined by the eigenvalue problem can be subdi-
vided into three groups: The �rst 8 �lters (eigenvalues ≈ 0.12) contribute to separating the
three foreground labels from the three background labels. The next 16 �lters (eigenvalues
≈ 0.52) regularize the foreground. The last 16 �lters (eigenvalues ≈ 1.46 > 1) regularize the
background (Figure 4.7). The distance matrix and the parameters for the constraints were set
as described above for case (b). The results shown by Figure 4.8 (b), (f), (g) and (h) demonstrate
the e�ect of the three groups of �lters. Repeating the experiments with pure noise as input
data illustrates how spatial patterns are induced by the constraints (Figure 4.9).

(a) (b) (c) (d) (e) (f) (g)

Figure 4.1: Representing and enforcing rectangular structure. (a) shows the original gray-
scale image and (b) shows a noisy version of it, which was used as input data. (c) and (d) show
the labeling results without imposing constraints obtained through Riemannian averaging over
neighborhoods of sizes 3×3 and 7×7 respectively. (e) and (f) show the results of the new approach
(without cardinality constraints) with neighborhood size 3 × 3 and four �lters of size 3 × 3, which
were trained for rectangles against ellipses. These 4 �lters prefer horizontal and vertical edges. For
(e), the ℓ2-norm was used for �lter constraints. For (f) and (g), ‖ · ‖1,Y with Y = 0.1 and Y = 0.01
was used.

(a) Positive labeling examples in I+. (b) Negative labeling examples in I−.

Figure 4.2: Illustration of the training sets I+,I− ⊂ W. Positive examples (a) are de�ned
by topological relations: orange ellipses are completely contained in the white ones. Negative
examples (b) are labelings where this topological relation is violated.
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(a) (b) (c)

Figure 4.3: Illustration of the generalized eigenvalue �lters. (a) shows one label assignment
in I+ and one assignment in I−, used to illustrate the �lter outputs in (b), (c). The computed �lters
of size 5 × 5 can be subdivided into two groups. The �rst 24 �lters 5 (1) , . . . , 5 (24) respond to the
boundary of the orange and black regions, and they have a large response at the border between
the orange and black regions. This is illustrated by (b) which shows the absolute value of 5 (1) ∗, .
The last 24 �lters 5 (25) , . . . , 5 (48) mainly respond to the boundary of the white regions. (c) shows
the absolute value of 5 (48) ∗, .

(a) 100% (b) 92.5% (c) 91.0% (d) 89.0% (e) 91.1% (f) 92.4%

(g) 93.7% (h) 93.8% (i) 92.9% (j) 93.2% (k) 92.2% (l) 91.9% (m) 92.1%

Figure 4.4: Experimental results obtained with and without constraints. (a) shows the
ground truth assignment. A noisy version of this assignment was used as input data. The
percentages of correctly labeled pixels are shown below the images. The results obtained without
constraints are shown in (b)-(d) for neighborhood sizes 3 × 3, 5 × 5 and 7 × 7 respectively. For the
results (e)-(m) of the new approach, 3 × 3 neighborhoods were used for spatial regularization. For
(e), only cardinality constraints were used. For (f), only �lter constraints were used (48 �lters of
size 5 × 5). For (g)-(m), both cardinality constraints and �lter constraints were used. (g) and (h)
were obtained with 24 �lters using the ℓ2-norm and the approximated ℓ1-norm ‖ · ‖1,Y with Y = 0.01
respectively. For (i) and (j), 48 �lters were used. For (k)-(m), the distance matrix was rescaled by
a factor of 0.01, and 48 �lters were used with ℓ2-norm as well as ‖ · ‖1,Y with Y = 0.1 and Y = 0.01
respectively.
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(a) (b) (c)

Figure 4.5: Spatial pattern formation induced by pure noise and convex label constraints.
All experiments were performed using a 3 × 3 neighborhood for spatial regularization, and using
both cardinality constraints and �lter constraints based on 48 �lters and ‖ · ‖1,Y with Y = 0.01. Panels
(a)-(c) show random spatial labeling patterns on the right induced by the random noise images on
the left. These results demonstrate how �lter constraints favor local shape and topological spatial
structure on image labelings within our geometric approach to label assignments.

(a) Positive labeling examples in I+. (b) Negative labeling examples in I−.

Figure 4.6: Illustration of the training sets I+,I− ⊂ W. Both the foreground region and the
background region of these Voronoi tilings are de�ned by three labels: red, green, blue and black,
gray, white, respectively. Positive examples in I+ are de�ned by approximately square-shaped
foreground regions that are simply connected and centered in the middle of the image domain.
Negative examples I− contain polygons that are randomly labeled and distributed over the image
domain.

83



4 Label Statistics by Global Filtering Constraints
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(b)
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(c)
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(d)

Figure 4.7: Illustration of the generalized eigenvalue �lters. (a) shows one assignment in
I+ and I−, respectively, used to illustrate the �lter outputs. The computed �lters of size 3 × 3
can be subdivided into three groups. The �rst eight �lters 5 (1) , . . . , 5 (8) regularize the boundary
between foreground (red, green, blue) and background (black, gray, white). (b) shows the absolute
value of the �lter result 5 (4) ∗, as example. Filters 5 (9) , . . . , 5 (24) regularize the boundaries within
the foreground as illustrated by (c), which shows the absolute value of 5 (10) ∗, . Eventually, �lters
5 (25) , . . . , 5 (40) regularize the boundaries within the background as illustrated by (d).
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(a) 100.0% (b) 86.2% (c) 84.6% (d) 78.6%

(e) 87.4% (f) 87.8% (g) 87.9% (h) 88.0%

Figure 4.8: Experimental results obtained with and without constraints. (a) shows the
ground truth assignment. A noisy version of this assignment was used as input data. The
percentages of correctly labeled pixels compared to the ground truth (a) are shown below the
images. Panels (b)-(d) show the results obtained without constraints using neighborhood sizes
3 × 3, 5 × 5 and 7 × 7 respectively. (e) is the result for neighborhood size 5 × 5, but with a rescaled
(factor 100) distance matrix. (f)-(h) show the results with constraints using 8 �lters, 24 �lters
and 40 �lters, respectively. These results were computed using 3 × 3 neighborhoods for spatial
regularization and the ℓ2-norm for the �lter constraints.

(a) (b) (c) (d)

Figure 4.9: Spatial pattern formation induced by pure noise and convex label constraints.
(a) shows a random assignment, using the same color coding as for the Voronoi polygons. Each
panel (b)-(d) shows the result of labeling a di�erent random input image of type (a). All experiments
were done using 3 × 3 neighborhoods, without cardinality constraints, and with �lter constraints
based on 40 �lters and ‖ · ‖1,Y with Y = 0.1. The results demonstrate how the �lter constraints
enforce both the scale and the spatial structure of fore- and background regions that are randomly
located due to the pure noise data.
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4.4 Conclusion

We extended the assignment �ow approach from Section 2.2 in order to incorporate global
convex constraints on the labeling result using linear �lters in the label space. This extension
was mathematically formulated so as to preserve smoothness of the overall approach. We
showed how �lters can be determined by solving a generalized eigenvalue problem in order
to represent statistical prior knowledge about local shape and spatial relation. Experimental
results demonstrate the potential of the approach for imposing these constraints onto labelings
of noisy image data.

An interesting research question is how �lters of small support can be used to represent and
enforce the structure of labelings at multiple spatial scales.

Another exciting research direction is how to induce label statistics via weights, which
parameterize the similarity map ( (, ) (2.104), instead of hard constraints and barrier functions
as presented in this chapter. To this end, these weights must be generalized for interactions
between labels, as in Section 3.6. Whether these weights can be obtained from learned �lters
5 ∈ F or how they can be learned using training sets as in Section 4.2.2 must then be examined
accordingly.
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5 Unsupervised Label Learning on
Manifolds

5.1 Introduction and Overview

Motivation

Geometric methods based on manifold models of data and Riemannian geometry are nowadays
widely employed in image processing and computer vision [TS16]. Covariance descriptors,
in particular, play a prominent role [TS16, CS16]. They are typically applied to the detection
and classi�cation of entire images (e.g. faces, texture) or videos (e.g. action recognition), or
as descriptors of local image structure. An important task in this context is to compute a
codebook of covariance descriptors that can be used for solving a task at hand like, e.g., image
classi�cation by nearest-neighbor search [CSBP13], or image labeling [Kap+15] using the
codebook descriptors as labels.

The classical approach for the unsupervised learning of feature prototypes (‘labels’) is
the mean-shift iteration [FH75, CM02], which iteratively seeks modes of the feature density
distribution through the averaging of features within local neighborhoods. This has been
generalized to manifold-valued features by [SM09], by replacing ordinary mean-shifts with
Riemannian means [Kar77]. Clustering methods such as the mean-shift iteration work entirely
in feature space and ignore the spatial structure of label assignments to data, which is unfavorable
in connection with image labeling. Figure 5.1 illustrates why the spatial structure of label
assignments should also drive the evolution of labels in feature space for unsupervised label
learning, if the resulting labels are subsequently used for supervised image labeling for which
spatial regularization is typically enforced as well. The common way to take into account the
spatial structure of label assignments is to augment the feature space by spatial coordinates,
e.g., by turning a color feature (A, 6, 1) into the feature vector (G,~, A, 6, 1). However, this
merge of feature space and spatial domain has a conceptual drawback. The same color vector
(A, 6, 1) observed at two di�erent locations (G1, ~1, A , 6, 1), (G2, ~2, A , 6, 1) de�nes two di�erent
feature vectors, and hence these two feature vectors may be assigned to di�erent prototypes
during clustering despite containing the same color information. Furthermore, clustering
spatial coordinates into centroids by mean-shifts (together with the features) di�ers from
unbiased spatial regularization as performed by variational approaches, graphical models or
the assignment �ow presented in Section 2.2, where regularization does not depend on the
location of centroids and the corresponding shape of local density modes.

We show in this chapter how the assignment �ow approach can be combined with basic
clustering approaches after extending the latter to feature manifolds, to perform unsupervised
label learning from manifold-valued feature data through spatially regularized label assignment.
Our approach is consistent and natural in that the very same approach for supervised image
labeling is also used for the unsupervised learning of proper labels for this task. This approach
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input data
clustering only
in feature space

spatially regularized
label assignment proposed approach ground truth

(a) (b) (c) (d) (e)

Figure 5.1: Importance of spatially regularized assignments for label learning. (a) Input
data: a synthetic image corrupted by Gaussian noise. (b) + (c) The classical two-step approach of
clustering in feature space �rst (panel b) followed by supervised label assignment (panel c) performs
poorly, despite spatial regularization. (d) By coupling label evolution and spatially regularized
assignment, both the label set and the labeled image can be drastically improved. (e) Ground truth
labeling and label set. Label sets resulting from (b), (d) and (e) are depicted below the respective
image labeling results.

has the following properties:

(i) The approach incorporates and performs unsupervised learning of manifold-valued fea-
tures, henceforth called labels. The approach applies to any feature manifold equipped
with a Riemannian structure for which Riemannian means are well-de�ned and computa-
tionally feasible. Experiments using S1-valued data (2D orientations), SO(3)-valued data
(orthogonal frames) and features on the positive de�nite matrix manifold (covariance
descriptors) illustrate our approach.

(ii) The evolution of labels (unsupervised learning) is driven by spatially regularized assign-
ments which are not biased toward any spatial centroids. This is accomplished by applying
the assignment �ow approach.

(iii) The smooth settings of both (i), (ii) enable to de�ne a smooth coupled �ow

( ¤", ¤, ) = F(",, ) (5.1)

where ¤" denotes the evolution of labels and ¤, the evolution of spatially regularized
label assignments that interact through a coupling vector �eld F. This interaction keeps
both domains (i) and (ii) separate and hence enables to apply �exibly our approach to
various feature manifolds, using the same regularized assignment mechanism.

This chapter is based on the joint work with Matthias Zisler, Freddie Åström, Stefania Petra
and Christoph Schnörr. A preliminary version of the approach, called ‘coupled �ow A’ in this
chapter (see Figure 5.2), was published in the conference paper [Zer+18]. In this chapter, we
present a one-parameter family of unsupervised assignment �ows that smoothly interpolate the
‘coupled �ow A’ and the more general ‘coupled �ow B’, including these two �ows as special
cases. This approach is published in the journal paper [ZZPS20a].
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5.1 Introduction and Overview

soft k-means
(Section 5.2.1)

divergence-based EM
(Section 5.2.2)

k-center clustering
(Section 5.2.3)

soft k-means onM
(Section 5.3.1)

divergence-based EM onM
(Section 5.3.2)

coupled �ow A
(Section 5.4.1)

coupled �ow B
(Section 5.4.2)

unsupervised assignment �ow
(Section 5.4.3)

self-assignment �ow
(Section 5.5)

assignment �ow
(Section 2.2)

: adaption of method
: preprocessing for

Figure 5.2: Organization of this chapter. Three basic clustering algorithms are summarized in
Section 5.2. Two of them, soft-:-means clustering and divergence-based EM-iteration, are generalized
to feature data taking values in a Riemannian manifoldM and coupled with the (spatially regular-
ized) assignment �ow. A smooth interpolation of the resulting coupled �ow A and coupled �ow B
�nally de�nes the unsupervised assignment �ow. For comparison, we discuss the self-assignment
�ow (Section 5.5) as an alternative extension of the assignment �ow to the unsupervised scenario.

Organization

We summarize three basic clustering concepts in Section 5.2. While greedy-based :-center
clustering (Section 5.2.3) will only serve as a preprocessing step, soft-:-means clustering
(Section 5.2.1) and divergence-based EM-iteration (Section 5.2.2), which perform classical
label evolution by mean-shift iteration, will be building blocks for subsequent methods (see
Figure 5.2). First these two methods are adjusted to manifold-valued data (Section 5.3.1 and
Section 5.3.2), and then each of them is modi�ed and coupled with the assignment �ow
(cf. Section 2.2) that induces a sparsifying e�ect through spatial regularization. Coupling with
soft-:-means leads to the ‘coupled �ow A’ (Section 5.4.1), while coupling with EM-iteration
leads to the ‘coupled �ow B’ (Section 5.4.2). Afterwards we provide a more general natural
de�nition of a one-parameter family of unsupervised assignment �ows (Section 5.4.3) that
smoothly interpolates both coupled �ows and includes them as special cases. Numerical
integration of the unsupervised assignment �ow is discussed in Section 5.4.4. In Section 5.5,
we present the self-assignment �ow [ZZPS20b] as an alternative extension of the assignment
�ow to the unsupervised scenario and compare it to the unsupervised assignment �ow from a
theoretical point of view. The unsupervised assignment �ow is then elaborated for particular
feature manifolds (Section 5.6) that will be used as case studies in numerical experiments in
Section 5.7.
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5 Unsupervised Label Learning on Manifolds

Notation

Firstly, we use the notation from Section 2.1, i.e., (M, 6) generally denotes some Riemannian
manifoldM with metric 6. Exp? is the exponential map (2.13) with respect to the Levi-Civita
connection onM. The map 6̂ : X(M) → X∗(M) is the tangent-cotangent isomorphism (2.9)
mapping vector �elds to covector �elds and grad 5 = 6̂ −1(d5 ) denotes the Riemannian gradient
of a function 5 : M → ℝ.

