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Abstract 

This thesis has three main objectives: 1) evaluating the benefits of the bilateral coordination 

of the hearing aid digital signal processing features by measuring and comparing the auditory 

performance with and without the activation of this coordination, and 2) evaluating the 

benefits of acclimatization and auditory training on such auditory performance, and 3) 

determining whether receiving training in one aspect of auditory performance (sound 

localization) would generalize to an improvement in another aspect of auditory performance 

(speech intelligibility in noise), and to what extent. Two studies were performed. The first 

study evaluated the speech intelligibility in noise and horizontal sound localization abilities 

in hearing impaired listeners using hearing aids that apply bilateral coordination of wide 

dynamic range compression. A significant improvement was noted in sound localization with 

bilateral coordination on when compared to off, while speech intelligibility in noise did not 

seem to be affected. The second study was an extension of the first study, with a suitable 

period for acclimatization provided and then the participants were divided into training and 

control groups. Only the training group received auditory training for sound localization. The 

training group performance was significantly better than the control group performance in 

some conditions, in both the speech intelligibility and the localization tasks. The bilateral 

coordination did not have significant effects on the results of the second study. 

This work is among the early literature to investigate the impact of bilateral coordination in 

hearing aids on the users’ auditory performance. Also, this work is the first to demonstrate 

the effect of auditory training in sound localization on the speech intelligibility performance. 
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Preface 

The objectives of this dissertation were: 1) to inspect the performance of hearing 

impaired listeners in some auditory tasks that reflect the processes of binaural hearing 

while evaluating the benefits of a hearing aid feature that enables two (right and left) 

hearing aids to communicate wirelessly with each other in order to synchronize the signal 

processing features, 2) to measure and evaluate the benefits of providing a period for 

acclimatization and auditory training together with the bilateral wireless coordination 

feature, and 3) to inspect and evaluate the possibility of improvement in one aspect of 

auditory performance (speech intelligibility in noise) after receiving auditory training in 

another aspect (horizontal sound localization). 

Several studies pointed out that the independently-working digital signal processing 

(DSP) circuits in the right and left hearing aids could interfere with the naturally-

occurring binaural cues (Bogaert et al. 2006; Keidser et al., 2006; Keidser et al., 2011). 

This interference could increase the localization errors and interfere with speech 

intelligibility especially in noisy backgrounds.  

Recently, a new DSP feature has been incorporated into hearing aids - bilateral wireless 

coordination. It allows communication between a hearing aid pair, in order to apply the 

same signal processing algorithm in both aids. This feature is thought to improve the 

preservation of the interaural cues through coordinating the DSP and the volume settings 

of the two hearing aids.  

Since this is a fairly new feature, there is a lack of studies that evaluate the benefits of 

applying wireless coordination in hearing aids and to what extent it preserves the 

naturally occurring binaural cues and improves the auditory functions that depend on 

these cues such as sound localization and speech understanding in noisy backgrounds.  

The following dissertation aimed to: 1) evaluate the benefit of this new feature, either 

independently, while disabling all the other DSP features that could help improving 

localization and/or speech understanding in noise, or together with all the other features 
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in effect and 2) evaluate the effects of acclimatization and auditory training with this 

feature on localization and speech intelligibility in noise. 

Chapter One reviews the relevant background literature that laid the foundation of the 

first study in this thesis work. First, the benefits of binaural hearing for both sound 

localization and speech intelligibility in noise were explained. Second, the effect of 

hearing loss on sound localization and speech intelligibility in noise were explored. 

Third, different digital signal processing features used in hearing aids were explained 

briefly and the studies investigating their effects on sound localization and speech 

intelligibility in noise were reviewed. 

In Chapter Two, a study that evaluated the benefits of the binaural wireless synchrony for 

both sound localization and speech intelligibility in noise is presented. The research 

question addressed in Chapter Two is: Does bilateral coordination between the two 

hearing aids provide the listeners with improved binaural benefits, especially in terms of 

improving speech understanding in noise and sound localization? 

Chapter Three reviewed the literature relevant to the auditory plasticity and auditory 

training, which is the basis for conducting the second study, to measure and evaluate the 

benefits of auditory training, and review the work done so far regarding auditory training 

for the HI listeners. 

