117 research outputs found

    Image counter-forensics based on feature injection

    Get PDF
    Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image (x) over tilde, perceptually similar to x, whose feature f((x) over tilde) is as close as possible to f (y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Phi(z) = vertical bar f (z) f (y) vertical bar through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods

    An efficient computational approach to balance the trade-off between image forensics and perceptual image quality

    Get PDF
    The increasing trends of image processing applications play a very crucial role in the modern-day information propagation with the ease of cost effectiveness. As image transmission or broadcasting is the simplest form communication which determines easy, fastest and effective way of network resource utilization, thereby since past one decade it has gained significant attention among various research communities. As most of the image attributes often contains visual entities corresponding to any individual, hence, exploration and forging of such attributes with malicious intention often leads to social and personal life violation and also causes intellectual property right violation when social media, matrimonial and business applications are concerned. Although an extensive research effort endeavored pertaining to image forensics in the past, but existing techniques lack effectiveness towards maintaining equilibrium in between both image forensics and image quality assessment performances from computational viewpoint. Addressing this limitation associated with the existing system, this proposed study has come up with a novel solution which achieves higher degree of image forensics without compromising the visual perception of an image. The study formulates an intelligent empirical framework which determines cost-effective authentication of an image object from both complexity and quality viewpoint. Finally, the study also presented a numerical simulation outcome to ensure the performance efficiency of the system

    Reviewing the Effectivity Factor in Existing Techniques of Image Forensics

    Get PDF
    Studies towards image forensics are about a decade old and various forms of research techniques have been presented till date towards image forgery detection. Majority of the existing techniques deals with identification of tampered regions using different forms of research methodologies. However, it is still an open-end question about the effectiveness of existing image forgery detection techniques as there is no reported benchmarked outcome till date about it. Therefore, the present manuscript discusses about the most frequently addressed image attacks e.g. image splicing and copy-move attack and elaborates the existing techniques presented by research community to resist it. The paper also contributes to explore the direction of present research trend with respect to tool adoption, database adoption, and technique adoption, and frequently used attack scenario. Finally, significant open research gap are explored after reviewing effectiveness of existing techniques

    Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics

    Full text link
    Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos, especially on social media platforms, such as Twitter and Instagram, which spread disinformation and fake news. This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media. However, media forgery detection techniques are susceptible to anti-forensics; on the other hand, such anti-forensics techniques can themselves be detected. We therefore further cover both anti-forensics and counter anti-forensics techniques in image and video. Finally, we conclude this survey by highlighting some open problems in this domain

    On the Removal of Steganographic Content from Images

    Get PDF
    Steganography is primarily used for the covert transmission of information even though the purpose can be legitimate or malicious. The primary purpose of this work is to build a firewall which will thwart this transmission. This will be achieved by radiometric and geometric operations. These operations will degrade the quality of cover image. However these can be restored to some extent by a deconvolution operation. The finally deconvolved image is subjected to steganalysis to verify the absence of stego content. Experimental results showed that PSNR and SSIM values are between 35 dB - 45 dB and 0.96, respectively which are above the acceptable range. Our method can suppress the stego content to large extent irrespective of embedding algorithm in spatial and transform domain. We verified by using RS steganalysis, difference image histogram and chi-square attack, that 95 per cent of the stego content embedded in the spatial domain was removed by our showering techniques. We also verified that 100 per cent of the stego content was removed in the transform domain with PSNR 30 dB - 45 dB and SSIM between 0.67-0.99. Percentage of stego removed in both domains was measured by using bit error rate and first order Markov feature