Secondly, we use the notation from Section 2.2, i.e., the sets � , � denote

� : set of data indices,
� : set of label indices,

(5.2)

with cardinalities |� | and |� |. The (3 − 1)-dimensional probability simplex is denoted by

Δ3 =
{
? ∈ ℝ3 : ? 9 ≥ 0, 9 ∈ [3], 〈13 , ?〉 = 1

} ⊂ ℝ3 . (5.3)

S = rint(Δ | � |) ⊂ ℝ | � | is the open probability simplex (2.79) andW ⊂ ℝ |� |× | � | denotes the
assignment manifold (2.85). The map exp, denotes the lifting map given by (2.90) and (2.100a).
!(, ) is the likelihood map (2.102) and ( (, ) is the similarity map (2.104).

Furthermore, it will be convenient to denote the exponential function with vectors as
argument in two alternative ways,

exp(G) = 4G B (4G1, . . . , 4G3 )>. (5.4)

This exponential function (without subscript) should not be confused with the exponential
map Exp? and the lifting map exp, mentioned above.

5.2 Basic Clustering

We brie�y summarize in this section the basic iterative schemes

• soft-:-means clustering in Euclidean spaces (Section 5.2.1),

• clustering using mixture distributions, divergence functions and the EM-algorithm
(Section 5.2.2), and

• greedy-based clustering in metric spaces (Section 5.2.3).

The �rst two approaches will be generalized to manifold-valued data (features) in Section 5.3
and coupled with the assignment �ow for spatial regularization in Section 5.4.

Greedy-based :-center clustering applies to any metric space, in particular to manifolds
with the Riemannian distance or a suitable divergence as surrogate distance function. The
method has linear complexity and comes with a performance guarantee. Hence this method is
suited for fast data selection in a preprocessing step, to obtain an overcomplete codebook (set
of prototypes) as initialization for manifold-valued clustering, which subsequently optimizes
and sparsi�es this codebook in a computationally more sophisticated way.
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5.2 Basic Clustering

5.2.1 Euclidean So�-k-Means Clustering

The content of this subsection can be found in numerous papers and textbooks. We merely
refer to the survey [Teb07] and to the bibliography therein.

Given data I1, . . . , I |� | ∈ ℝ3 , we consider the task of determining prototypes

" =
{
<1, . . . ,< | � |

} ⊂ ℝ3 (5.5)

by minimizing the :-means criterion1

� (") =
∑
8∈�

min
9 ∈�
‖I8 −< 9 ‖2 =

∑
8∈�

vecmin(�8 (")
)
, (5.6)

where
�8 (") =

(
�81("), . . . , �8 | � | (")

)
=

(‖I8 −<1‖2, . . . , ‖I8 −< | � | ‖2) (5.7)
and

vecmin(E) = min
9 ∈[=]

E 9 , E ∈ ℝ=, = ∈ ℕ. (5.8)

Soft-:-means is based on the smoothed objective

�Y (") = −Y
∑
8∈�

log
(∑
9 ∈�

exp
(
− ‖I

8 −< 9 ‖2
Y

))
, Y > 0 (5.9)

which results from approximating the inner minimization problem of evaluating � (") using
the log-exponential function [RW09, p. 27] with smoothing parameter Y. Similar to the basic
:-means algorithm, soft-:-means clustering solves the stationarity conditions

∇< 9�Y (") = 0, 9 ∈ � (5.10)

by �xed point iteration in terms of iteratively computing the soft-assignments

?8Y, 9 (") =
exp

( − �8 9 (")/Y)∑
:∈� exp

( − �8: (")/Y) , @
9

Y,8
(") =

?8Y, 9 (")∑
:∈� ?:Y,9 (")

, 8 ∈ � , 9 ∈ � (5.11a)

with the so-called mean shifts

< 9 =
∑
8∈�

@
9

Y,8
(")I8 , 9 ∈ � . (5.11b)

The distributions
?8Y (") ∈ Δ | � |, 8 ∈ � (5.12)

given by (5.11a) represent the soft-assignments ?8Y, 9 (") of each data point I8 , 8 ∈ � to each
prototype< 9 , 9 ∈ � , whereas the distributions

@
9
Y (") ∈ Δ |� |, 9 ∈ � (5.13)

determine the convex combinations of data points that determine each prototype< 9 by the
mean shift (5.11b). Iterating the two steps (5.11) evolves the prototypes " until they reach a
local minimum of the objective (5.9).

1The symbol ‘:’ is commonly used in the literature. We prefer in this thesis, however, the more speci�c symbol �
as index set for prototypes and use : (like 8, 9 etc.) as free index.
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5.2.2 Divergence Functions and EM-Iteration

An alternative and widely applied approach to clustering utilizes class-conditional distributions
? (G ;\ 9 ), 9 ∈ � and a corresponding mixture distribution

? (G ; Γ) =
∑
9 ∈�

c 9? (G ;\ 9 ) (5.14)

as data model, with parameters

Γ = (\, c), \ = (\1, . . . , \ | � |), c = (c1, . . . , c | � |)> ∈ S, (5.15)

with the relative interior of the probability simplex

S = rint(Δ | � |) =
{
? ∈ ℝ | � | : ? 9 > 0, 9 ∈ � , 〈1, ?〉 = 1

}
. (5.16)

Clustering amounts to estimate the parameters Γ. Since the log-likelihood function correspond-
ing to (5.14) is usually involved, maximizing a lower bound through the EM-iteration (EM:
expectation-maximization) is the method of choice,

? ( 9 |I8 ; Γ (C ) ) =
c
(C )
9
? (I8 ;\ (C )

9
)∑

; ∈� c
(C )
;
? (I8 ;\ (C )

;
)
, 9 ∈ � (E-step, soft-assignment) (5.17a)

c
(C+1)
9

=
1
|� |

∑
8∈�

? ( 9 |I8 ; Γ (C ) ),

\
(C+1)
9

= arg max
\ 9

∑
8∈�

? ( 9 |I8 ; Γ (C ) ) log? (I8 ;\ 9 ),
9 ∈ � . (M-step) (5.17b)

for some initialization Γ (0) . We refer to [MP00] for background and further details.
Banerjee et al. [BMDG05] studied the case where the class-conditional distributions ? (G ;\ 9 )

of (5.14) belong to an exponential family of distributions [Bar78] and, in particular, their
representation in terms of a Bregman divergence function �i – cf. Section 2.1.5. Then the
resulting data model (5.14) reads

? (G ; Γ) =
∑
9 ∈�

c 9 exp
( − �i (5 (G), [ 9 ))1i (G), (5.18)

where 5 denotes a su�cient statistic regarded as a feature vector, the factor 1i accounts
for normalization and [ 9 = ∇k (\ 9 ) is determined by \ 9 through conjugation of the convex
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5.2 Basic Clustering

log-partition functionk (\ 9 ) = log
∫
X ? (G ;\ 9 )dG . The corresponding EM-updates read

? ( 9 |I8 ; Γ (C ) ) =
c
(C )
9

exp
( − �i (5 (I8), [ (C )9 ))∑

; ∈� c
(C )
;

exp
( − �i (5 (I8), [ (C ); )) , 9 ∈ � (E-step, soft-assignment)

(5.19a)

c
(C+1)
9

=
1
|� |

∑
8∈�

? ( 9 |I8 ; Γ (C ) )

[
(C+1)
9

= arg min
[ 9

∑
8∈�

a 9 |8 (Γ (C ) )�i
(
5 (I8), [ (C )

9

), 9 ∈ � . (M-step) (5.19b)

a 9 |8 (Γ (C ) ) =
? ( 9 |I8 ; Γ (C ) )∑
:∈� ? ( 9 |I: ; Γ (C ) ) . (5.19c)

Moreover, since the Bregman divergence �i is induced by a convex function i of Legendre
type, the parameters [ 9 , 9 ∈ 9 can be updated by the mean-shifts

[
(C+1)
9

=
∑
8∈�

a 9 |8 (Γ (C ) ) 5 (I8), 9 ∈ � . (5.20)

We exploit the above connection to divergence functions in Sections 5.3.2 and 5.4.2.

5.2.3 Greedy-Based k-Center Clustering in Metric Spaces

We adopt a simple greedy algorithm from [Har11] as a preprocessing step for data reduction,
due to the following properties:

• It works in any metric space (-,3- ),
• it has linear complexity O(|� | |� |) with respect to the problem size |� | which can be large,

• it comes along with a performance guarantee.

The task of :-center clustering is as follows. Given data points

-� =
{
I1, . . . , I |� |

} ⊂ -, (5.21)

the objective is to determine a subset

" =
{
<1, . . . ,< | � |

} ⊂ -� (5.22)

that solves the combinatorially hard optimization problem

�∗∞ = min
"⊂-� , |" |= | � |

�∞("), �∞(") = max
I∈-�

3- (I,"), (5.23)

where 3- (I,") = min<∈" 3- (I,<). This problem is approximated by a greedy iteration as
follows. Starting with a randomly chosen point<1 ∈ -� , the remaining |� |−1 points<2, . . . ,< | � |
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5 Unsupervised Label Learning on Manifolds

Figure 5.3: Approximation of the k-center clustering objective (5.23). left: 10.000 points
on the sphere regarded as manifold equipped with the cosine distance. right: 200 prototypes
determined with linear runtime complexity by metric clustering are almost uniformly located in
the data set, which quali�es them for unbiased initializations of computationally more involved
nonlinear prototype evolutions. This works in any metric space, in particular on feature manifolds
using the Riemannian distance or computationally less expensive divergence functions.

are selected by choosing<:+1 ∈ -� with the largest distance to the points<1, . . . ,<: . This
greedy strategy guarantees that the resulting set" is a 2-approximation of the optimum (5.23),
i.e. �∞(") ≤ 2�∗∞. We refer to [Har11, Thm. 4.3] for the proof. As a consequence, the subset
" of |� | points is almost uniformly distributed in -� as measured by the metric 3- . Figure 5.3
provides an illustration.

We note that the performance guarantee, i.e. the 2-approximation, follows by the triangle
inequality, while the complexity is independent of the properties of a metric space. We will
later apply this algorithm in the context of clustering on a Riemannian manifoldM, where
we have given a smooth (symmetric) divergence function � onM. Most of these divergence
functions are squared distances, so that the performance guarantee also holds in this case.
One exception might be the rotation-invariant dissimilarity (5.94). Nevertheless, the greedy
:-center clustering is applicable but without having a performance guarantee. We will use
greedy :-center clustering as preprocessing in order to get an overcomplete set of labels as
initial labels for the clustering approaches described in the next section.

5.3 Manifold-Valued Clustering

We generalize the basic iterative clustering schemes of Sections 5.2.1 and 5.2.2 to manifold-
valued data.

5.3.1 Manifold-Valued So�-k-Means Iteration

Let (M, 6) be a smooth Riemannian manifold, and let{
I1, . . . , I |� |

} ⊂ M (5.24)

be given data. We assume a smooth divergence function to be given (cf. Section 2.1.5)

� : M ×M → ℝ, (G,~) ↦→ � (G,~) (5.25)

that replaces the Riemannian distance 36 in order to compute Riemannian means more e�-
ciently or even in closed form. Examples are provided in Section 5.6.
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5.3 Manifold-Valued Clustering

We consider the task to determine a set of prototypes

" =
{
<1, . . . ,< | � |

} ⊂ M (5.26)

by minimizing an objective function analogous to the soft-:-means objective (5.9),

�Y (") := �Y
(
<1, . . . ,< | � |

)
= −Y

∑
8∈�

log
(∑
9 ∈�

exp
(
− � (I

8 ,< 9 )
Y

))
, Y > 0. (5.27)

We next generalize the conditions (5.10). Let 3 9�Y (") denote the di�erential of the function
< 9 ↦→ �Y (<1, . . . ,< 9 , . . . ,< | � |). Then

3 9�Y (") =
∑
8∈�

exp
( − � (I8 ,< 9 )

Y

)∑
; ∈� exp

( − � (I8 ,<; )
Y

)︸                      ︷︷                      ︸
:=?8

Y,9
(")

3 9� (I8 ,< 9 ) =
∑
8∈�

?8Y, 9 (")3 9� (I8 ,< 9 ), 9 ∈ � , (5.28)

where the assignment probability vectors ?8Y (") ∈ Δ | � | play the same role as in equa-
tions (5.11a) and (5.12). They can be interpreted as weight functions depending on the proto-
types " : setting temporarily F8 = ?8Y, 9 ("), 8 ∈ � , implies that equation (5.28) has the same
structure as the equation on the right of (2.66) after applying the di�erential on both sides,
where we take into account that divergence functions � (·, ·) behave like squared distances
(Section 2.1.5). Applying the formula (2.10), we obtain the gradients and optimality conditions

(grad�Y)9 (") = 6̂ −1 (3 9�Y (")) = ∑
8∈�

?8Y, 9 (")6̂ −1 (3 9� (I8 ,< 9 )) = 0, 9 ∈ � . (5.29)

Comparing with (5.10) shows that, in the Euclidean case, the mean shift operation (5.11b) is
de�ned by normalized weights @ 9

Y,8
(") due to (5.11a), conforming to the much more general

situation (2.67). While normalization in (5.11a) is a consequence of the squared Euclidean
distance of the objective (5.9), this may or may not happen in (5.29), depending on the particular
manifoldM, metric 6 and divergence function � at hand. Because dividing each optimality
condition (5.10) by the corresponding normalization factor in (5.11) does not change the
condition, however, and because mean-shift on manifolds is performed with normalized
weights, we de�ne

?8Y, 9 (") =
exp

( − � (I8 ,< 9 )
Y

)∑
; ∈� exp

( − � (I8 ,<; )
Y

) , @
9

Y,8
(") =

?8Y, 9 (")∑
:∈� ?:Y,9 (")

, 8 ∈ � , 9 ∈ � (5.30)

and in turn the mean shift (�xed point) iteration

(< 9 ) (C+1) = Exp(< 9 ) (C )
(
−

∑
8∈�

@
9

Y,8
(" (C ) )6̂ −1 (3 9� ((< 9 ) (C ) , I8)) ), 9 ∈ � (5.31)

analogous to (2.69). The latter equation can be interpreted as a discretization of the system

¤< 9 (C) = −U
∑
8∈�

@
9

Y,8
(" (C))6̂ −1 (3 9� (< 9 (C), I8)), 9 ∈ � , U > 0. (5.32)

Section 5.6 provides concrete examples for divergence functions on manifolds.
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5.3.2 Manifold-Valued EM-Iteration

We consider again the situation (5.24)–(5.26) and adopt the clustering approach of Section 5.2.2.
Iteration (5.19) generalizes to

? ( 9 |I8 ;" (C ) ) =
c
(C )
9

exp
( − � (I8 , (< 9 ) (C ) ))∑

; ∈� c
(C )
;

exp
( − � (I8 , (<; ) (C ) )) , 9 ∈ � (E-step, soft-assignment)

(5.33a)

c
(C+1)
9

=
1
|� |

∑
8∈�

? ( 9 |I8 ;" (C ) ),

(< 9 ) (C+1) = arg min
< 9

∑
8∈�

a 9 |8 (" (C ) )�
(
I8 , (< 9 ) (C ) ), 9 ∈ � . (M-step) (5.33b)

a 9 |8 (" (C ) ) =
? ( 9 |I8 ;" (C ) )∑
:∈� ? ( 9 |I: ;" (C ) ) . (5.33c)

Note that we apparently ignore here the connection to class-conditional distributions ? (G ;\ 9 )
of the exponential family that formed the basis for the EM-iteration (5.19). This is not the
case, however. Indeed, optimization problem (5.33b) which determines each prototype< 9 by
minimizing the expected value of a squared distance-like function, conforms to the updates
(5.19b) and (5.20) of the expectation parameter [ 9 = ∇k (\ 9 ) = E\ 9 [58], where the expectation is
with respect to ? (G ;\ 9 ) and the su�cient statistics 58 (G).