In Chapter Four, a study that evaluated the benefits of auditory training in combination 

with the bilateral wireless coordination feature is presented. The research questions 

addressed in Chapter Four are: 1) Would providing acclimatization and Auditory 

Training (AT), along with using the hearing aid that apply bilateral wireless coordination, 

significantly improve sound localization and speech understanding in noise? 2) Would 

training for localization only also result in improved speech intelligibility? 3) How would 

different acoustic environments (anechoic-reverberant) interact with and affect the results 

of AT? 

Chapter Five is a general discussion, where the results of the two studies conducted in 

Chapters 2 and 4 are analyzed and compared, in order to extract conclusions, 
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implications, and recommendations regarding the preservation of the benefits of binaural 

hearing. 
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Chapter 1 

 

1. Introduction 

 

1.1 Background  

Several anatomical factors and neural mechanisms make auditory performance with two 

ears (binaural hearing) clearly superior to listening with one ear (monaural hearing). This 

chapter will discuss the following points in detail: 1) the benefits of binaural hearing in 

horizontal sound localization and speech understanding in noise, 2) how sensorineural 

hearing loss (SNHL) affects horizontal sound localization and speech understanding in 

noise, and 3) how different hearing aid features affect horizontal sound localization and 

speech understanding in noise. Finally, a rationale for conducting the study in Chapter 2, 

as well as a summary and outline for the thesis is provided. 

 

         1.2 Benefits of binaural hearing 

1.2.1 Benefits of binaural hearing in horizontal sound localization 

Our ability to localize sounds helps us identify and separate sounds coming from 

different directions. Hence, it could be crucial for survival (such as the case of avoiding 

an approaching car by localizing the vehicle noise or a car horn) and it is also likely to 

contribute to our ability to follow conversations in noisy background or among multiple 

talkers (Devore et al., 2009; Keidser et al., 2006). The sensory receptors for vision and 

touch provide direct perceptual representation of space, as they are topographically 

oriented, while auditory space must be computed from the one-dimensional acoustic 

waveforms reaching each ear (Zahorik, 2006). Our auditory system depends on a number 

of cues to localize sounds in space: 
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i. Binaural processing of difference in arrival times between the two ears (or the 

Interaural Time Differences (ITDs)) provides one localization cue. These timing 

differences are very small, ranging between 10-700 μs. Interaural phase differences 

(IPDs) occur coincidently with the ITDs and vary systematically with source azimuth and 

wavelength. IPDs dominate in localizing the low frequency sounds (up to 1.5 kHz) 

(Blauert, 1983). 

ii. The head diffracts sound waves, causing a difference in intensity between the two ears, 

known as Interaural Level Differences (ILDs). ILDs are the most prominent cue in 

localizing high frequency sounds (above 1.5 kHz) and can result in up to 20 dB 

difference between the two ears at 6 kHz (Blauert, 1983). 

iii. The shape of the head and the folds and convolutions of the pinna result in a 

frequency dependent response, which varies with the sound position. This results in 

spectral shape cues that function mainly on broadband high frequency sounds (4-12 kHz) 

(Blauert, 1983). 

Although the shape of the head, and the folds and convolutions of the pinna serve as 

monaural sound localization cues, comparing and processing the acoustic inputs at the 

two ears are important for sound localization. In 1907, Lord Rayleigh proposed the 

“Duplex theory“(Strutt, 1907), which explained the different roles of ITDs and ILDs in 

horizontal sound localization. Rayleigh found that the sound received at the ear far from 

the sound source would be effectively shadowed by the head, resulting in a difference in 

the level of the sound reaching the two ears. However, for low frequencies (below 1000 

Hz), this intensity difference would be negligible, because the wavelength of the sound is 

similar to, or larger than, the distance between the two ears. Rayleigh also noted that 

human listeners can sense the difference in phase of low frequencies, and hence he 

concluded that the difference in arrival time can lead to phase difference between the two 

ears that could be used as a localization cue for low frequency sounds. Accuracy of 

horizontal localization is usually measured in terms of the minimum audible angle 

(MAA), which is the just noticeable difference (JND) in azimuth perceptible by a subject. 
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MAAs are usually smaller in the frontal midline, between 30º to -30º where they are 

about 1º-2º, than at the sides where they are about 15º (Middlebrooks & Green, 1991). 