    Vers l’anti-criminalistique en images numériques via la restauration d’images

    Get PDF
    Image forensics enjoys its increasing popularity as a powerful image authentication tool, working in a blind passive way without the aid of any a priori embedded information compared to fragile image watermarking. On its opponent side, image anti-forensics attacks forensic algorithms for the future development of more trustworthy forensics. When image coding or processing is involved, we notice that image anti-forensics to some extent shares a similar goal with image restoration. Both of them aim to recover the information lost during the image degradation, yet image anti-forensics has one additional indispensable forensic undetectability requirement. In this thesis, we form a new research line for image anti-forensics, by leveraging on advanced concepts/methods from image restoration meanwhile with integrations of anti-forensic strategies/terms. Under this context, this thesis contributes on the following four aspects for JPEG compression and median filtering anti-forensics: (i) JPEG anti-forensics using Total Variation based deblocking, (ii) improved Total Variation based JPEG anti-forensics with assignment problem based perceptual DCT histogram smoothing, (iii) JPEG anti-forensics using JPEG image quality enhancement based on a sophisticated image prior model and non-parametric DCT histogram smoothing based on calibration, and (iv) median filtered image quality enhancement and anti-forensics via variational deconvolution. Experimental results demonstrate the effectiveness of the proposed anti-forensic methods with a better forensic undetectability against existing forensic detectors as well as a higher visual quality of the processed image, by comparisons with the state-of-the-art methods.La criminalistique en images numériques se développe comme un outil puissant pour l'authentification d'image, en travaillant de manière passive et aveugle sans l'aide d'informations d'authentification pré-intégrées dans l'image (contrairement au tatouage fragile d'image). En parallèle, l'anti-criminalistique se propose d'attaquer les algorithmes de criminalistique afin de maintenir une saine émulation susceptible d'aider à leur amélioration. En images numériques, l'anti-criminalistique partage quelques similitudes avec la restauration d'image : dans les deux cas, l'on souhaite approcher au mieux les informations perdues pendant un processus de dégradation d'image. Cependant, l'anti-criminalistique se doit de remplir au mieux un objectif supplémentaire, extit{i.e.} : être non détectable par la criminalistique actuelle. Dans cette thèse, nous proposons une nouvelle piste de recherche pour la criminalistique en images numériques, en tirant profit des concepts/méthodes avancés de la restauration d'image mais en intégrant des stratégies/termes spécifiquement anti-criminalistiques. Dans ce contexte, cette thèse apporte des contributions sur quatre aspects concernant, en criminalistique JPEG, (i) l'introduction du déblocage basé sur la variation totale pour contrer les méthodes de criminalistique JPEG et (ii) l'amélioration apportée par l'adjonction d'un lissage perceptuel de l'histogramme DCT, (iii) l'utilisation d'un modèle d'image sophistiqué et d'un lissage non paramétrique de l'histogramme DCT visant l'amélioration de la qualité de l'image falsifiée; et, en criminalistique du filtrage médian, (iv) l'introduction d'une méthode fondée sur la déconvolution variationnelle. Les résultats expérimentaux démontrent l'efficacité des méthodes anti-criminalistiques proposées, avec notamment une meilleure indétectabilité face aux détecteurs criminalistiques actuels ainsi qu'une meilleure qualité visuelle de l'image falsifiée par rapport aux méthodes anti-criminalistiques de l'état de l'art

    Re-compression Based JPEG Forgery Detection and Localization with Optimal Reconstruction

    Get PDF
    In today’s media–saturated society, digital images act as the primary carrier for majority of information that flows around us. However, because of the advent of highly sophisticated easy–to–use image processing tools, modifying images has become easy. Joint Photographic Experts Group (JPEG) is the most widely used format, prevalent today as a world–wide standard, for compression and storage of digital images. Almost all present–day digital cameras use the JPEG format for image acquisition and storage, due to its efficient compression features and optimal space requirement. In this propose work we aim to detect malicious tampering of JPEG images, and subsequently reconstruct the forged image optimally. We deal with lossy JPEG image format in this paper, which is more widely adopted compared to its lossless counter–part. The proposed technique is capable of detecting single as well as multiple forged regions in a JPEG image. We aim to achieve optimal reconstruction since the widely used JPEG being a lossy technique, under no condition would allow 100% reconstruction. The proposed reconstruction is optimal in the sense that we aim to obtain a form of the image, as close to its original form as possible, apart from eliminating the effects of forgery from the image. In this work, we exploit the inherent characteristics of JPEG compression and re–compression, for forgery detection and reconstruction of JPEG images. To prove the efficiency of our proposed technique we compare it with the other JPEG forensic techniques and using quality metric measures we assess the visual quality of the reconstructed image

    Novel framework for optimized digital forensic for mitigating complex image attacks

    Get PDF
    Digital Image Forensic is significantly becoming popular owing to the increasing usage of the images as a media of information propagation. However, owing to the presence of various image editing tools and softwares, there is also an increasing threats over image content security. Reviewing the existing approaches of identify the traces or artifacts states that there is a large scope of optimization to be implmentation to further enhance teh processing. Therfore, this paper presents a novel framework that performs cost effective optmization of digital forensic tehnqiue with an idea of accurately localizing teh area of tampering as well as offers a capability to mitigate the attacks of various form. The study outcome shows that propsoed system offers better outcome in contrast to existing system to a significant scale to prove that minor novelty in design attribute could induce better improvement with respect to accuracy as well as resilience toward all potential image threats
    corecore