In order to solve problem (5.33b), we proceed analogously to (5.29). Examples with concrete
choices of � (·, ·) are worked out in Section 5.6.

5.4 Coupling the Assignment Flow and Label Evolution on
Feature Manifolds

We show in this section how combining the assignment �ow (Section 2.2) and the schemes of
Section 5.3 results in coupled �ows that simultaneously perform

• label evolution on a feature manifold, and

• spatially regularized label assignment to given data.

Coupling the assignment �ow with the scheme of Section 5.3.1 de�nes the coupled �ow
(CFa) in Section 5.4.1, whereas coupling the assignment �ow with the scheme of Section 5.3.2
de�nes the coupled �ow (CFb) in Section 5.4.2. Comparing (CFa) and (CFb) in Section 5.4.3
shows that both can be interpreted as special instances of a one-parameter family of �ows. We
will call the latter the unsupervised assignment �ow.
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5.4 Coupling the Assignment Flow and Label Evolution on Feature Manifolds

5.4.1 Spatially Regularized So�-k-Means on Feature Manifolds

Minimizing the objective function (5.27) induces the assignment probabilities

?8Y, 9 (") =
exp

( − 1
Y
� (I8 ,< 9 ))∑

; ∈� exp
( − 1

Y
� (I8 ,<; )) , 8 ∈ � , 9 ∈ � (5.34)

due to (5.28). Regarding the assignment �ow, the variables ,8 9 play the same role. The
assignment �ow (2.105) for,8 9 reads

¤,8 9 (C) =,8 9 (C)
(
(8 9

(
, (C)) −∑

; ∈�
,8; (C)(8;

(
, (C)) ), 8 ∈ � , 9 ∈ � , (5.35)

where the right-hand side comprises the similarity vectors (8 (, ), 8 ∈ � , whose 9-th component
due to (2.104), (2.103) and (2.102) is given by

(8 9 (, ) =
(̂8 9〈

1 | � |, (̂8
〉 , (5.36a)

(̂8 9 =

( ∏
:∈N8

!: 9 (, ;")
)F8:

=

( ∏
:∈N8

(
,: 9〈

,: , 4
− 1
d
�: (") 〉 )F8:

)
exp

( ∑
:∈N8

F8:
� (I: ,< 9 )

d

)
,

(5.36b)

�: (") =
(
�

(
I: ,<1), . . . , � (

I: ,< | � |
) )
. (5.36c)

This expression makes explicit how spatial regularization through averaging the given data (in
terms of distance vectors) over local neighborhoods, is part of the vector �eld that drives the
assignment �ow. As a consequence, label assignments induced by, () ), ) � 0, are spatially
more coherent.

Hence, we propose to replace in (5.32) the assignment variables ?8Y, 9 (") given by (5.34),
where no spatial regularization is involved, by the assignment variables,8 9 . The resulting
coupled �ow (CFa) that simultaneously performs label evolution and label assignment reads

(CFa)



¤< 9 (C) = −U
∑
8∈�

@
9

Y,8
(, )6̂ −1 (3 9� (I8 ,< 9 )), < 9 (0) =< 9

0, U > 0, 9 ∈ � ,

@
9
Y (, ) =

, 9

〈1 |� |,, 9 〉 , 9 ∈ �
¤,8 (C) = ',8 (C )

(
(8

(
, (C)) ), ,8 (0) = �S, 8 ∈ � ,

(5.37)

with, 9 being the 9-th row of, ∈ W and a user parameter U that enables to adjust the time
scale of the label �ow induced by ¤< 9 (C), 9 ∈ � relative to the assignment �ow induced by
¤,8 (C), 8 ∈ � .

5.4.2 Spatially Regularized EM-Iteration on Feature Manifolds

The scheme of Section 5.3.2 and the update formulas (5.33) suggest an alternative coupling of
label evolution and the assignment �ow. Equation (2.102) reads

!8 9 (, ;") = ,8 94
− 1
d
� (I8 ,< 9 )∑

; ∈� ,8;4
− 1
d
� (I8 ,<; ) , (5.38)
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which agrees with the right-hand side of (5.33a), except for the scaling parameter d and the
assignment variables ,8 9 in place of the mixture coe�cients c 9 . Indeed, since there is no
interaction between di�erent spatial locations 8 ∈ � on the right-hand side of (5.38), !8 9 (,8 ;")
can be interpreted as local posterior probability of label 9 given the observation I8 , in agreement
with the left-hand side of (5.33a). Likewise, applying the �rst update equation of (5.33b) to
(5.38) yields

,
(C+1)
8 9

=
1
|� |

∑
8∈�

!8 9
(
, (C ) ;" (C )

)
, 9 ∈ � (5.39)

which does not depend on 8 ∈ � . We therefore take into account spatial regularization by
replacing the mixture coe�cients c 9 , 9 ∈ � by the variables,8 9 , 8 ∈ � , 9 ∈ � , that are governed
by the assignment �ow and hence do spatially interact. The resulting coupled �ow (CFb)
reads

(CFb)



¤< 9 (C) = −U
∑
8∈�

a 9 |8
(
, (C), " (C))6̂ −1 (3 9� (I8 ,< 9 (C))), < 9 (0) =< 9

0, U > 0, 9 ∈ � ,

a 9 |8 (,,") = !8 9 (, ;")∑
:∈� !: 9 (, ;") , !8 9 (, ;") = ,8 94

− 1
d
� (I8 ,< 9 )∑

; ∈� ,8;4
− 1
d
� (I8 ,<; ) ,

¤,8 (C) = ',8 (C )
(
(8

(
, (C)) ), ,8 (0) = �S, 8 ∈ � ,

(5.40)
where, (C) depends on " through (5.36).

5.4.3 Unsupervised Assignment Flow

We examine the relation between the coupled �ows (CFa) (5.37) and (CFb) (5.40). Comparing
!8 9 (, ;") given by (5.40) with @ 9

Y,8
(, ) given by (5.37) shows due to

∑
; ∈� ,8; = 1, 8 ∈ � and

,8 9 = lim
d→∞!8 9 (, ;") (5.41a)

that

@
9

Y,8
(, ) = lim

d→∞a 9 |8 (,,") . (5.41b)

We conclude that (CFa) is a limit case of (CFb). Since the scaling parameter d plays a unique
role in (2.102), however, we propose to parameterize !8 9 (, ;") of (5.40) in the same way, but
with another independent parameter f > 0 replacing d , in order to ‘interpolate’ smoothly
between the coupled �ows (CFa) and (CFb) in the sense of (5.41).

As a result, the �nal form of our approach, called unsupervised assignment �ow (UAF),
reads

(UAF)



¤< 9 (C) = −U
∑
8∈�

a 9 |8
(
, (C), " (C))6̂ −1 (3 9� (I8 ,< 9 (C))), < 9 (0) =< 9

0, U > 0, 9 ∈ � ,

a 9 |8 (,,") =
!f
8 9
(, ;")∑

:∈� !f: 9 (, ;") , !f8 9 (, ;") = ,8 94
− 1
f
� (I8 ,< 9 )∑

; ∈� ,8;4
− 1
f
� (I8 ,<; ) , f > 0,

¤,8 (C) = ',8 (C )
(
(8

(
, (C)) ), ,8 (0) = �S, 8 ∈ � ,

(5.42)
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with user parameters U > 0 controlling the relative speed of label vs. assignment evolution,
and parameter f > 0 as just discussed.

As already mentioned in Section 5.2.3, the greedy :-center clustering provides an overcom-
plete set of labels in a preprocessing step which is used as initial condition {< 9

0}9 ∈� for the
prototype component of the unsupervised assignment �ow (5.42).

5.4.4 Geometric Numerical Integration

In this subsection, we detail the iterative scheme that is used in Section 5.7 for numerically in-
tegrating the unsupervised assignment �ow (5.42). We rewrite these equations more compactly
in the form

¤,8 (C) = ',8 (C )�8
(
, (C), " (C)), ,8 (0) = �S, 8 ∈ � , (5.43a)

¤< 9 (C) = � 9
(
, (C), " (C)), < 9 (0) =< 9

0, 9 ∈ � , (5.43b)

where the dependency of �8 (,,") = (8 (, ) on " is implicitly given via the distance vectors
(5.36c) and the dependency of the similarity vectors on these distance vectors – cf. (5.36).

In order to uniformly evaluate our approach for various feature manifoldsM, we simply use
the Riemannian explicit Euler scheme for integrating the prototype evolution �ow (5.43b), i.e.,

(< 9 ) (C+1) = Exp(< 9 ) (C )
(
ℎ� 9

(
, (C ) , " (C )

) )
, 9 ∈ � , (5.44)

with step size ℎ > 0, and Exp< 9 is the Riemannian exponential map (2.13) onM. In order
to numerically integrate the assignment �ow (5.43a), we adapt the geometric implicit Euler
scheme from [ZSPS20]. It amounts to solving the �xed point equation

+ (C+1) = ℎΠ0�
(

exp, (C )
(
+ (C+1)

)
, " (C+1)

)
, (5.45)

by an iterative inner loop, where Π0 denotes the orthogonal projection onto the tangent space
T0, followed by updating

, (C+1) = exp, (C )
(
+ (C+1)

)
. (5.46)

Here, exp, denotes the lifting map given by (2.90) and (2.100a).

5.5 Self-Assignment Flows

In this section, we sketch an alternative extension of the (supervised) assignment �ow to the
unsupervised case. This approach, the so-called self-assignment �ow, was introduced and
rigorously investigated in [ZZPS19b, ZZPS20b]. In this approach, prototypes are no longer
involved and instead a pairwise data a�nity matrix is used to assign given data to themselves
in terms of a self-assignment matrix parameterized by, ∈ W. This self-assignment results
in a partitioning of the data, which can optionally be used for computing prototypes.

Self-Assignment Matrices

Instead of regarding the distance matrix � ∈ ℝ |� |× | � |≥0 between data {I8}8∈� and the (unknown)
prototypes {< 9 }9 ∈� , we assume an a�nity matrix

 =  > ∈ ℝ |� |× |� |,  8: = :M (I8 , I: ), 8, : ∈ � (5.47)
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to be given. Its entries measure the similarity of the data points I8 , I: in terms of a symmetric
function :M . A simple example is the negative distance

:M (I8 , I: ) = −3M (I8 , I: ). (5.48)

In case of Euclidean data, i.e.M = ℝ3 , the Euclidean inner product

:M (I8 , I: ) = 〈I8 , I:〉 (5.49)

or the Gaussian kernel
:M (I8 , I: ) = exp

( − 1
2f23M (I8 , I: )2

)
(5.50)

with 3M (I8 , I: ) = ‖I8 − I: ‖ can also be used. Based on the matrix  , we want to perform a
partitioning of the data using latent labels as described next.

Let, ∈ W∗ = W ∩ {0, 1} |� |× | � | have full rank, i.e., each (latent) label is present in the
labeling. The column vectors, 9 , 9 ∈ � , of, indicate which data points I8 are assigned to the
9-th cluster � 9 = {8 ∈ � : ,8 9 = 1}. We de�ne the diagonal matrix

� (, ) B Diag(, >1 |� |) = Diag(=1, . . . , = | � |) (5.51)

with the cardinalities = 9 = |� 9 | of each cluster as entries. With �0(, ) B,� (, )−1, > we get

tr
(
 �0(, )

)
= tr

(
� (, )−1, > ,

)
=

∑
9 ∈�

1
= 9
(, > , )9 9 (5.52a)

=
∑
9 ∈�

1
= 9

∑
8∈� 9

:M (I8 , I8) +
∑
9 ∈�

1
= 9

∑
8,:∈� 9 : 8≠:

:M (I8 , I: ). (5.52b)

The �rst sum of (5.52b) is constant for common kernel functions like (5.50). The second sum
measures the normalized similarity within clusters � 9 , 9 ∈ � . Thus, the problem to partition the
data into |� | clusters takes the form

max
,

tr
(
 �0(, )

)
subject to , ∈ W∗, rank(, ) = |� |. (5.53)

Before explaining how this partitioning problem can be combined with the assignment �ow,
we discuss two relaxations of this problem and their interpretation.

Self-A�inity Matrix

For the �rst relaxation, we simply drop the integrality constraint and the rank constraint, i.e.,
we regard the self-a�nity matrix

�0(, ) =,� (, )−1, > for , ∈ W . (5.54)

This relaxation can be interpreted as follows. We interpret each entry of the assignment matrix
, ∈ W as posterior probability

% ( 9 |8) =,8 9 , 9 ∈ � , 8 ∈ � (5.55)
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of label 9 , conditioned on the observation of the data point I8 . For the data, we adopt the
uniform prior distribution

% (8) = 1
|� | , 8 ∈ � (5.56)

according to the unsupervised scenario. By marginalization, we get the label distribution

% ( 9) =
∑
8∈�

% ( 9 |8)% (8) = 1
|� | (,

>1 |� |)9 , 9 ∈ � . (5.57)

Applying Bayes’ rule results in the conditional distribution

% (: | 9) = % ( 9 |:)% (:)
% ( 9) =

,: 9∑
8∈�,8 9

=
(
� (, )−1, >

)
9:
, : ∈ � , 9 ∈ � (5.58)

with the roles of data and labels reversed. Eventually, marginalization over the labels results in
the probability of the self-assignment I8 ↔ I: , 8, : ∈ � :∑

9 ∈�
% (: | 9)% ( 9 |8) =

∑
9 ∈�
,8 9

(
� (, )−1, >

)
9:

=
(
,� (, )−1, >

)
8:

= �0,8: (, ) . (5.59)

So, this expression speci�es the probability that two vertices 8 and : belong to the same cluster.
This shows that maximizing the correlation of �0(, ) and the a�nity matrix  as in (5.53)
amounts to cover the most similar data points by the same clusters.