 

1.2.2 Benefits of binaural hearing in speech intelligibility in noise 

Our ability to detect and understand speech in a background of noise is of significant 

importance in our everyday communication, because we are confronted daily with 

complex acoustic environments. Our auditory system processes simultaneously occurring 

complex acoustic signals to extract relevant information. There is substantial evidence 

that speech intelligibility is enhanced with binaural presentation (Arsenault and Punch, 

1999; Bronkhorst and Plomp, 1988; Bronkhorst and Plomp, 1989; MacKeith and Coles, 

1971). The binaural advantage for speech intelligibility in noise is due to a combination 

of a physical phenomenon, viz. the head shadow effect, and a neurological process, viz. 

binaural squelch (Byrne, 1981). 

Head shadow effect (HSE): Except when the sound sources lie directly in front (0° 

azimuth), or directly in the back (180° azimuth) of the listener, binaural listeners have 

one ear nearer to the source of the desired signal than the other. Therefore, they are in a 

better position compared to monaural listeners, regarding the relative levels of the signal 

and noise, because they will always have an ear closer to the sound source at any given 

position. A monaural listener may sometimes be positioned such that the head is 

interposed between the signal source and the functioning ear, leading to a considerable 

attenuation of frequencies above 1 kHz (Blauert, 1983).  

Squelch effect (true binaural processing): Information provided from the ear further from 

the signal is integrated with information from the near ear. Information about the time of 

arrival and intensity differences at the two ears enable the listener to process the speech 

and noise signals separately, with an apparent unmasking of the speech (Arsenault and 

Punch, 1999; Byrne, 1981). Squelch effects can provide up to 15 dB of advantage in 

signal-to-noise ratio (SNR) for low-frequency sounds (Moore, 1989). The binaural 
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squelch effect acts mainly on low frequency, steady-state information (Bronkhorst & 

Plomp, 1988). 

1.2.2.1 The relative contribution of ITD and ILD cues for binaural speech in noise 

(SIN): 

Bronkhorst and Plomp (1988) tested the effect of ITDs and ILDs on binaural speech 

intelligibility in noise, using virtual auditory stimuli. They used three main noise types: 

FF (free field), dL (head shadow only), and dT (ITD only). The target speech material 

was recorded only from 0º (midline), while noise was recorded from seven azimuth 

angles, ranging from 0º to 180º. They found that when the benefits derived from ITDs 

and ILDs are separated, ILDs yield better speech reception thresholds (SRTs) than ITDs. 

Carhart et al. (1967) showed that ITD contributes only moderately to a gain in 

intelligibility, but yields a high gain for detection. Carhart also suggested that the 

presence of ILDs decreases the benefits derived from ITDs. In case of asymmetric 

hearing loss, deriving a benefit from ILDs depends on having the better ear closer to the 

sound source (presented with the higher SNR).  

1.2.2.2 Other factors that affect speech intelligibility in noise 

The number and nature of noise sources impact speech intelligibility in noise. The 

process of segregating and extracting information from a single target sound in a multi-

source environment is known as the “Cocktail Party Effect” (Cherry, 1953; Pollack & 

Pickett, 1958), “sound source determination” (Yost, 1992, 1997), or “sound source 

segregation” (Bregman, 1990). Besides the binaural advantages, several other factors can 

either facilitate or complicate speech intelligibility in noise in multi-source environments. 

These factors depend on the nature of the target speech and the competing noises (such as 

the nature and the spatial separation between target and interfering noise). Some of these 

factors are discussed below: 

a) Spatial location: This factor is directly related to the HSE. It is easier to identify and 

segregate sound sources that are spatially separated (Bregman, 1990). Speech is better 

understood when spatially separated from interfering noise source. This is known as 
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“spatial release from masking” (Bronkhorst and Plomp, 1992; Hawley et al, 1999). 

Determining the location of a sound source is a powerful tool for tracking it over time. 

