345 research outputs found

    The personal hearing system- A software hearing aid for a personal communication system

    Get PDF
    A concept and architecture of a personal communication system (PCS) is introduced that integrates audio communication and hearing support for the elderly and hearing-impaired through a personal hearing system (PHS). The concept envisions a central processor connected to audio headsets via a wireless body area network (WBAN). To demonstrate the concept, a prototype PCS is presented that is implemented on a netbook computer with a dedicated audio interface in combination with a mobile phone. The prototype can be used for field-testing possible applications and to reveal possibilities and limitations of the concept of integrating hearing support in consumer audio communication devices. It is shown that the prototype PCS can integrate hearing aid functionality, telephony, public announcement systems, and home entertainment. An exemplary binaural speech enhancement scheme that represents a large class of possible PHS processing schemes is shown to be compatible with the general concept. However, an analysis of hardware and software architectures shows that the implementation of a PCS on future advanced cell phone-like devices is challenging. Because of limitations in processing power, recoding of prototype implementations into fixed point arithmetic will be required and WBAN performance is still a limiting factor in terms of data rate and delay

    A survey on hardware and software solutions for multimodal wearable assistive devices targeting the visually impaired

    Get PDF
    The market penetration of user-centric assistive devices has rapidly increased in the past decades. Growth in computational power, accessibility, and cognitive device capabilities have been accompanied by significant reductions in weight, size, and price, as a result of which mobile and wearable equipment are becoming part of our everyday life. In this context, a key focus of development has been on rehabilitation engineering and on developing assistive technologies targeting people with various disabilities, including hearing loss, visual impairments and others. Applications range from simple health monitoring such as sport activity trackers, through medical applications including sensory (e.g. hearing) aids and real-time monitoring of life functions, to task-oriented tools such as navigational devices for the blind. This paper provides an overview of recent trends in software and hardware-based signal processing relevant to the development of wearable assistive solutions

    Studies on binaural and monaural signal analysis methods and applications

    Get PDF
    Sound signals can contain a lot of information about the environment and the sound sources present in it. This thesis presents novel contributions to the analysis of binaural and monaural sound signals. Some new applications are introduced in this work, but the emphasis is on analysis methods. The three main topics of the thesis are computational estimation of sound source distance, analysis of binaural room impulse responses, and applications intended for augmented reality audio. A novel method for binaural sound source distance estimation is proposed. The method is based on learning the coherence between the sounds entering the left and right ears. Comparisons to an earlier approach are also made. It is shown that these kinds of learning methods can correctly recognize the distance of a speech sound source in most cases. Methods for analyzing binaural room impulse responses are investigated. These methods are able to locate the early reflections in time and also to estimate their directions of arrival. This challenging problem could not be tackled completely, but this part of the work is an important step towards accurate estimation of the individual early reflections from a binaural room impulse response. As the third part of the thesis, applications of sound signal analysis are studied. The most notable contributions are a novel eyes-free user interface controlled by finger snaps, and an investigation on the importance of features in audio surveillance. The results of this thesis are steps towards building machines that can obtain information on the surrounding environment based on sound. In particular, the research into sound source distance estimation functions as important basic research in this area. The applications presented could be valuable in future telecommunications scenarios, such as augmented reality audio

    Predicting and auralizing acoustics in classrooms

    Get PDF
    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven distribution of absorption, and most of the floor being covered with furniture which at long distances act as scattering elements, and at short distance provide strong specular components. The importance of diffraction and scattering is illustrated in numbers and by means of auralization, using ODEON 8 Beta

    Effects of Coordinated Bilateral Hearing Aids and Auditory Training on Sound Localization

    Get PDF
    This thesis has two main objectives: 1) evaluating the benefits of the bilateral coordination of the hearing aid Digital Signal Processing (DSP) features by measuring and comparing the auditory performance with and without the activation of this coordination, and 2) evaluating the benefits of acclimatization and auditory training on such auditory performance and, determining whether receiving training in one aspect of auditory performance (sound localization) would generalize to an improvement in another aspect of auditory performance (speech intelligibility in noise), and to what extent. Two studies were performed. The first study evaluated the speech intelligibility in noise and horizontal sound localization abilities in HI listeners using hearing aids that apply bilateral coordination of WDRC. A significant improvement was noted in sound localization with bilateral coordination on when compared to off, while speech intelligibility in noise did not seem to be affected. The second study was an extension of the first study, with a suitable period for acclimatization provided and then the participants were divided into training and control groups. Only the training group received auditory training. The training group performance was significantly better than the control group performance in some conditions, in both the speech intelligibility and the localization tasks. The bilateral coordination did not have significant effects on the results of the second study. This work is among the early literature to investigate the impact of bilateral coordination in hearing aids on the users’ auditory performance. Also, this work is the first to demonstrate the effect of auditory training in sound localization on the speech intelligibility performance

    Superwideband Bandwidth Extension Using Normalized MDCT Coefficients for Scalable Speech and Audio Coding

    Get PDF
    A bandwidth extension (BWE) algorithm from wideband to superwideband (SWB) is proposed for a scalable speech/audio codec that uses modified discrete cosine transform (MDCT) coefficients as spectral parameters. The superwideband is first split into several subbands that are represented as gain parameters and normalized MDCT coefficients in the proposed BWE algorithm. We then estimate normalized MDCT coefficients of the wideband to be fetched for the superwideband and quantize the fetch indices. After that, we quantize gain parameters by using relative ratios between adjacent subbands. The proposed BWE algorithm is embedded into a standard superwideband codec, the SWB extension of G.729.1 Annex E, and its bitrate and quality are compared with those of the BWE algorithm already employed in the standard superwideband codec. It is shown from the comparison that the proposed BWE algorithm relatively reduces the bitrate by around 19% with better quality, compared to the BWE algorithm in the SWB extension of G.729.1 Annex E
    • …
    corecore