Self-Influence Matrix

We observe that � (, ) = , >, for , ∈ W∗. So as second relaxation we consider the
self-in�uence matrix

�1(, ) B, (, >, )−1, > for , ∈ W with rank(, ) = |� |. (5.60)

For this relaxation, we have the following interpretation. We assume that the data {I8}8∈� are
given in a Euclidean spaceM = ℝ3 . We collect the data and the prototypes {< 9 }9 ∈� as row
vectors into matrices

/ =
(
I1, . . . , I |� |

)> ∈ ℝ |� |×3 , (5.61a)
" =

(
<1, . . . ,< | � |

)> ∈ ℝ | � |×3 . (5.61b)

Further, we assume the prototypes result from a least-squares �t:

" = arg min
"̃ ∈ℝ | � |×3

1
2
/ −,"̃

2
= (, >, )−1, >/ . (5.62)

Using these prototypes in turn for predicting data /̂ by assignment yields

/̂ =," =, (, >, )−1, >/ = Πim(, )/ = �1(, )/, (5.63)

where Πim(, ) denotes the orthogonal projection onto the range of, . Finally, optimizing the
assignments, ∈ W with rank(, ) = |� | in order to obtain the best prediction of the data
itself, gives with �1(, )2 = �1(, )

arg min
,

1
2
�1(, )/ − /

2
= arg max

,

tr
(
�1(, )//>

)
. (5.64)
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The latter problem is a relaxation of (5.53) with a�nity matrix  = //> corresponding to
the Euclidean inner product (5.49). This relaxation can be interpreted as �nding the best
|� |-dimensional subspace im(, ) spanned by the indicator vectors of the |� | clusters for self-
prediction of the given data.

Adaption of the Assignment Flow

The likelihood map in the (supervised) assignment �ow takes the form

!(, ) = exp,
( − 1

d
�
)
= exp,

( 1
d
∇� (, )) with � (, ) = −〈�,, 〉, (5.65)

so that the assignment �ow maximizes � (, (C)) over time (if no averaging is used). In the
unsupervised data partitioning problem we want to solve a relaxation of (5.53), i.e., we want
to maximize

�B (, ) = tr
(
 �B (, )

)
, , ∈ W, B ∈ {0, 1}. (5.66)

So the key idea for combining the partitioning problem with the assignment �ow is to adapt
the likelihood map by

!̃(, ) = exp,
( 1
d
∇�B (, )

)
. (5.67)

As before, the corresponding similarity map (̃ (, ) = �l (!̃(, )) is de�ned by geometric
averaging of likelihood vectors !̃: (, ) within neighborhoods : ∈ N8 . Besides replacing
the likelihood map, we have to deal with the symmetry of the partitioning problem, e.g.,
permutations of the label set results in the same clusters. Because of this symmetry, we cannot
let the assignment �ow start at the barycenter. In order to break this symmetry, we initialize
the assignment �ow with a small perturbation of the barycenter. Therefore, the resulting
self-assignment �ow reads

(SAF) ¤, = ', [(̃ (, )], , (0) = exp�W (−Y�0), 0 < Y � 1, (5.68)

where the distance matrix �0 ∈ ℝ |� |× | � | is computed using greedy :-center clustering as
explained in Section 5.2.3.

Computing Prototypes

While this approach works without prototypes, we can still compute prototypes using the
clusters resulting from (5.68). Let, ∗ ∈ W∗ be the assignment resulting from (SAF). Then the
9-th prototype< 9 can be computed as Riemannian mean of the cluster � 9 = {8 ∈ � : , ∗8 9 = 1},
i.e.

< 9 = arg min
<∈M

∑
8∈� 9

3M (I8 ,<)2, 9 ∈ � . (5.69)

In the Euclidean case, this takes the form " = � (, )−1, >/ , where the matrices / and " are
given in (5.61).

Comparison with the Unsupervised Assignment Flow

We conclude this section by comparing the self-assignment �ow (SAF) (5.68) with the unsu-
pervised assignment �ow (UAF) (5.42).
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Advantages of (SAF) over (UAF)

The (SAF) approach does not involve any prototypes and operates entirely on the assignment
manifoldW. The only input involving the feature manifold is the a�nity matrix  . This
re�ects the plug-and-play property of the assignment �ow. Additionally, the a�nity matrix  
can be chosen to contain only pairwise distances, so that the (SAF) approach can be applied on
any metric spaceM. In comparison, the (UAF) approach can be applied only on Riemannian
manifoldsM and it comes with the additional e�ort to implement the computation of the
Riemannian gradient of the divergence function, which is needed for the prototype update –
cf. equation (5.42).

Advantages of (UAF) over (SAF)

The use of the a�nity matrix ∈ ℝ |� |× |� | as in (SAF) instead of the distance matrix� ∈ ℝ |� |× | � |
with |� | � |� | as in (UAF) results in a considerable additional workload, which becomes
intractable for already medium sized images. In order to cope with large-scale scenarios, the
matrix  then has to be approximated by a low-rank matrix factorization, which only works
for positive semi-de�nite matrices  . We refer to [ZZPS20b] for more details.

In view of manifold valued data, the (SAF) approach is inspired by the Euclidean case (cf. the
interpretation of the self-in�uence matrix), while the non-Euclidean case is handled either by
using the pairwise distance (5.48) or by embedding the data into a reproducing kernel Hilbert
space (RKHS) [HSS08] via a suitable kernel function :M . In particular the latter approach
does not properly incorporate the geometry of the feature manifoldM. In contrast, the (UAF)
approach is designed from the Riemannian perspective and therefore reasonably incorporates
the geometry ofM into the data partitioning as well as prototype learning.

5.6 Clustering on Particular Feature Manifolds

In Section 5.4, we derived the unsupervised assignment �ow (5.42) for a general feature manifold
M together with a geometric numerical integration scheme. In the following subsections,
we illustrate the approach by working out details of three concrete feature manifolds. These
scenarios will be evaluated numerically in the experiments in Section 5.7.

5.6.1 Rotation Group SO(n)

In this subsection, we study clustering on the Lie group SO(=) of = × = rotation matrices. This
is a smooth Riemannian manifold whose tangent space at ' ∈ SO(=) is given by

)'SO(=) = {'Ω : Ω ∈ so(=)}, (5.70)

where so(=) = {Ω ∈ ℝ=×= : Ω> = −Ω} denotes the Lie algebra of SO(=), and with the
Riemannian metric given by the Frobenius inner product 6' (�1, �2) = tr(�>1�2). Based on the
matrix exponential expm and matrix logarithm logm [Hig08], the corresponding exponential
map and logarithmic map read

Exp' ('Ω) = ' expm(Ω), Log'1 ('2) = '1 logm('>1 '2), (5.71)
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and the Riemannian distance is given by

3SO(=) ('1, '2) =
 logm('>1 '2)

. (5.72)

In the speci�c case = = 3, well known formulas in closed form are available [Hig08]. By
Rodrigues’ formula, the matrix exponential of � ∈ so(3) is given by

expm(�) = � + sinc(0)� + 1
2 sinc2( 02 )�2, 0 =

√
1
2 tr(�>�), (5.73)

with the sinc function

sinc(G) =
{

sin(G)
G

, G ≠ 0
1, G = 0.

(5.74)

The matrix logarithm of ' ∈ SO(3) with tr(') = 1 + 2 cos(\ ), |\ | < c is given by

logm(') = 1
2 sinc(\ ) (' − '

>) . (5.75)

Moreover, the Riemannian distance can be evaluated without computing the matrix logarithm
or an eigenvalue decomposition as

3SO(3) ('1, '2) =
√

2 arccos
( tr('>1 '2) − 1

2

)
, '1, '2 ∈ SO(3) . (5.76)

Regarding the clustering of data {'8}8∈� ⊂ SO(=), we use the canonical divergence function
� ('1, '2) = 1

23SO(=) ('1, '2)2. As a result, the �ow of the (UAF) (5.42) for the prototypes
( 9 ∈ SO(=) takes the form

¤( 9 (C) = U
∑
8∈�

a 9 |8
(
, (C), ( (C)) Log( 9 (C ) ('8)

= U
∑
8∈�

a 9 |8
(
, (C), ( (C))( 9 (C) logm

(
( 9 (C)>'8

)
, 9 ∈ � .

(5.77)

Discretizing this �ow due to (5.44) yields the multiplicative update scheme

(
(C+1)
9

= (
(C )
9

expm
(
Uℎ

∑
8∈�

a
(C )
9 |8 logm

( (
(
(C )
9

)>
'8

))
, 9 ∈ � . (5.78)

5.6.2 Orientations

We consider the task of clustering orientation vector �elds in the two-dimensional space. We
regard these vector �elds as maps from the image domain into the angle space ℝ

/
cℤ, i.e. we

identify the line {_(cos\, sin\ )> : _ ∈ ℝ} ⊂ ℝ2 with the angle \ ∈ [0, c). Let @ : ℝ→ ℝ
/
cℤ

be the quotient map \ ↦→ \ mod c . Rather than operating directly on the quotient manifold
ℝ

/
cℤ, we work with representatives of its elements in ℝ. In particular, a �ow on the quotient

manifold will be given by @(o (C)), where o (C) is a �ow in ℝ. For any two representatives
\ 1, \ 2 ∈ ℝ, the induced distance is given by

3 (\ 1, \ 2) = 3M (@(\ 1), @(\ 2)) = min
i ∈cℤ

|\ 1 − \ 2 + i | ∈ [0, c2 ], (5.79)
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and we have 3 (\ 1, \ 2) = 0 if and only if @(\ 1) = @(\ 2). For the unsupervised assignment �ow
(5.42), we choose the canonical divergence function � (G,~) = 1

2
(
3M (G,~)

)2 onM. By (5.79),
this corresponds to the dissimilarity function � (\ 1, \ 2) = 1

2
(
3 (\ 1, \ 2))2 for representatives

\ 1, \ 2 ∈ ℝ. This dissimilarity function is di�erentiable if @(\ 1) ≠ @(\ 2+ c2 ), i.e., if the minimizer
i ∈ arg mini ∈cℤ |\ 1 − \ 2 +i | is unique. In this case, we have m

m\ 2� (\ 1, \ 2) = \ 2 − \ 1 −i . Now,
denoting {\ 8}8∈� ⊂ ℝ the representatives of given orientations at pixels 8 ∈ � and denoting by
{o 9 }9 ∈� ⊂ ℝ the representatives of the prototype orientations (labels), the label evolution of
(5.42) takes the form

¤o 9 (C) = U ·
(∑
8∈�

a 9 |8
(
, (C), o (C)) (\ 8 − i8 9 (C)) − o 9 (C)) with i8 9 (C) ∈ arg min

i ∈cℤ

��\ 8 − o 9 (C) + i ��.
(5.80)

Since this �ow evolves in ℝ | � | , it can be numerically integrated using classical integration
schemes. As mentioned above, the corresponding prototype �ow inM = ℝ

/
cℤ is then given

by @(o 9 (C)), 9 ∈ � .

5.6.3 Positive Definite Matrix Manifold

We consider data given as covariance region descriptors, as introduced in [TPM06]. Details
of the corresponding unsupervised assignment �ow are worked out in this section. In the
subsequent section, we extend the representation to obtain descriptors that are invariant with
respect to rotations of the image domain.

Covariance Descriptors

We consider feature maps 5 : � → ℝ3 extracted from a given 2D image D : � → ℝ2 with 2
channels by taking partial derivatives channel-wise, e.g. DG = mD

mG
and DG~ = m2D

mGm~
. We compute

these derivatives using binomial �lters [HS87], which are a discrete approximation to the
Gaussian derivative �lters. A typical example for a feature map used in our experiments is

8 ↦→ 5 8 =

(
D,DG , D~, DGG ,

√
2DG~, D~~

)>
∈ ℝ62 (5.81)

where (G,~)> denote the image coordinates at pixel 8 ∈ � . The corresponding covariance
descriptor �8 with respect to a pixel neighborhood N8 ⊂ � is given by

�8 =
∑
9 ∈N8

l8 9 (5 9 − 5̄ 8) (5 9 − 5̄ 8)> + Y�3 with 5̄ 8 =
∑
9 ∈N8

l8 9 5
9 , 0 < Y � 1, (5.82)

where l8 = (l8 9 )9 ∈N8 ∈ Δ |N8 | are weights. We add the identity matrix with a very small Y > 0
to ensure that all descriptors are positive de�nite, which otherwise may not hold in particular
cases like homogeneous “�at” image regions.

HPD Manifold

Now we consider the task of clustering given covariance descriptors as points on the Riemann-
ian manifold of Hermitian positive de�nite (HPD) matrices [Bha06]

P3 B
{
- ∈ ℂ3×3 : - ∗ = -, - is positive de�nite

}
(5.83)

105



5 Unsupervised Label Learning on Manifolds

endowed with the Riemannian metric 6- (* ,+ ) = tr(-−1*-−1+ ) on each tangent space
)-P3 =

{
* ∈ ℂ3×3 : * ∗ = *

}
– cf. Section 2.1.4. The Riemannian gradient of a function

� : P3 → ℝ is given by grad � (- ) = -∇� (- )- ∈ )-P3 , where the Hermitian matrix ∇� (- )
denotes the Euclidean gradient of � at - , and matrices - and ∇� (- ) are multiplied as usual.
Denoting the prototypes (labels) by {Λ 9 }9 ∈� ⊂ P3 , the label �ow of (5.42) reads

¤Λ 9 (C) = −U
∑
8∈�

a 9 |8
(
, (C),Λ(C))Λ 9 (C)m2�

(
�8 ,Λ 9 (C)

)
Λ 9 (C), 9 ∈ � , (5.84)

where � (-,. ) is a proper divergence on P3 as discussed below and m2� (-,. ) denotes its
Euclidean gradient with respect to . . In the following, we discuss possible choices of � . An
obvious choice is the canonical divergence induced by the Riemannian distance

�R(-,. ) = 1
23P3 (-,. )

2 =
1
2

∑
:∈[3 ]

(
log _: (-,. )

)2
, (5.85)

which involves all generalized eigenvalues _: (-,. ) of the matrix pencil (-,. ). Considering
that � (�8 ,Λ 9 ) has to be computed for each pair of datum �8 and prototype Λ 9 at each point
of time when integrating the �ow, the computation of the generalized eigenvalues would be
very expensive computationally. As a more e�cient alternative to �R, we consider the Stein
divergence [Sra13]

�S(-,. ) = log det
(
-+.