Several studies such as Bronkhurst and Plomp (1990, 1992) and Arbogast et al. (2002) 

confirmed better speech recognition in noise when the target and the competing noise are 

separate in spatial location. Spatial location becomes the primary cue used to track a 

target signal when both target and interfering sources have the same frequency spectrum 

(Freyman et al., 1999). Spatial separation also provides a monaural advantage that results 

from the higher SNR at the ear closer to the target speech signal due to HSE. However, if 

multiple interferers are presented and spatially distributed to both sides of the head, the 

monaural advantage becomes insignificant (Hawley et al., 2004). 

b) Temporal properties of interfering sound: It is easier to understand speech when the 

interfering sound has speech-like amplitude modulation. Speech has a fluctuating 

frequency spectrum and amplitude envelope, while noise generally lacks such 

modulation. These modulations cause dips in the temporal envelope and facilitates 

understanding of the target speech due to transient improvement in SNR (Hawley et al, 

2004, Mackeith and Coles, 1971). 

c) Differences in fundamental frequency (fₒ): When two concurrent voices have different 

fundamental frequencies, listeners can easily separate and understand the target voice 

(Assmann and Summerfield, 1990). This explains why it is more difficult when target 

and background speakers are of the same sex and the fundamental frequencies of their 

voices are closer in frequency. 

d) Informational masking: If the interfering sound is speech, its linguistic contents can be 

confused with the contents of the target speech. This form of interference cannot be 

caused by energetic masking (which results from the overlapping frequencies of the 

target and masker) and can be considered as “informational masking” (Hawley, 2004). 

Energetic masking results from an interfering sound which has its frequency components 

in the same auditory filters as the target signal, while informational masking can result 

from an interfering sound that has its frequency components in different auditory filters 
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than the target signal. Spatial release from masking is greater for informational compared 

to energetic masking (Arbogast et al., 2005). 

From the above, it can be concluded that differences between the signal and the noise at 

both ears are essential for detecting and understanding speech in noisy background 

because the listener compares the input at both ears and accordingly attempts to extract 

the useful stimulus, which is usually speech, and ignore the unwanted stimulus, which is 

usually noise. ITDs are more important for speech detection; however, ILDs provide 

more benefit for speech intelligibility. Other stimulus-related factors, such as spatial 

location, temporal properties, and linguistic contents, also contribute to speech 

intelligibility in noise. 

 

1.3 Effect of hearing loss on binaural benefits 
 

1.3.1 Effect of hearing loss on horizontal sound localization 

 

Several factors contribute to the disrupted localization abilities of listeners who have 

SNHL, such as elevated hearing thresholds, reduced frequency selectivity, and reduced 

intensity and temporal resolution (Moore, 1996). Several studies demonstrated 

deteriorating localization performance in hearing impaired (HI) participants. In order to 

investigate the predictability of localization performance from the type, degree, and 

configuration of hearing loss, Noble et al. (1994) evaluated and compared the horizontal 

and vertical localization performance of the hearing impaired (HI) listeners, who had 

either bilateral SNHL, mixed, or conductive hearing losses, as well as normal hearing 

(NH)  listeners. Stimuli were pink noise bursts, presented at each listener’s most 

comfortable level (MCL), and ½ MCL (the average of hearing threshold and MCL) in 

separate blocks. The authors reported the correlations between the hearing thresholds 

(HTL) and localization accuracy, and performed a hierarchical regression procedure to 

examine the contribution of audiometric thresholds and localization performance in both 

the horizontal and vertical planes. Only the horizontal localization performance will be 

discussed here. 
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For the individuals with SNHL, in general, a fair correlation of 0.3 to 0.4 (Portney & 

Watkins, 2000) was found between the localization performance in the horizontal plane 

and HTL. A slight predominance of low frequency hearing sensitivity was present in the 

frontal horizontal plane localization, while low and mid-to-high frequencies 

predominated localization in the lateral horizontal plane. A similar but weaker correlation 

was found at ½ MCL. The correlation was rather between HTL at 1, 2, and 4 kHz than 

HTL at low frequencies with performance in frontal horizontal localization. 

The results of Noble et al. (1994) revealed that hearing thresholds have only a mild 

predictive power on localization performance. Other possible factors that could affect 

localization are reduced frequency selectivity, intensity and temporal resolution, 

measurement errors, or differences in pinna tuning properties. Reduced frequency 

selectivity could alter sound localization especially in multisource environments, where 

interfering sounds other than the target sound and similar or very close to the target sound 

in frequency spectrum exist. Noble et al. suggested that reduced intensity and temporal 

resolution could alter intensity and temporal localization cues. Smoski and Trahiotis 

(1986) reported that ITD thresholds for low frequency stimuli are slightly greater 

compared to normal hearing individuals.  

