2,575 research outputs found

    Observability in Connected Strongly Regular Graphs and Distance Regular Graphs

    Get PDF
    International audienceThis paper concerns the study of observability in consensus networks modeled with strongly regular graphs or distance regular graphs. We first give a Kalman-like simple algebraic criterion for observability in distance regular graphs. This criterion consists in evaluating the rank of a matrix built with the components of the Bose-Mesner algebra associated with the considered graph. Then, we define some bipartite graphs that capture the observability properties of the graph to be studied. In particular, we show that necessary and sufficient observability conditions are given by the nullity of the so-called local bipartite observability graph (resp. local unfolded bipartite observability graph) for strongly regular graphs (resp. distance regular graphs). When the nullity cannot be derived directly from the structure of these bipartite graphs, the rank of the associated bi-adjacency matrix allows evaluating observability. Eventually, as a by-product of the main results we show that non-observability can be stated just by comparing the valency of the graph to be studied with a bound computed from the number of vertices of the graph and its diameter. Similarly nonobservability can also be stated by evaluating the size of the maximum matching in the above mentioned bipartite graphs

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Geometric aspects of 2-walk-regular graphs

    Full text link
    A tt-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most tt. Such graphs generalize distance-regular graphs and tt-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance regular graphs. We will generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's multiplicity bound and Terwilliger's analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show

    An inequality involving the second largest and smallest eigenvalue of a distance-regular graph

    Get PDF
    For a distance-regular graph with second largest eigenvalue (resp. smallest eigenvalue) \mu1 (resp. \muD) we show that (\mu1+1)(\muD+1)<= -b1 holds, where equality only holds when the diameter equals two. Using this inequality we study distance-regular graphs with fixed second largest eigenvalue.Comment: 15 pages, this is submitted to Linear Algebra and Applications

    Shilla distance-regular graphs

    Full text link
    A Shilla distance-regular graph G (say with valency k) is a distance-regular graph with diameter 3 such that its second largest eigenvalue equals to a3. We will show that a3 divides k for a Shilla distance-regular graph G, and for G we define b=b(G):=k/a3. In this paper we will show that there are finitely many Shilla distance-regular graphs G with fixed b(G)>=2. Also, we will classify Shilla distance-regular graphs with b(G)=2 and b(G)=3. Furthermore, we will give a new existence condition for distance-regular graphs, in general.Comment: 14 page
    • …
    corecore