2
) − 1

2 log det(-. ), (5.86a)

m2�S(-,. ) = 1
2

( (
-+.

2
)−1 − .−1

)
. (5.86b)

It involves the determinant and the inverse of a positive de�nite matrix, which both can be
e�ciently computed using the Cholesky decomposition. Moreover, it is shown in [Sra13] that
�S is a squared distance. Based on the choice � = �S, equation (5.84) takes the form

¤Λ 9 (C) = U

2

(
Λ 9 (C) − Λ 9 (C)& 9 (C)Λ 9 (C)

)
with & 9 (C) =

∑
8∈�

a 9 |8
(
, (C),Λ(C)) (

�8 + Λ 9 (C)
2

)−1
.

(5.87)
Taking the exponential map

Exp- (* ) = -
1
2 expm

(
-−

1
2*-−

1
2
)
-

1
2 (5.88)

into account, with expm denoting the matrix exponential, and discretizing the �ow with the
Riemannian explicit Euler scheme (5.44), gives the prototype update

Λ(C+1)
9

= Λ̃ 9 expm
(
Uℎ

2

(
� − Λ̃ 9& (C )9 Λ̃ 9

))
Λ̃ 9 with Λ̃ 9 =

(
Λ(C )
9

) 1
2 (5.89)

for the Stein divergence.

5.6.4 Rotation-Invariant Dissimilarity Measure on Covariance Descriptors

We additionally constructed a dissimilarity function on P3 that is invariant under rotations
of the image domain. In contrast to the Stein divergence (5.86a), this dissimilarity function
takes the special structure of covariance descriptors into account and hence depends on the
underlying feature map.
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Approach

Let D, D̃ : ℝ2 → ℝ denote two gray value images that are related by a Euclidean transformation(
G̃

~̃

)
=

(
cos\ − sin\
sin\ cos\

) (
G

~

)
+

(
G0
~0

)
, \ ∈ [0, 2c) (5.90)

of the image domain, i.e. D̃ (G̃, ~̃) = D (G,~). Their derivatives transform as

(
D̃G
D̃~

)
= '1(\ )

(
DG
D~

)
,

©«
D̃GG√
2D̃G~
D̃~~

ª®¬ = '2(\ ) ©«
DGG√
2DG~
D~~

ª®¬ , (5.91)

with rotation matrices '1(\ ) ∈ SO(2) and '2(\ ) ∈ SO(3) given by

'1(\ ) =
(
cos\ − sin\
sin\ cos\

)
, '2(\ ) =

©«
cos2 \ −√2 cos\ sin\ sin2 \√

2 cos\ sin\ cos2 \ − sin2 \ −√2 cos\ sin\
sin2 \

√
2 cos\ sin\ cos2 \

ª®®¬ .
(5.92)

It follows that covariance descriptors of an image D : � → ℝ2 with the feature map (5.81)
transform as �̃ = '(\ )�'(\ )>, with a rotation matrix '(\ ) ∈ SO(3). Setting

R B {
'(\ ) : \ ∈ [0, 2c)}, (5.93)

it turns out that R is a one-dimensional subgroup of ($ (3), i.e. '(\1 + \2) = '(\1)'(\2).
Eventually, we construct the rotation-invariant dissimilarity function by minimizing over the
Lie group action of R, i.e.

�S,R (-,. ) B min
'∈R

�S
(
-, '.'>

)
= min
'∈R

�S
(
'>-',.

)
. (5.94)

If m2�S('>-',. ) = ('>-' + . )−1 − 1
2.
−1 is the same for all ' ∈ arg min'∈R �S

(
'>-',.

)
,

then �S,R (-,. ) is di�erentiable in . and the derivative is given by [BS13, Theorem 4.13]

m2�S,R (-,. ) = m2�S('>-',. ), ' ∈ arg min
'∈R

�S
(
'>-',.

)
. (5.95)

This holds in particular if ' is unique for a given pair (-,. ).
Using the divergence �S,R , equation (5.84) yields the same prototype update formulas (5.87)
and (5.89) as for the Stein divergence, except for the modi�cation

& 9 (C) =
∑
8∈�

a 9 |8
(
, (C),Λ(C)) (

'8 9 (C)>�8'8 9 (C) + Λ 9 (C)
2

)−1
(5.96)

with '8 9 (C) ∈ arg min'∈R �S
(
'>�8',Λ 9 (C)

)
.
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Numerical Aspects

Evaluating (5.94) amounts to solving a one-dimensional smooth but non-convex problem. We
discuss a suitable optimization scheme for this problem. For given -,. ∈ P3 , we want to
minimize

X (\ ) ≔ �S
(
-, '(\ ).'(\ )>) (5.97)

over the compact interval [0, 2c]. The naive approach would be sampling the interval [0, 2c]
and evaluating X (\ ) at those sample points, but since the evaluation of

X (\ ) = log det
(
- + '(\ ).'(\ )>) − 3 log 2 − 1

2 log det- − 1
2 log det. (5.98)

involves computing the determinant of matrices in P3 , this approach would be too costly,
because this has to be done for each pair (�8 ,Λ 9 ) of data points and labels. Therefore, the idea
is to approximate (5.98) and evaluate the approximating function. Since X (\ ) is an analytic
periodic function, we consider a Hermite interpolation by a trigonometric polynomial at the
points \: = c:

#
, : = 0, . . . , 2# − 1. More precisely, we interpolate X (\ ) by

X# (\ ) =
3#∑
==0

0= cos(=\ ) +
3#−1∑
==1

1= sin(=\ ), (5.99)

such that the function values and the �rst two derivatives at the points \: coincide:

X# (\: ) = X (\: ), X ′# (\: ) = X ′(\: ), X ′′# (\: ) = X ′′(\: ) for : = 0, . . . , 2# − 1. (5.100)

Such a trigonometric polynomial always exists and is unique. Further, it converges expo-
nentially fast with the number of sampling points, i. e. ‖X − X# ‖∞ ≤ 214

−22# . We refer to
[Kre72] for further details on the Hermite interpolation. The reasoning for using the �rst two
derivatives for the interpolation is that evaluating X (\ ), X ′(\ ) and X ′′(\ ) simultaneously at a
point \ can be done e�ciently as described next.

Since R is a one-dimensional subgroup of SO(3), we have the representation '(\ ) =

expm(\Ω) with a skew-symmetric matrix Ω ∈ so(3). For instance, the corresponding skew-
symmetric matrices for the rotation matrices (5.92) are given by

Ω1 =

(
0 −1
1 0

)
, Ω2 =

©«
0 −√2 0√
2 0 −√2

0
√

2 0

ª®®¬ . (5.101)

The derivate of '(\ ) is then given by d
d\ '(\ ) = '(\ )Ω = Ω'(\ ). Setting .' ≔ '(\ ).'(\ )>,

we get

X (\ ) = log det(- + .') − 3 log 2 − 1
2 log det- − 1

2 log det.', (5.102a)
X ′(\ ) = tr

((- + .')−1(Ω>- + -Ω)), (5.102b)
X ′′(\ ) = − tr

((- + .')−1(Ω.' + .'Ω>) (- + .')−1(Ω>- + -Ω)) . (5.102c)

The Cholesky decomposition of - + .' ∈ P3 can be used to e�ciently evaluate det(- + .') as
needed for X (\ ) and to compute (- + .')−1 as needed for X ′(\ ) and X ′′(\ ). Those are also the
most expensive operations in the evaluation of (5.102).

108



5.7 Experiments

We note that evaluating the polynomial (5.99) at sample points {\: }: can be implemented
as matrix-vector multiplication with a matrix containing the values of the basis functions, i.e.
cos(=\: ) and sin(=\: ), and a vector containing the coe�cients. Since only the coe�cients
vector change with di�erent pairs (-,. ), the matrix can be reused.

Remark 5.6.1. We conclude this section with further comments on the invariant dissimilarity
function (5.94) and its numerics.

1. We point out again that R (5.93) and its existence depends on the feature map 5 . For the
speci�c case (5.81) considered above, a transformation of the form �̃ = '(\ )�'(\ )> exists
since all derivatives up to a given order are involved. Furthermore, R is a subgroup
of SO(3) due to the proper normalization of mixed derivatives. For the derivative(
m
mG

)U1 ( m
m~

)U2D, this normalization factor is given by
√
(U1+U2)!
U1!U2! .

2. The dissimilarity function �S,R is not a divergence function as introduced in Sec-
tion 2.1.5, since �S,R (-,. ) = 0 does not imply - = . , but only [- ]R = [. ]R with
[- ]R = {'-'> : ' ∈ R}. Unfortunately, this cannot be �xed by considering the quotient
P3/∼ with - ∼ . if and only if - ∈ [. ]R , since P3/∼ does not have a manifold struc-
ture (e.g. the equivalence class of the identity matrix is a singleton). Nevertheless, we
can plug-in �S,R into our approach that can be used with any di�erentiable dissimilarity
function. The resulting prototypes are then representatives {Λ 9 }9 ∈� ⊂ P3 of classes
[Λ 9 ]R .

3. The set of pairs (-,. ) ∈ P3 ×P3 , for which �S,R (-,. ) is not di�erentiable, is negligible
[RW09, Theorem 10.31]. But even for such pairs one can choose some optimal '8 9 (C) in
(5.96), such that the prototype �ow remains well-de�ned.

4. The rotation-invariant dissimilarity can also be extended to 3D images. The main
di�erence to the 2D case is that the group R is then a three-dimensional non-Abelian
Lie-group. This makes the evaluation of (5.94) signi�cantly more di�cult.

5. The minimization of (5.99) can be done by an eigenvalue computation of a complex
non-Hermitian matrix [Boy06]. However, this approach would be too costly for our
purpose.

6. Since the components of the matrix '(\ ) are trigonometric polynomials (cf. (5.92)), X (\ )
is the logarithm of a trigonometric polynomial due to equation (5.98), i.e.

X (\ ) = log
(
0̃0 +

#̃∑
==1

0̃= cos(=\ ) + 1̃= cos(=\ )
)
. (5.103)

Instead of interpolating X (\ ), one might consider interpolating the trigonometric poly-
nomial exp(X (\ )). Since the values of exp(X (\ )) can get quite large, we refrain from
pursuing this approach due to possible numerical issues.

5.7 Experiments

In this section, we demonstrate and compare the proposed unsupervised assignment �ow
(UAF) using several synthetic and real-world images and di�erent feature manifolds, as detailed
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in Section 5.6. As described in Section 5.4.4, the geometric numerical integration of the (UAF)
was carried out using the geometric implicit Euler scheme for the assignment component of the
�ow and a Riemannian explicit Euler scheme for the prototype component of the �ow. For both
schemes, we used the �xed step size ℎ = 0.1 in all experiments. Additionally, we adopted in
our implementation the renormalization step from [ÅPSS17] with Y = 10−10 for the assignment
component, to avoid numerical issues for assignments very close to the boundary of the
simplex Δ | � | = S. Uniform weights (F8: ) were used for regularizing the assignments through
geometric averaging (5.36). The integration process terminated when the average entropy of
the assignment component dropped below 10−3 which indicates almost unique label desicions
(probability vectors are close to unit vectors) and in turn that the weights a 9 |8 (,,") for the
prototype evolution become stationary as well. We initialized the assignment component of
the unsupervised assignment �ow with the uninformative barycenter (all labels have the same
probability). The initial prototypes were determined by greedy :-center metric clustering as
discussed in Section 5.2.3, in order to obtain an almost uniformly sampled dictionary from the
input data. The number of labels |� | was chosen large enough to start with an overcomplete
dictionary.

5.7.1 Parameter Influence

This experiment discusses the in�uence of the two model parameters f and U of the (UAF)
as de�ned by (5.42). Parameter f determines the trade-o� between the in�uence of the
assignments (spatial regularization) and the in�uence of the distances in the feature space
on the weights a 9 |8 (,,") which govern label evolution. f = ∞ results in the coupled �ow
(CFa) where the weights a 9 |8 (,,") solely depend on the assignments, whereas f = d gives
coupled �ow (CFb) which incorporates both the spatially regularized assignment and the
distances in the feature space into the dictionary update step. In general, the impact of spatial
regularization on label evolution decreases with decreasing values of f , and the in�uence of
distances in the feature space on the evolution of labels is even stronger for f < d .

Parameter U controls the relative speed of the evolution of labels vs. assignments. If U is set
too small, i.e., if the evolution of labels is too slow, then hardly any label evolution occurs at all
during the period of the assignment evolution so that the resulting assignment is e�ectively
comparable to the supervised assignment �ow (2.105) based on the initial set of labels. On the
contrary, if U is set too large, labels adapt too fast to the current assignment, which may be
undesirable especially if the assignment is still too close to the uninformative barycenter in
the initial phase of its evolution.

In order to visualize clearly the role off andU , we consider in this section the RGB color space
as feature space. The demonstrated e�ects carry over to other non-trivial feature manifolds,
of course. We used a |N | = 3 × 3 neighborhood size for geometric spatial regularization and
�xed the number of labels to |� | = 8.

Figure 5.4 illustrates the above discussion for an academic computer-generated color image
with a smooth strong gradient, which was generated such that from left-to-right the red channel
is increasing and the blue channel is decreasing, whereas the green channel is increasing from
top to bottom. The boosted labels adaption for larger U , and the impact of spatial regularization
is illustrated by the cell sizes of the �nal Voronoi diagram relative to the initial con�guration.

Figure 5.5 demonstrates the same e�ects for a real image. The partitions corresponding
to the unsupervised image labelings are additionally displayed using false colors in order to
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input (UAF) 2 = 0.001 (CFb) 2 = 1 = 0.1 (CFa) 2 = ∞

"
=
0.
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k-center + NN
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initial prototypes

"
=
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0

Figure 5.4: In�uence of the parameters 2 and " . The �gure illustrates the in�uence of the
parameters f and U on the unsupervised assignment �ow (UAF) in terms of the resulting labelings.
From the smooth input image (left panel, top), the initial prototypes (|� | = 8) are extracted by
greedy :-center clustering and assigned by the nearest neighbor (NN) rule. The right panel shows
the labelings returned by the (UAF), for di�erent values of f and U , after termination of the coupled
evolution of labels and assignments. We observe for increasing values f and U that regions are
“attracted” toward the center of the image domain, since label colors are increasingly averaged
through the spatially regularized assignments.
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input (UAF) 2 = 0.001 (CFb) 2 = 1 = 0.1 (CFa) 2 = ∞
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initial prototypes
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Figure 5.5: In�uence of the parameters 2 and " . Results of the (UAF) are shown that repro-
duce the e�ects illustrated by Figure 5.4 for a real image. Each labeling is additionally shown using
false colors to ease the perception of di�erences. We observe for increasing f an increasing impact
of spatial regularization, whereas for increasing U labels adapt faster along with the size of the
spatially regularized regions.
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highlight the di�erences. The interpretation of the results for di�erent values of f and U is
analogous to the e�ects shown by Figure 5.4.