 

From the above, it could be concluded that the degradation in horizontal sound 

localization abilities in hearing impaired individuals is not completely attributable to 

decreased audibility. Other factors must contribute to this degradation, such as reduced 

frequency selectivity. 

 

 

1.3.2 Effect of hearing loss on speech intelligibility in noise 

Speech is a highly redundant signal.  That is why even in a moderately noisy 

environment, speech can still be fairly intelligible (Tawfik et al, 2010). Individuals with 

SNHL usually report difficulties in understanding speech in the presence of background 

noise. Several studies (Plomp, 1978; Plomp and Duquesnoy, 1982; Plomp and Mimpen, 

1979) reported that individuals with even mild SNHL may have greater difficulty when 

listening in noisy environments than do NH listeners.  
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Plomp and Duquesnoy (1982) developed a quantitative model that describes hearing loss 

for speech as the sum of two factors: i) an attenuation factor, caused by the reduction of 

the levels of both speech and noise signals, and ii) a distortion factor, which reduces the 

“functional” signal-to-noise ratio, as it affects frequency and temporal resolution, and 

hence, affects speech intelligibility. It is important here to note that it is not possible to 

separate the attenuation from the distortion factor in a hearing impaired listener. It is 

possible that the relative contribution of each of these factors to the hearing impairment 

leads to the wide variations in performance of different auditory tasks demonstrated by 

the HI listeners compared to the normal hearing listeners. Different aetiologies of hearing 

loss could result in different combinations of attenuation and distortion. 

To test the effect of hearing impairment on binaural cues (ITDs and ILDs), Bronkhorst 

and Plomp (1988) tested the performance of NH and HI listeners. To simulate unilateral 

hearing loss, a condition with 20-dB attenuation was applied to the speech presented to 

the NH listeners. The results showed that the hearing-impaired listeners had significantly 

higher SRT in noise than the NH group. When considering the relative gain due to the 

ITD, there was hardly any difference in performance between the two groups. The 

hearing-impaired participants had mean Binaural Intelligibility Level Difference (BILD) 

of 4.2 dB, which was not significantly different from the 4.7 dB obtained by the NH 

group. BILD is defined as the difference in signal level in decibels between two binaural 

conditions for a given percent intelligibility (Levitt & Rabiner, 1966). Reducing the 

presentation level on either side had a limited effect on SRT. The ability to benefit from 

ITD varied within the hearing-impaired group, which suggests that it is related to the 

degree or configuration of hearing impairment.  

Comparing the relative gain due to ILD, participants with hearing impairment were found 

to benefit less from ILD than the NH group. For the asymmetrical HI listeners, the BILDs 

for the ITD-only noise did not significantly differ from symmetrical condition. 

Asymmetrical HI listeners benefit less from head shadow when they have to depend on 

the poor ear. Spatial separation resulted in 9.8 dB of BILD for the NH listeners, 7.1 dB 

for the symmetrical hearing loss, and 4.7 or 7.2 dB for the asymmetrical, when the noise 

source was moved to the good or bad ear, respectively. The authors concluded that HI 
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listeners perform worse in speech in noise (SIN) during binaural listening mainly due to 

their inability to take full advantage of the ILD cue. Since the head shadow that results in 

the ILD at 90º azimuth is most prominent between 3-5 kHz, their binaural gain is affected 

by hearing loss in this frequency region. Listeners with bilaterally symmetric hearing loss 

benefit almost equally from the ITD when compared with normal hearing listeners. 

However, listeners with asymmetrical impairment benefit significantly less from ITD 

when it is the only cue available. HI listeners benefit less from ILD mainly due to 

elevated hearing thresholds, especially in the high frequency region. The following 

section will discuss how listeners’ hearing impairment might disrupt the binaural benefits 

for SIN. This section will focus on individuals with mild-to-moderate SNHL that affects 

mainly the high frequency region, because this is the frequency region most commonly 

affected by mild-to moderate SNHL (Schmiedt, 2010).  

