1,994 research outputs found

    A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    Tracking and Fusion Methods for Extended Targets Parameterized by Center, Orientation, and Semi-axes

    Get PDF
    The improvements in sensor technology, e.g., the development of automotive Radio Detection and Ranging (RADAR) or Light Detection and Ranging (LIDAR), which are able to provide a higher detail of the sensor’s environment, have introduced new opportunities but also new challenges to target tracking. In classic target tracking, targets are assumed as points. However, this assumption is no longer valid if targets occupy more than one sensor resolution cell, creating the need for extended targets, modeling the shape in addition to the kinematic parameters. Different shape models are possible and this thesis focuses on an elliptical shape, parameterized with center, orientation, and semi-axes lengths. This parameterization can be used to model rectangles as well. Furthermore, this thesis is concerned with multi-sensor fusion for extended targets, which can be used to improve the target tracking by providing information gathered from different sensors or perspectives. We also consider estimation of extended targets, i.e., to account for uncertainties, the target is modeled by a probability density, so we need to find a so-called point estimate. Extended target tracking provides a variety of challenges due to the spatial extent, which need to be handled, even for basic shapes like ellipses and rectangles. Among these challenges are the choice of the target model, e.g., how the measurements are distributed across the shape. Additional challenges arise for sensor fusion, as it is unclear how to best consider the geometric properties when combining two extended targets. Finally, the extent needs to be involved in the estimation. Traditional methods often use simple uniform distributions across the shape, which do not properly portray reality, while more complex methods require the use of optimization techniques or large amounts of data. In addition, for traditional estimation, metrics such as the Euclidean distance between state vectors are used. However, they might no longer be valid because they do not consider the geometric properties of the targets’ shapes, e.g., rotating an ellipse by 180 degree results in the same ellipse, but the Euclidean distance between them is not 0. In multi-sensor fusion, the same holds, i.e., simply combining the corresponding elements of the state vectors can lead to counter-intuitive fusion results. In this work, we compare different elliptic trackers and discuss more complex measurement distributions across the shape’s surface or contour. Furthermore, we discuss the problems which can occur when fusing extended target estimates from different sensors and how to handle them by providing a transformation into a special density. We then proceed to discuss how a different metric, namely the Gaussian Wasserstein (GW) distance, can be used to improve target estimation. We define an estimator and propose an approximation based on an extension of the square root distance. It can be applied on the posterior densities of the aforementioned trackers to incorporate the unique properties of ellipses in the estimation process. We also discuss how this can be applied to rectangular targets as well. Finally, we evaluate and discuss our approaches. We show the benefits of more complex target models in simulations and on real data and we demonstrate our estimation and fusion approaches compared to classic methods on simulated data.2022-01-2

    Automated Segmentation of Left and Right Ventricles in MRI and Classification of the Myocarfium Abnormalities

    Get PDF
    A fundamental step in diagnosis of cardiovascular diseases, automated left and right ventricle (LV and RV) segmentation in cardiac magnetic resonance images (MRI) is still acknowledged to be a difficult problem. Although algorithms for LV segmentation do exist, they require either extensive training or intensive user inputs. RV segmentation in MRI has yet to be solved and is still acknowledged a completely unsolved problem because its shape is not symmetric and circular, its deformations are complex and varies extensively over the cardiac phases, and it includes papillary muscles. In this thesis, I investigate fast detection of the LV endo- and epi-cardium surfaces (3D) and contours (2D) in cardiac MRI via convex relaxation and distribution matching. A rapid 3D segmentation of the RV in cardiac MRI via distribution matching constraints on segment shape and appearance is also investigated. These algorithms only require a single subject for training and a very simple user input, which amounts to one click. The solution is sought following the optimization of functionals containing probability product kernel constraints on the distributions of intensity and geometric features. The formulations lead to challenging optimization problems, which are not directly amenable to convex-optimization techniques. For each functional, the problem is split into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Finally, an information-theoretic based artificial neural network (ANN) is proposed for normal/abnormal LV myocardium motion classification. Using the LV segmentation results, the LV cavity points is estimated via a Kalman filter and a recursive dynamic Bayesian filter. However, due to the similarities between the statistical information of normal and abnormal points, differentiating between distributions of abnormal and normal points is a challenging problem. The problem was investigated with a global measure based on the Shannon\u27s differential entropy (SDE) and further examined with two other information-theoretic criteria, one based on Renyi entropy and the other on Fisher information. Unlike the existing information-theoretic studies, the approach addresses explicitly the overlap between the distributions of normal and abnormal cases, thereby yielding a competitive performance. I further propose an algorithm based on a supervised 3-layer ANN to differentiate between the distributions farther. The ANN is trained and tested by five different information measures of radial distance and velocity for points on endocardial boundary
    • …
    corecore