Speci�cally, we observe that for a small value f = 0.001 (column (UAF)), which increases the
in�uence of the distances in the feature space, the resulting labeling preserves �ne scales (e.g.,
see left coral in Figure 5.5) in comparison to the other extreme choice f = ∞ (column (CFa)),
where the in�uence of the spatial regularization through the assignments in the image domain
is maximal and hence �ne scales are removed from the resulting labeling. The intermediate
parameter choice f = d = 0.1 (column (CFb)) shows a good compromise between the e�ects
caused by the two extreme values of f .

The in�uence of parameter U controlling the relative speed of label and assignment evolution
can be seen row-wise. For small U = 0.1, the adaption of the prototypes is quite limited. For
the choice U = 1.0, we observe a good compromise between label evolution and spatial
regularization through the assignment �ow. Finally, a very large value U = 5.0 results in
strong spatial regularization, since the labels are adapting relatively quickly to the current
assignments and consequently the regions assigned to labels grow faster.

5.7.2 E�ect of Spatial Regularization

Figure 5.6 illustrates the e�ect of spatial regularization performed by the (UAF) on the evolu-
tion of both labels and label assignments, by comparing to basic :-means clustering and to
greedy-based :-center clustering (Section 5.2.3), respectively, where no spatial regularization
is involved at all. The parameter values U = 1.0 and f = ∞ were used.

Comparing :-means with :-center clustering shows that :-means clustering selects a more
uniform quantization for the feature data, whereas the greedy :-center clustering rather picks
more extremal points in the feature space which subsequently serve as initial prototypes for
(UAF). The remaining panels demonstrate that spatial regularization quickly sparsi�es the
label set as the scale (neighborhood size) of spatial regularization increases.

5.7.3 SO(3)-Valued Image Data: Orthogonal Frames in ℝ3

Figure 5.7 depicts ground truth data in terms of orthogonal frames assigned to each pixel
8 ∈ � and visualized with false colors. Each ground-truth label is also shown as trihedron by
Figure 5.8.

The input data (Figure 5.7) were generated by independently sampling for each pixel 8 ∈ �
a vector =8 ∼ N(0,

√
0.5�3), determining a corresponding random skew-symmetric matrix

Ω(=8) ∈ so(3), and by replacing the ground-truth value '8 by '8 expm(Ω(=8)).
We compare our method with hierarchical agglomerative clustering [Mül11]. As linkage

criterion, we used the generalized Ward’s criterion as presented in [Bat88], i.e., we replaced the
squared Euclidean distance in the classical Ward’s method by the Riemannian distance. This
linkage criterion worked best in our experiments. We chose the threshold for this method such
that we get the same number of clusters as in the ground truth. The labels were determined by
computing the Riemannian mean within each cluster. The noisy clustering result (Figure 5.7)
a�ects the computation of labels as can be seen in Figure 5.8.

As initialization for our method, we determined by greedy-based :-center clustering (Section
5.2.3) an overcomplete set of |� | = 8 prototypes as shown by Figure 5.8. The corresponding
nearest neighbor (NN) assignments are shown by Figure 5.7. They clearly illustrate the need
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Figure 5.6: E�ect of spatial regularization. We compare the proposed (UAF) to :-means
clustering and :-center clustering, respectively, and demonstrate the e�ect of spatial regularization,
parameterized by increasing neighborhood sizes used for geometric averaging, on the resulting
label statistics and label assignments. The histogram bars are colored by the corresponding labels,
and their heights indicate the relative amount of assigned pixels. We observe that as the scale
(neighborhood size) of spatial regularization increases, the label set quickly becomes more sparse.
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input ground truth (CFa) (CFb)

|N
|
=
1
×
1

hierarchical
clustering k-center + NN

|N
|
=
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×
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|N
|
=
5
×
5

(4 labels) (8 labels)

Figure 5.7: Unsupervised label learning for SO(3)-valued image data. Rotation matrices are
color coded by the scheme adopted from [KMB15]. Each label (orthogonal frame, rotation matrix)
is also depicted as trihedron by Figure 5.8 using as background the false color used here. The
input data were generated from ground truth as described in the text. Hierarchical clustering with
generalized Ward’s linkage criterion produces a noisy labeling result. The panel ‘:-center + NN’
depicts the nearest neighbor assignments of the 8 labels which are selected from the input data
by greedy :-center clustering (Section 5.2.3) and are used as initialization for (UAF). Panels on
the right depict both the labels and the assignment of these labels by the two versions (CFa) and
(CFb) of the unsupervised assignment �ow (UAF). Spurious labels “die out” and, for a reasonably
large neighborhood size used for spatial regularization, high-quality labelings are determined
simultaneously. The resulting labels are visualized by Figure 5.8.
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ground truth

hierarchical
clustering

(CFa)

(CFb)

k-center
(initialization)

Figure 5.8: Label visualization for SO(3) data. Each label corresponding to the results depicted
by Figure 5.7 is shown here as trihedron, using the false colors of Figure 5.7 as background colors.
The labels obtained by hierarchical clustering are generally close to the ground truth labels but also
deviate signi�cantly in some cases, as is clearly visible in the �rst column. In addition, the label
assignments in the spatial domain cannot cope with the noise of the input data. As for (CFa) and
(CFb), three labels of the initial label set (last row) “died out” during the unsupervised assignment
�ow evolution, whereas the remaining ones converged to values quite close to ground truth.

for spatially regularized assignments, not only for determining a reasonably coherent partition
of the image domain but also for a�ecting label evolution, in order to determine proper labels
enabling to �nd such a partition by assignment.

The labelings generated by unsupervised assignment �ow (UAF) are shown by Figure 5.7,
for the parameters f = d = 1.0 and f = ∞ corresponding to the speci�c versions (CFa) and
(CFb) of the (UAF), and using di�erent neighborhood sizes |N | ∈ {1× 1, 3× 3, 5× 5} for spatial
regularization. The relative speed parameter U for the prototype evolution �ow was set to the
natural value U = 1 (cf. Section 5.7.1). The results show that, for both �ows (CFa) and (CFb),
spurious labels “die out” whereas the remaining labels converge to values quite close to ground
truth (Figure 5.8). Speci�cally, for the large green background region, two labels close to the
ground truth label are recovered due to the initial �uctuations within a large spatial region.

We point out that the only essential parameter value required for a reasonable result is the
scale (neighborhood size) of spatial regularization.

5.7.4 Orientation Vector Fields

Given a grayscale image (Figure 5.9), we estimated orientations of local image structure from
local gradient scatter matrices. Orientations are encoded at each pixel by the angle between
the horizontal axis and the smallest eigenvector. The resulting data take values in ℝ

/
cℤ � (1

after identifying antipodal points. Figure 5.9 shows the nearest neighbor assignments of the
initial |� | = 8 prototypes determined by greedy :-center clustering from the noisy input data,
together with labels and label assignments of the versions (CFa) and (CFb) of the unsupervised
assignment �ow (UAF) corresponding to the parameter choices f = d = 0.1 and f = ∞. The
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relative speed parameter U for the prototype evolution was set to U = 0.5 and |N | = 5 × 5
neighborhoods were used for spatial averaging.

Both �ows managed to position a label correctly in the neighborhood of 0 � c (visualized
in red) and only required seven labels to properly encode the data by labeling.

original image input k-center + NN (CFa) (CFb)

or
ie
nt
at
io
n

da
ta

ov
er
la
y

0 π
4

π
2

3π
4

π

Figure 5.9: Unsupervised label learning from orientation vector �elds. Orientations are
extracted from the grayscale image, using the spectral decomposition of local scatter matrices of
the image gradient, and represented as elements of ℝ

/
cℤ � (1 as described in the text. Using

a corresponding distance function, the unsupervised assignment �ow learns both proper labels,
including their number, and label assignments for encoding the noisy input data.

5.7.5 Feature Covariance Descriptor Fields

We demonstrate the application of the unsupervised assignment �ow to the manifold of positive
de�nite matrices. For a given input image, we extracted the covariance descriptor using the
feature map (5.81) and Y = 10−7 in (5.82). We applied version (CFa) of the unsupervised
assignment �ow, i.e. setting f = ∞ ensuring a strong e�ect of spatial regularization on label
evolution. We compare this �ow with the (supervised) assignment �ow to demonstrate the
e�ect of label adaption on the resulting labeling. Initial sets of labels were determined by metric
clustering. Label assignments are visualized by false colors, i.e., di�erent colors represent
di�erent labels. Due to the higher dimension of the feature space of this scenario, a larger
value U = 10 of the relative speed parameter controlling the prototype evolution turned out to
be useful for both test instances.

Figure 5.10 shows an instance with |� | = 8 initial labels. For this example we used |N | = 7×7
for the covariance descriptor (5.82) and |N | = 5 × 5 for the spatial regularization. While the
(supervised) assignment �ow already suppresses noise in contrast to the nearest neighbor (NN)
assignment, the unsupervised assignment �ow (CFa) yields a more coherent result due to the
label evolution that preserves visual features (eye region) or even enhances them (tip of the
nose).

An instance with |� | = 100 initial labels is shown in Figure 5.11. Here, we used |N | = 5 × 5
for the covariance descriptor (5.82). The same observation applies as in the previous example,
with a greater di�erence between the supervised and unsupervised assignment �ow due to the
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input image k-center + NN Assignment Flow (CFa)

Figure 5.10: Impact of spatial regularization and label evolution (8 initial labels). Com-
pared to the nearest neighbor (NN) assignment, the assignment �ow consistently suppresses �ne
details. The additional label evolution of coupled �ow (CFa) improves the spatially coherent
assignment and preserves visual features (eye region, tip of the nose)

input image Assignment Flow (CFa)

3×
3

k-center + NN

5×
5

Figure 5.11: Impact of spatial regularization and label evolution (100 initial labels). The
observations stated in the caption of Figure 5.10 hold here as well. We only point out that with
su�ciently strong spatial regularization (bottom row), the coupled �ow (CFa) managed to adapt
labels on the feature manifold, and thus represents textured regions (tree, roof) more compactly in
a spatially coherent way.
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high number of labels. In particular, the simultaneous label evolution and spatial regularization
of the unsupervised assignment �ow (CFa) enable more compact representations of textured
regions corresponding to the tree and the roof.

5.7.6 Rotation-Invariant Clustering of Covariance Descriptor Fields

We extend the experiments on covariance descriptors by using the rotation-invariant dissimi-
larity �S,R (5.94). We continue using the feature map (5.81) and |N | = 5 × 5 for the covariance
descriptor (5.82) as well as the version (CFa) of the unsupervised assignment �ow with U = 10.
A synthetic and a real world image are considered, for which we use |� | = 10 initial labels in
both cases, to ensure interpretation of the results visualized by false colors.

Before we proceed to the actual experiments, we �rst discuss the approximation of X (\ ) =
�S(-, '(\ ).'(\ )>) by X# (\ ) (5.99), which is used for the numerical evaluation of �S,R . For
this we have taken two covariance descriptors from the example in Figure 5.15 and depicted the
approximation in Figure 5.12. As can be seen, the approximation for # = 12 is quite accurate,
so that it can be used to locate the minimum of X (\ ). Note that for # = 8 the approximation
X# (\ ) would identify the wrong local minimum of X (\ ) as the global minimum. Since we have
observed this approximation accuracy of X# (\ ) for numerous other pairs (-,. ), we evaluate
�S,R in the following experiments using the approximation X# (\ ) with # = 12.

Figure 5.13 depicts a synthetic image with a texture rotated in steps of 15 degrees. |N | = 3×3
neighborhoods were used for spatial averaging and the constant of (5.82) was set to Y = 10−5 to
ensure strict positive de�niteness even in completely homogeneous regions of this computer-
generated image. Initial prototypes were extracted from the input data using the greedy
:-center clustering with respect to the Stein divergence �S and its rotation-invariant version
�S,R , respectively. The experiments below should assess if numerical results display the
rotational invariance of �S,R that holds by construction mathematically (Section 5.6.4).

The six panels on the right of Figure 5.13 show columnwise the results of local label as-
signments (:-center + NN) and the assignments after label evolution performed by (CFa),
respectively, using either distance �S or �S,R . Regarding the results depicted by the center
column, greedy :-center clustering was performed using �S,R , while the nearest neighbor (NN)
assignment and (CFa) were performed using �S, in order to highlight the di�erence between
�S and �S,R based on the same initial prototypes.

The result shows that using�S,R leads to an unsupervised labeling of all textures with a single
label only. Thus, depending on the application, using �S,R instead of the basic Stein divergence
�S can lead to more compact label dictionaries determined by the proposed unsupervised
assignment �ow. Figure 5.14 underlines this �nding from a di�erent angle. The two panels
on the left display the pixelwise distances �S and �S,R to some �xed (arbitrary) reference
descriptor. The two images show quantitatively that �S is highly non-uniform, unlike �S,R .
The panel on the right of Figure 5.14 visualizes for each pixel the optimal angle minimizing
(5.94) over (5.93) that has to be determined for the evaluation of �S,R . One can clearly see how
the rotations of the textures of the input image of Figure 5.13 are recovered. This may be useful
for some applications as well.

Figure 5.15 depicts a real world image. We used |N | = 5 × 5 neighborhoods for spatial
averaging and Y = 10−7 for the constant of (5.82) to ensure strict positive de�niteness of the
covariance descriptors. Analogous to Figure 5.13, we compared the nearest neighbor (NN)
assignment and the result returned by (CFa) with respect to the Stein divergence �S and its

119



5 Unsupervised Label Learning on Manifolds
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Figure 5.12: Approximation of % () ) (5.98) by trigonometric polynomial %T () ) (5.99). The
plots illustrate how well X (\ ) (blue line) and its �rst two derivatives are approximated by the
trigonometric polynomial X# (\ ) (orange dashed line) for di�erent number of sampling points
(marked with green crosses). Here, - and . are covariance descriptors depicted from the input
image shown in Figure 5.15. This example shows that for # = 12 the approximation is accurate
enough to locate the minima of X (\ ) using X# (\ ).
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5.7 Experiments

input image JS
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assignment with JS JS,R
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Figure 5.13: Unsupervised learning of rotationally invariant labels from covariance de-
scriptors. The input data are covariance descriptors (5.82) extracted from the input image which
comprises a texture rotated in steps of 15◦. Both labels and label assignments are pixelwise vi-
sualized using false colors in the panels on the right (only color di�erences matter, rather than
the colors themselves). The unsupervised assignment �ow (CFa) together with the rotationally
invariant Stein divergence �S,R returns a small set of labels that encodes local image structure
irrespective of its orientation. By contrast, using the Stein divergence �S is less e�ective.