 

1.3.3 Effect of bilateral mild-to-moderate SNHL on the benefits from 

head-shadow effect and binaural squelch 
 

Because some studies address more than one aspect of binaural benefits, only the relevant 

result(s) of each study will be discussed under the corresponding subsection. 

a) Head shadow 

Bronkhorst and Plomp (1989) reported that bilaterally HI individuals benefit less from 

the head shadow effect, compared to NH listeners. They found that spatial separation 

resulted in 9.8 dB of BILD for the NH participants and 7.1 dB for those with symmetrical 

hearing loss.  

Arsenault and Punch (1999) found that comparing the dichotic head shadow (in which 

the stereo presentation was similar to the original stimulus recording) to the diotic 

binaural favorable condition (in which the noise-shadowed ear  recording was presented 

to both ears ) revealed a 2.3 dB and 0.3 dB advantages, for the NH and HI groups, 

respectively. This result demonstrates that the NH individuals benefit from the full array 

of the available binaural cues, while the HI individuals cannot. 
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b) Binaural squelch 

As mentioned above, binaural squelch refers to the ability of the auditory system to take 

advantage of the different inputs from the right and left ears in order to improve speech 

intelligibility in noise (Byrne, 1981). Arsenault and Punch (1999) measured and 

compared the benefit derived from binaural squelch between NH and HI listeners. They 

found that the HI listeners had less advantage of binaural squelch effects compared to NH 

listeners. A difference of 3.2 dB SNR (4.9 dB SNR benefit for NH listeners compared to 

1.7 dB SNR benefit for HI listeners) was reported by Arsenault and Punch (1999). A 

similar difference of 2.7 dB in BILD benefit between NH and HI listeners was reported 

by Bronkhorst and Plomp (1989).                                                                             

c) Other factors                                                      

Hawley et al. (2004) examined the effect of the type and number of interfering sounds. 

Interfering sources can be noise (energetic masking) or speech (informational masking) 

sources. When several interfering sources are present the binaural system can suppress 

the interference more effectively from speech than noise sources, particularly when these 

sources are spatially separated. SRTs are better with speech than with noise when one 

interferer is presented, but this changes in the presence of multiple interferers either 

because the auditory system is no longer able to utilize fₒ differences or informational 

masking is occurring. When the interferers are speech, spatial separation is more 

beneficial than for noise interferers (i.e. spatial release from masking is greater for 

informational compared to energetic masking). 

Arbogast et al. (2005) found that the HI listeners benefit less from spatial separation 

between the target speech and interfering informational masker, while the benefit was the 

same for both NH and HI groups when the masker was mainly energetic.  

Hearing loss decreases speech intelligibility due to two main factors: an attenuation 

factor, and a distortion factor (Plomp & Duquesnoy, 1982). It is not possible to separate 

the relative contribution of each factor. As mentioned in section 1.3.2, ITDs are more 

important for speech detection and ILDs are more important for speech intelligibility. A 
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person with mild-to-moderate bilateral hearing loss will still benefit from ITD cues than a 

NH person. However, he/she will benefit considerably less from ILD cues due to both 

attenuation and distortion factors stemming from hearing loss.  

 

1.4 Effect of hearing aid fitting on binaural hearing 

1.4.1 Effect of hearing aids fitting on horizontal sound localization 

When hearing aids are worn for the first time, localization is likely to be disrupted 

because different signal processing features in the hearing aids distort the familiar 

localization cues. There is substantial evidence that users adapt to these altered ITDs and 

ILDs. Within a few hours significant adaptation commences and continues for a few days 

and, to a lesser extent, for a few weeks (Bauer, Matusza & Blackmer, 1966; Byrne & 

Dirks, 1996). In mild to moderate SNHL, the decreased localization ability is most likely 

due to a decreased audibility of the signal rather than an inability to utilize the 

localization cues that are well above hearing threshold. Thus, a bilateral hearing aid 

fitting will provide better localization abilities than a unilateral hearing aid fitting 

whenever the signal is inaudible in the unaided ear. Because audibility is the main factor 

affecting localization, the bilateral fitting advantage in localization is more obvious in 

cases with moderate-to-severe hearing loss (Dillon, 2001). A signal is considered of 

adequate sensation level (adequately audible) if it is 10 dB above threshold (Markides, 

1977). However, decreased frequency and temporal resolution also affect localization. 