JS JS,R

0.0

5.0
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15.0

optimal angle
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Figure 5.14: Comparing the Stein divergence JS with its rotationally invariant variant
JS,R . Using the covariance descriptors illustrated by Figure 5.13, the panels on the left show the
pixelwise distances to some �xed (arbitrary) label. Contrary to the uniform distances �S,R , the
distance �S strongly depends on the orientation of the texture. On the right-hand side, the optimal
rotation angles are shown corresponding to the evaluation of�S,R . These angles accurately recover
rotations of the texture.
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input image JS JS,R
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Figure 5.15: Unsupervised learning of covariance descriptor labels through label assign-
ment. The depicted results were obtained for the real input image on the left and are analogous to
the results of the synthetic scenario depicted by Figure 5.13. The local assignments of initial labels
(top row on the right) highlight that metric clustering completely ignores the spatial structure of
the input data. The results returned by the unsupervised assignment �ow (CFa), therefore, are
impressive (bottom row): labels and label assignments jointly evolve so as to capture the spatial
image structure. While the distance �S is sensitive to orientations of texture, the distance �S,R is
not: the �nal labels and label assignments (bottom right) basically partition the image into wooden
texture independent of the orientation of the wooden boards (encoded with red), nails and similar
line structures in the background (encoded with green), the hammers (light-blue) and oriented
wooden texture (blue), independent of the local orientation of these textures.

rotationally invariant version �S,R , respectively.
We observe that the rotationally invariant feature representation together with the unsu-

pervised assignment �ow (�S,R / (CFa); panel bottom-right) leads to an unsupervised label
representation of the input data that basically partitions the image into wooden texture in-
dependent of the orientation of the wooden boards (encoded with red), nails and similar line
structures in the background (encoded with green), the hammers (light-blue) and oriented
wooden texture (blue).

Analogous to Figure 5.14, Figure 5.16 (�rst row) shows the pixelwise distances to a �xed
label (located at the right pile of nails) for the distances �S and �S,R , respectively. Comparing
the distances to the two piles of nails illustrates once again and quantitatively the rotational
invariance of �S,R . The bottom row of panels shows the corresponding optimal rotation angles
corresponding to the evaluation of �S,R , as de�ned by (5.94). These angles recover the relative
orientation of the textures which may be useful for some applications.

5.7.7 PolSAR Data

As the last application of our approach, we discuss segmentation of PolSAR (Polarimetric
synthetic aperture radar) data, which is an e�ective tool to monitor ground surface and to
perform terrain and land use classi�cation [FD98, XJZ16].

PolSAR measures target re�ectivity by using di�erent polarization combinations. Follow-
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Figure 5.16: Comparing the Stein divergence JS with its rotationally invariant variant
JS,R . The depicted results correspond to the scenario of Figure 5.15 and are analogous to the
results shown by Figure 5.14 for the synthetic scenario illustrated by Figure 5.13. The top row
shows the pixelwise distances between each covariance descriptors extracted from the image of
Figure 5.15 and a �xed prototype located at the pile of nails on the right. While the distance �S
considerably di�ers between two piles of nails due to the di�erent orientations, the rotationally-
invariant distance �S,R is more uniform. The bottom row displays pixelwise the optimal rotation
angle that determines �S,R . Up to unavoidable local errors of these locally computed estimates, the
distance �S,R recovers the local orientation of the real texture in the input image (bottom right).

ing the presentation in [NFC14], the polarimetric coherent information associates, at each
frequency of operation, to each pixel a 2 × 2 complex matrix with entries (VV, (VH, (HV, and
(HH, where (8 9 , 8, 9 ∈ {H,V} is the backscattered signal for the 8-th transmission and the
9-th reception of linear polarization. Under mild conditions, (HV = (VH, and the scattering
matrix can be simpli�ed to the three-component complex vector B =

[
(VV,
√

2 (VH, (HH
]>. This

random vector can be modeled by the zero-mean multivariate complex Gaussian distribution
[Goo63]. Di�erent targets are characterized by di�erent variances and, thus, are hard to discern
visually. In order to reveal such di�erences and to improve the signal-to-noise ratio, ! ideally
independent measurements of the same target are obtained while processing the raw data.
These observations are used to produce the multilook sample covariance matrix format

/ =
1
!

∑
8∈[!]

B8 (B8)∗, (5.104)

where the superscript ∗ represents the complex conjugate transpose of a vector, and {B8}8∈[!]
are the ! scattering vectors. Assuming that these vectors are independent, / is a Hermitian
positive de�nite matrix governed by a scaled complex Wishart distribution [ADE09]. Having Σ
and ! as parameters, the scaled complex Wishart distribution is represented by the probability
density function

5/ (I; Σ, !) = !3! det(I)!−3

det(Σ)!Γ3(!)
exp

( − ! tr(Σ−1I)), (5.105)
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5 Unsupervised Label Learning on Manifolds

where Γ3(!) = c3 ∏2
8=0 Γ(! − 8) for ! ≥ 3, Γ(·) is the gamma function, and Σ is the covariance

matrix associated to B .
For the segmentation of real PolSAR data, we apply the unsupervised assignment approach

worked out for the manifold of positive de�nite matrices in Section 5.6.3. For simplicity, we
use the same parameters as for covariance descriptors, i. e., we use the version (CFa) with
U = 10 for the label evolution and |N | = 5 × 5 for the spatial regularization. We compare the
performance of our approach with the performance of the following approaches:

1. Supervised Wishart classi�cation (SWC): each observation is assigned to the class whose
density given by equation (5.105) is maximal.

2. Supervised reaction di�usion equation (SRDE): Method proposed in [GAMF15, GAMF17].
Classi�cation is obtained as the asymptotic state of a reaction di�usion equation system.

3. Riemannian sparse representation with Stein divergence (RSR-S): a kernel embedding-
based approach for dictionary learning and sparse coding for positive de�nite matrices,
proposed in [HHLS16].

original
(Pauli representation) ground truth (SWC)

(supervised)

(SRDE)
(supervised)

(CFa)
(unsupervised)

(RSR-S)
(unsupervised)

Figure 5.17: Experimental results for the San Francisco bay image. The input data is visu-
alized by Pauli representation. The labels of the ground truth and classi�cation results of the
di�erent approaches are encoded by the colors { = ocean, = urban, = forest}, black pixels
in the ground truth image are not associated with any of the three classes. The unsupervised
assignment �ow (CFa) yields more homogeneous regions due to spatial geometric regularization
of the assignments.
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We use a PolSAR image obtained by the AIRSAR sensor over the San Francisco bay.2 The
image is shown in Figure 5.17 using the standard Pauli representation [LE09] which maps an
Hermitian complex matrix into the RGB color space. The image size is 676 × 648 pixels. Three
classes are readily identi�ed: ocean, urban and forest areas.

Figure 5.17 shows the ground truth and the classi�cation results of the di�erent methods.
Our approach yields more homogeneous regions due to spatial geometric regularization of the
assignments. Table 5.1 lists the relative miss-classi�cation errors and the accuracy for each
individual class produced by each approach. Although our unsupervised approach (CFa) had
no access to ground truth data, its performance is close to the performance of the leading
supervised approach (SRDE).

Method Type Error Accuracy by Class

% ocean urban forest

(SWC) supervised 3.78 98.34 92.23 92.68
(SRDE) supervised 1.34 99.91 97.47 92.56
(CFa) unsupervised 1.61 99.95 97.31 89.38
(RSR-S) unsupervised 9.14 96.66 97.96 18.53

Table 5.1: Classi�cation scores for the San Francisco bay image. For each approach the error
is shown as the percentage of miss-classi�ed pixels relative to the ground truth data. Additionally,
the accuracy is shown for each individual class as percentage. Our unsupervised approach (CFa)
achieves results close to the leading supervised approach (SRDE).

5.8 Conclusion

We proposed the unsupervised assignment �ow for performing jointly label evolution on
feature manifolds and spatially regularized label assignment to given feature input data. The
approach alleviates the requirement for supervised image labeling to have proper labels at
hand, because an initial set of labels can evolve and adapt to better values while being assigned
to given data.

The derivation of our approach highlights that it encompasses related state-of-the-art
approaches to unsupervised learning: soft-:-means clustering and EM-based estimation of
mixture distributions with distributions of the exponential family as mixture components (class-
conditional feature distributions). We generalized these approaches to manifold-valued data
and de�ned the unsupervised assignment �ow by coupling label evolution with the assignment
�ow from Section 2.2. We suggested greedy :-center clustering for determining an initial label
set that works with linear complexity in any metric space and with �xed approximation error
bounded from above.

The separation between feature evolution and spatial regularization through assignments
enables the �exible application of our approach to various scenarios, provided some key
operations (divergence function evaluation, exponential map) are computational feasible for

2Details about these freely available data can be accessed at ESA’s web page https://earth.esa.int/web/

polsarpro/data-sources/sample-datasets.
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5 Unsupervised Label Learning on Manifolds

the particular feature manifold at hand. We demonstrated this property for three di�erent
feature manifolds and showed that coupling the evolution of labels and assignments has
bene�cial e�ects in either direction. The approach involved two parameters for the label
evolution part whose role is well understood. The only essential parameter for the label
assignment part is the neighborhood size used for spatial regularization.

Our unsupervised learning approach is consistent in that the very same approach that is
used for supervised labeling is used for label learning, without need to resort to approximate
inference due to the complexity of learning, as is the case, e. g., for learning with graphical
models.

A key property of our approach is the sparsifying e�ect of spatial assignment regularization
on unsupervised label learning. All experiments in this paper were conducted using uniform
weights {l8: }:∈N8 for the spatial regularization of assignments – cf. (5.36). Learning these
weights from data in order to represent the spatial context of typical feature occurrences
as prior knowledge has been studied recently [HSPS19a]. Working out a mathematically
consistent way to extend this approach to unsupervised scenarios, as studied in this chapter,
de�nes an exciting modeling problem.
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6 Conclusion

6.1 Summary

We focused on the image labeling problem and based our work on the assignment �ow approach
[ÅPSS17]. In addition to a mathematical investigation of the approach, we considered two
important aspects of the image labeling problem. Firstly, we investigated how local label
statistics can be included in the inference. Secondly, we addressed the question of how suitable
labels for the labeling problem can be determined from the data.

In Chapter 3 we formulated and proved some theoretical statements concerning the asymp-
totic behavior of the assignment �ow. This includes the statement postulated in [ÅPSS17] that
the assignment �ow for data in general position converges to integral assignment probabilities
and thus unique label decisions. We showed this statement under mild conditions on the
parameters. Furthermore, we examined the stability of limits and, for limits that ful�ll a certain
stability criterion, we derived a condition which makes it possible to verify convergence to
these limits at an early stage. This condition provides a convergence guarantee, which we
demonstrated on an academic example. The stability analysis was also carried out for the
discretization [Sav+17] and we veri�ed the convergence criterion for this discrete case as well.
At the end, we considered a generalization of the (-�ow [SS20], where the regularization also
interacts between labels, and we discussed how the theoretical statements from this chapter
apply to this �ow.

Chapter 4 dealt with local label statistics induced by global convex constraints on �ltering
results of assignment probabilities. These constraints are incorporated into the labeling process
by modifying the vector �eld of the assignment �ow utilizing logarithmic barrier functions.
The corresponding �lters were learned from examples by solving an eigendecomposition and
the e�ectiveness of the approach was evaluated in academic experiments.

In Chapter 5 we dealt with unsupervised label learning, i.e., no labels were given in ad-
vance for the labeling problem. As these labels should re�ect the spatial regularization of
the assignments, we took the approach of adapting initial labels over time to the assignment
probabilities. For e�ciency reasons, initial labels were determined with a greedy approximation
of :-center clustering, which also provides a performance guarantee. The adaptation of the
labels is done by a �ow in the feature space, which is coupled to the assignment �ow. This
coupling is controlled by a parameter that balances the in�uence of data �delity and spatial
regularization on the label evolution. The simultaneous label learning and assignment not only
improves the labels, but the improved labels also have a positive e�ect on the resulting image
segmentation. The approach assumes that the data lie on a Riemannian manifold. We worked
out the approach for the one-dimensional sphere, the Lie group of rotation matrices, and the
set of positive de�nite matrices. Finally, we evaluated the approach in numerous experiments.
These experiments demonstrated the in�uence of the parameters and the applicability for
di�erent manifolds.
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6 Conclusion

6.2 Outlook

Finally, we would like to list some interesting research directions, in particular on label statistics,
which have partly arisen from the results of this work:

• Label statistics induced by weights. The stability criteria in Corollary 3.6.5 show
that label statistics can be induced by the weights that parameterize the similarity
map (2.104). In this context, weights are considered which also interact between labels.
Based on the �ow in Section 3.6, a new approach for inducing label statistics could be
developed. This would require further work on learning these weights on the basis of
exemplary labelings. In some applications where label statistics are partially known,
such as ordering constraints in OCT data [RSS14], the approach could also be tried with
handcrafted weights. For the manual design of the weights one could rely on the stability
criteria in Corollary 3.6.5.

• Parameter learning using stability criteria. Parameter learning is about determining
parameters for given data and an optimality condition, e.g. given by a groundtruth,
so that the limit of the assignment �ow with these parameters meets the optimality
condition. In [HSPS19b] a large-scale system of ODEs is considered for this problem.
An interesting research question is whether the stability criteria in Corollary 3.4.5 and
the estimates of the basin of attraction in Proposition 3.4.12 can be used to develop an
e�cient approach to this.

• Prior label statistics for unsupervised label learning. Label learning could be im-
proved if additional information like prior label statistics are incorporated into the label
learning process. This approach would be limited to applications where certain label
statistics such as ordering constraints are known in advance. A challenge with this
combination is that label statistics specify a certain arrangement of the labels, whereas
(unsupervised) clustering, by its nature, does not have an arrangement of the clusters.
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A Proofs of Propositions in Section 2.3

Proposition 2.3.9. Let G∗ be an equilibrium point of ¤G (C) = � (G (C)) with � ∈ �1(* ,ℝ=). Then
(a) There exist a su�ciently small Y1 > 0 and a (real) similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
= �, (A.1)

such that

(i) Re(_) ≤ 0 for all eigenvalues _ of �sc,

(ii) Re(_) > 0 for all eigenvalues _ of �u,

(iii) 〈~sc, �sc~sc〉 ≤ Y1
4 ‖~sc‖2,

(iv) 〈~u, �u~u〉 ≥ Y1‖~u‖2.
(b) Suppose m�

mG
(G∗) has at least one eigenvalue _ with Re(_) > 0. Considering an a�ne coordinate

transform ~ = + −1(G − G∗) with + ∈ GL= (ℝ) from (a), the resulting �ow

¤~ = � (~) = + −1� (+~ + G∗), (A.2)

which has the equilibrium ~∗ = 0 with m�
m~
(0) = + −1 m�

mG
(G∗)+ = �, has the following property.