Macpherson and Cumming (2012) reported that even when audibility is compensated for, 

individuals with low-frequency hearing impairment performed poorly in dynamic 

localization task. 

In a survey of 1,511 hearing aid users by Kochkin (2005), 66% reported being satisfied 

with their aided localization and only 12% reported that they were very satisfied. 

Unfortunately, bilateral hearing aid fitting does not completely solve localization 

problems, due to several factors, such as long-standing hearing deprivation, poor 

audibility in the high frequencies as a result of the limited bandwidth of the hearing aids, 
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the competition between both the direct and amplified sound paths in case of open ear 

fittings, hearing aid microphone location, and hearing aid processing delays resulting 

from implementing several signal processing algorithms, such as compression, 

directional microphones, and noise reduction (Chalupper et al., 2009). The effects of 

Wide Dynamic Range Compression (WDRC), microphone configuration (directional 

microphones, multiband adaptive directionality, and mismatched microphone mode), and 

Digital Noise Reduction (DNR), on horizontal sound localization will be discussed here. 

1.4.1.1 Effect of Wide Dynamic Range Compression (WDRC) on horizontal 

sound localization 

Compression is used in hearing aids mainly to decrease the dynamic range of input 

signals to match the restricted dynamic range of the HI user. Compression is also used to 

avoid discomfort, distortion and damage, maximize speech intelligibility, increase sound 

comfort, reduce noise, and normalize loudness (Dillon, 2001). Although several 

compression strategies, such as high level, low level, and WDRC exist in hearing aids, 

for the purpose of this paper, discussion will be restricted to WDRC, because it is the 

compression system used in the studies performed for this thesis. 

In WDRC, a gradual reduction is applied over a wide range of input levels, so that the 

corresponding output levels are not compressed closely together. In most cases, hearing 

loss varies with frequency. If gain reduction is applied to the whole frequency range of 

the hearing aid, target signals might be attenuated just because noise signals have high 

level, although they have different frequency ranges. To avoid this problem, multichannel 

compression is applied, where every frequency band has its own compressor (Dillon, 

2001). 

Compression has the dynamic characteristics of attack and release times and the static 

characteristics of compression threshold and compression ratio. Since the attack and 

release times are measured in milliseconds, which are much greater that the microsecond 

range of ITDs, these time constants are not expected to affect the ITDs. However, it is 

anticipated that applying WDRC independently in the two ears could result in an 
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asymmetric change in output level, thus, a distortion in ILD cues with WDRC in 

comparison with linear amplification. 

Keidser et al. (2006) tested the effect of applying multi-band WDRC on the localization 

abilities of hearing aid users who had symmetrical hearing loss. Results revealed an 

insignificant effect of scheme (linear or multi-channel WDRC), and time provided for 

acclimatization. The interaction between scheme and time was insignificant as well. By 

comparing the ILDs measured in the reference (linear) and WDRC conditions, it was 

found that the ILDs were almost halved, corresponding to the 2:1 compression ratio 

applied. However, the authors concluded that the distortion of ILDs and spectral cues 

caused by the multi-channel WDRC did not significantly affect the localization 

performance. The reason for this could be that the unaffected ITD cues that helped 

preserve the localization performance. 

Another study, by Musa-Shufani et al. (2006) investigated the effect of WDRC on 

horizontal localization in general, and on isolated ILD and ITD cues. Participants were 

NH and HI listeners. Different compression schemes with various compression ratios 

(CR) and attack times were created. In general, and as expected, the HI listeners 

performed worse than the NH individuals. Results revealed a significant effect of CR, 

interaction between CR and attack time (attack time reveals larger effect with higher CR), 

and of hearing loss. Neither CR nor attack time had a systematic impact on ITD 

discrimination. The performance was worse with higher CR and shorter attack time. 