There exist [ > 0, X > 0 and Y > 0, such that if the �ow starts at some point in the open
truncated cone

*[,X =

{
~ =

( ~sc
~u

) ∈ ℝ= : ‖~sc‖2 < [‖~u‖2, ‖~‖ < X
}
⊂ �X (0) =

{
~ ∈ ℝ= : ‖~‖ < X},

(A.3)
then the solution will not cross the conical portion of m*[,X , i.e.{

~ ∈ ℝ= : ‖~sc‖2 = [‖~u‖2, ‖~‖ < X
}
, (A.4)

and it ful�lls ‖~ (C)‖ ≥ ‖~ (0)‖4YC as long as ~ (C) ∈ *[,X , i.e., ~ (C) leaves the ball �X (0) at
some time point. Especially, the equilibrium ~∗ = 0 is unstable. This property is accordingly
transferred to the equilibrium G∗ of ¤G (C) = � (G (C)) using G (C) = +~ (C) + G∗.

Proof. We work out the sketched proof in [SC16, Section 6.8.4].

(a) By [HJ12, Theorem 3.4.1.5], any real = × = matrix is similar to a real block diagonal matrix
with blocks either of the form

�: (_) =
©«
_ 1

. . .
. . .

. . . 1
_

ª®®®®®¬
∈ ℝ:×: (A.5)

129



A Proofs of Propositions in Section 2.3

in case of a real eigenvalue _ or of the form

�: (0, 1) =
©«
�1(0, 1) �2

. . .
. . .

. . . �2
�1(0, 1)

ª®®®®®¬
∈ ℝ2:×2: with �1(0, 1) =

(
0 −1
1 0

)
(A.6)

in case of a pair of complex conjugate eigenvalues _ = 0 ± 1i. These blocks are unique up
to their order. The size of these blocks, i.e. : ∈ ℕ, depends on the algebraic and geometric
multiplicity of the corresponding eigenvalues. The nilpotent part in the blocks �: (_) and
�: (0, 1) can be scaled by an Y > 0 using another similarity transform:

+ −1 �: (_)+ =

©«
_ Y

. . .
. . .

. . . Y

_

ª®®®®®¬
for + = Diag

(
1, Y, Y2, . . . , Y:−1), (A.7)

+ −1�: (0, 1)+ =

©«
�1(0, 1) Y�2

. . .
. . .

. . . Y�2
�1(0, 1)

ª®®®®®¬
for + = Diag

(
1, 1, Y, Y, Y2, Y2, . . . , Y:−1, Y:−1) . (A.8)

We will denote the latter blocks by �:,Y (_) and �:,Y (0, 1). These blocks ful�ll(
0 − Y) ‖G ‖2 ≤ 〈

G,�:,Y (0, 1)G
〉 ≤ (

0 + Y) ‖G ‖2 ∀G ∈ ℝ2: , (A.9a)
(_ − Y)‖G ‖2 ≤ 〈

G, �:,Y (_)G
〉 ≤ (_ + Y)‖G ‖2 ∀G ∈ ℝ: . (A.9b)

Note that
〈
G,�1(0, 1)G

〉
= 0‖G ‖2. By ordering the blocks, we get a similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
, (A.10)

where �sc and �u are block diagonal matrices with �sc containing blocks �:,Y (_) and
�:,Y (0, 1) for eigenvalues _ with Re(_) ≤ 0, and�u containing the blocks for the remaining
eigenvalues. By (A.9), we get

〈~sc, �sc~sc〉 ≤
(

max
_∈f (�sc)

Re(_) + Y
)
‖~sc‖2 ≤ Y‖~sc‖2, (A.11a)

〈~u, �u~u〉 ≥
(

min
_∈f (�u)

Re(_) − Y
)
‖~u‖2 (A.11b)

Hence, the choice
Y1 =

4
5 min
_∈f (�u)

Re(_) > 0, Y =
Y1
4 (A.12)

in the above transformations completes the proof.
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(b) We have � (~) = �~ + A (~) with ‖A (~) ‖‖~ ‖ → 0 for ‖~‖ → 0. We set

[ =
Y1

4‖�sc‖ , Y =
Y1

2(1 + [) , (A.13)

and X > 0 such that
‖A (~)‖
‖~‖ < min

{ Y1
4(1 + [) ,

Y1[
1
2

4(1 + [)
}

for ‖~‖ < X. (A.14)

We bound
〈~,� (~)〉 = 〈~sc, �sc~sc〉 + 〈~u, �u~u〉 + 〈~, A (~)〉 (A.15)

by estimating each summand individually. We note that ~ ∈ *[,X implies

‖~sc‖2 ≤ [‖~u‖2, (A.16a)
‖~‖2 = ‖~sc‖2 + ‖~u‖2 ≤ (1 + [)‖~u‖2. (A.16b)

Hence we get

〈~sc, �sc~sc〉 ≥ −‖�sc‖‖~sc‖2
(A.16a)≥ −[‖�sc‖‖~u‖2 (A.13)

= − Y1
4 ‖~u‖2

(A.16b)≥ − Y1
4(1+[) ‖~‖2

(A.13)
= − Y2 ‖~‖2,

(A.17a)

〈~u, �u~u〉
(a)≥ Y1‖~u‖2

(A.16b)≥ Y1
1+[ ‖~‖2

(A.13)
= 2Y‖~‖2, (A.17b)

〈~, A (~)〉 ≥ −‖~‖‖A (~)‖ (A.14)≥ − Y1
4(1+[) ‖~‖2

(A.13)
= − Y2 ‖~‖2. (A.17c)

Combining the estimates (A.17) with (A.15) gives

〈~,� (~)〉 ≥ − Y2 ‖~‖2 + 2Y‖~‖2 − Y
2 ‖~‖2 = Y‖~‖2. (A.18)

This implies d
dC ‖~ (C)‖2 = 2〈~,� (~)〉 ≥ 2Y‖~ (C)‖2, i.e. ‖~ (C)‖2 ≥ 42YC ‖~ (0)‖2 as long as

~ (C) ∈ *[,X . It remains to show that C ↦→ ~ (C) cannot leave*[,X through the conical portion
of m*[,X , i.e., C ↦→ ~ (C) eventually leaves the ball �X (0) at a point in time. Let ~ ∈ m*[,X be
a point on the conical portion, that means,

‖~sc‖2 = [‖~u‖2 and ‖~‖2 = 1+[
[
‖~sc‖2. (A.19)

The inward normal # = # (~) = (−~sc, [~u) at ~ ∈ m*[,X ful�lls

‖# ‖2 = (1 + [)‖~sc‖2. (A.20)

We consider each summand of

〈# (~),� (~)〉 = −〈~sc, �sc~sc〉 + [〈~u, �u~u〉 + 〈#, A (~)〉 (A.21)

separately and �nd

〈~sc, �sc~sc〉
(a)≤ Y1

4 ‖~sc‖2, (A.22a)

[〈~u, �u~u〉
(a)≥ Y1[‖~u‖2 (A.19)

= Y1‖~sc‖2, (A.22b)

〈#, A (~)〉 ≥ −‖# ‖‖A (~)‖ (A.20)
= −(1 + [) 1

2 ‖~sc‖‖A (~)‖
(A.14)≥ −(1 + [) 1

2 Y1[
1
2

4(1+[) ‖~sc‖‖~‖ (A.19)
= − Y1

4 ‖~sc‖2.
(A.22c)
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A Proofs of Propositions in Section 2.3

This implies

〈# (~),� (~)〉 ≥ −Y1
4 ‖~sc‖2 + Y1‖~sc‖2 − Y1

4 ‖~sc‖2 = Y1
2 ‖~sc‖2 ≥ 0 (A.23)

with equality only for ~ = 0, which completes the proof.

�

Proposition 2.3.13. Let G∗ be an equilibrium point of G (C+1) = � (G (C ) ). Then

(a) There exist a su�ciently small Y1 > 0 and a (real) similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
= �, (A.24)

such that

(i) |_ | ≤ 1 for all eigenvalues _ of �sc,

(ii) |_ | > 1 for all eigenvalues _ of �u,

(iii) ‖�sc~sc‖2 ≤ (1 + Y1
4 )2‖~sc‖2,

(iv) ‖�u~u‖2 ≥ (1 + Y1)2‖~u‖2.

(b) Suppose m�
mG
(G∗) has at least one eigenvalue _ with |_ | > 1. Considering an a�ne coordinate

transform ~ = + −1(G − G∗) with + ∈ GL= (ℝ) from (a), the resulting map

� (~) = + −1 (� (+~ + G∗) − G∗), (A.25)

which has the �xed point ~∗ = 0 with m�
m~
(0) = + −1 m�

mG
(G∗)+ = �, has the following property.

There exist [ > 0 and X > 0, such that if ~ (0) is a point in the open truncated cone *[,X =

�[ ∩ �X (0) with

�[ =

{
~ =

( ~sc
~u

) ∈ ℝ= : ‖~sc‖2 < [‖~u‖2
}
, (A.26a)

�X (0) =
{
~ ∈ ℝ= : ‖~‖ < X}, (A.26b)

then we have

(i)
� (~ (0) )2 ≥ (1 + Y1)

~ (0)2,

(ii) � (~ (0) ) ∈ �[ .
Hence, the sequence ~ (C+1) = � (~ (C ) ) eventually leaves the ball �X (0) at some time point.
Especially, the equilibrium ~∗ = 0 is unstable. This property is accordingly transferred to the
equilibrium point G∗ of � (G) using G (C ) = +~ (C ) + G∗.

Proof. We adapt the proof of proposition 2.3.9.

(a) Analogously to the proof of proposition 2.3.9, we get a similarity transform

+ −1 m�
mG
(G∗)+ =

(
�sc 0
0 �u

)
, (A.27)
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where �sc and �u are block diagonal matrices with �sc containing blocks �:,Y (_) and
�:,Y (0, 1) for eigenvalues _ with |_ | ≤ 1, and �u containing the blocks for the remaining
eigenvalues. The blocks �:,Y (_) and �:,Y (0, 1) ful�ll

�1(0, 1)G
2

= (02 + 12)‖G ‖2 and(√
02 + 12 − Y)2‖G ‖2 ≤

�:,Y (0, 1)G2 ≤ (√
02 + 12 + Y)2‖G ‖2 ∀G ∈ ℝ2: , (A.28a)( |_ | − Y)2‖G ‖2 ≤

�:,Y (_)G2 ≤ (|_ | + Y)2‖G ‖2 ∀G ∈ ℝ: . (A.28b)

This implies �sc~sc
2 ≤

(
max

_∈f (�sc)
|_ | + Y

)2
‖~sc‖2 ≤ (1 + Y)2‖~sc‖2, (A.29a)�u~u

2 ≥
(

min
_∈f (�u)

|_ | − Y
)2
‖~u‖2. (A.29b)

Hence, the choice
Y1 =

4
5

(
min

_∈f (�u)
|_ | − 1

)
> 0, Y =

Y1
4 (A.30)

completes the proof.

(b) We have � (~) = �~ + A (~) with ‖A (~) ‖‖~ ‖ → 0 for ‖~‖ → 0. We set

[ =
Y1

2(1 + 2Y1) , (A.31)

and X > 0 such that ‖~‖ < X implies

‖A (~)‖
‖~‖ < A0 B min

{
Y1

4‖�‖ ,
Y1

4‖�u‖(1 + [) 1
2
,

( [Y1
2(1 + [)

) 1
2
,

[
1
2 Y1

4‖�sc‖(1 + [) 1
2

}
. (A.32)

We bound each summand of

|� (~)‖2 = ‖�sc~sc‖2 + ‖�u~u‖2 + ‖A (~)‖2 + 2〈�~, A (~)〉 (A.33)

separately. For ~ ∈ *[,X , we get

‖�sc~sc‖2 ≥ 0, (A.34a)

‖�u~u‖2
(a)≥ (1 + Y1)2‖~u‖2 ≥ (1 + 2Y1)‖~u‖2 = (1 + 2Y1)‖~‖2 − (1 + 2Y1)‖~sc‖2

≥ (1 + 2Y1)‖~‖2 − (1 + 2Y1)[‖~‖2 (A.31)
= (1 + 3Y1

2 )‖~‖2,
(A.34b)

‖A (~)‖2 ≥ 0, (A.34c)

2〈�~, A (~)〉 ≥ −2‖�‖‖~‖‖A (~)‖ (A.32)≥ − Y1
2 ‖~‖2, (A.34d)

and hence
‖� (~)‖2 ≥ (1 + Y1)‖~‖2. (A.35)

In order to verify � (~) ∈ �[ for ~ ∈ *[,X , we write

� (~) =
(
�sc(~)
�u(~)

)
=

(
�sc

�u

) (
~sc
~u

)
+

(
Asc(~)
Au(~)

)
. (A.36)
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A Proofs of Propositions in Section 2.3

We regard each summand of the right-hand side of

[‖�u(~)‖2 − ‖�sc(~)‖2 = [‖�u~u‖2 + [‖Au(~)‖2 + 2[〈�u~u, Au(~)〉
− ‖�sc~sc‖2 − ‖Asc(~)‖2 − 2〈�sc~sc, Asc(~)〉

(A.37)

separately. We have

[‖�u~u‖2
(a)≥ [ (1 + Y1)2‖~u‖2, (A.38a)

[‖Au(~)‖2 ≥ 0, (A.38b)

2[〈�u~u, Au(~)〉 ≥ −2[‖�u‖‖~u‖‖A (~)‖
(A.32)≥ −2[ (1 + [) 1

2 A0‖�u‖‖~u‖2
(A.32)≥ −[Y1

2 ‖~u‖2,
(A.38c)

‖�sc~sc‖2
(a)≤ (1 + Y1

4 )2‖~sc‖2
~∈*[,X≤ (1 + Y1

4 )2[‖~u‖2, (A.38d)

‖Asc(~)‖2 ≤ ‖A (~)‖2
(A.32)≤ A 2

0 (1 + [)‖~u‖2
(A.32)≤ [Y1

2 ‖~u‖2, (A.38e)

2〈�sc~sc, Asc(~)〉 ≤ 2‖�sc‖‖~sc‖‖A (~)‖
(A.32)≤ 2‖�sc‖[

1
2 (1 + [) 1

2 A0‖~u‖2
(A.32)≤ [Y1

2 ‖~u‖2.
(A.38f)

Combining the estimations (A.38) with (A.37) gives

[‖�u(~)‖2 − ‖�sc(~)‖2 ≥ [ (1 + Y1)2‖~u‖2 − [Y1
2 ‖~u‖2

− (1 + Y1
4 )2[‖~u‖2 − [Y1

2 ‖~u‖2 − [Y1
2 ‖~u‖2

(A.39a)

=
15[Y2

1
16 ‖~u‖2 > 0. (A.39b)

This shows � (~) ∈ �[ .

�
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