Thus, the attack time had an impact on ILD and the shorter the attack time, the more the 

negative impact on the ILD. The authors explained this fact by the extra time available 

for the subject to analyze the original ILD before compression commences. At the highest 

CR used (8:1), the JND at an attack time of 200 ms for the NH listeners was doubled with 

WDRC when compared with linear scheme, and the same but less pronounced effect was 

noticed with the HI listeners. The authors assumed that when using very long attack times 

(200 ms in the study), compression will not affect ILD. 
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1.4.1.2 Effect of microphone configuration (multi-band adaptive directionality) on 

horizontal sound localization 

Directional microphones are constructed either from a single microphone with two entry 

ports, or by combining the electrical outputs from two or more microphones (Dillon, 

2001). Sixty years ago, directional microphones were first used in public address systems 

to reduce acoustic feedback. In the early 1970s, hearing aids with directional 

microphones became available in the United States (Preves, 1997). Hawkins and Yacullo 

(1984) and Dillon and Macrae (1984) reported a 3-4 dB signal-to-noise ratio (SNR) 

advantage with directional microphone hearing aids compared to omnidirectional 

microphones in listeners with hearing loss. 

Directional microphone systems can be activated manually, via remote control or 

program button, or automatically, via the signal processing decisions made for a given 

listening environment. Directional microphones have polar patterns (directionality) that 

show how sensitive the microphone is to sounds arriving at different angles about its 

central axis. The polar pattern can be cardioid, supercardioid, hypercardioid, or bi-

directional (also known as figure 8 microphone) in nature. Polar patterns are typically 

less sensitive to signals at the sides or the back of the listener’s head. 

Directional microphone systems can be fixed (where the pattern does not change in 

different listening environments) or adaptive. Adaptive systems may be either broadband 

or multi-band. In multiband adaptive systems, different polar patterns in independent 

frequency bands are automatically activated in response to spatially dynamic noise 

sources (Fabry, 2005). This provides further benefits in situations where different noise 

sources that have different spatial locations and spectral patterns are present. In 

broadband systems, only the most intense noise source is suppressed, but for multiband 

adaptive directional systems (in which up to 20-bands are available), the most intense 

noise on each channel is reduced. For example, given a situation where two different 

noise sources exist: a human voice, located at 135° azimuth, and a microwave oven 

located at 180° azimuth, different polar patterns for the different frequency regions that 

correspond to the primary energy peak at each azimuth will be applied. If signals overlap 

on one channel, only the most intense source will be suppressed. As a result, better 
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resolution for isolating and suppressing noise sources that differ spectrally and spatially is 

provided by multiband directional systems (Fabry, 2005). 

Hearing aids may mimic the pinna effect on signals by altering the spectral shape of the 

sound as a function of arrival direction (Keidser et al., 2009). A sound arriving from the 

front will have a greater high-frequency emphasis than the same sound arriving from the 

back, to approximate the frequency response alterations produced by the pinna shadow. 

This is expected to help to resolve the front/back (F/B) confusion that occurs when a 

microphone has constant directivity across frequencies, including the omnidirectional 

microphone. Limiting directivity to the high frequency is also expected to result in lower 

internal noise and higher available gain and output across the low frequencies (Keidser et 

al., 2009). 

In the case of bilateral hearing aid fitting, where each hearing aid operates independently, 

applying adaptive directional microphones may cause more disruption to the interaural 

cues than would a pair of omnidirectional microphones. This is because different polar 

patterns will be generated in response to the acoustically varying environment. ITDs will 

be distorted because there will be different internal time delays used to implement each 

specific polar pattern. ILDs are distorted as well because: a) the polar pattern response 

shapes are affected by both the head and the free-space directivity patterns, and b) 

different gain-frequency responses will be applied on each side depending on the 

direction of the sound source. Spectral cues will be affected also with a microphone mode 

mismatch between the two ears, as polar patterns tend to vary with frequency. In multi-

memory devices, unintentional use of different programs on the left and right ear will 

result in different microphone characteristics. Microphone drift (changes in output related 

to aging, averaging 0.25 dB/year) can also cause a mismatch in polar patterns across 

devices (Keidser et al., 2006; Tchorz, 2001). 

Keidser et al. (2006) tested the localization performance of 12 participants with different 

microphone configurations: a) two cardioids in both ears; b) one cardioid and one 

omnidirectional, and c) one cardioid and one figure eight (bidirectional). These three 

conditions were compared to a reference condition with two omnidirectional 
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microphones. In the left/right (L/R) localization dimension, there was a significant effect 

of microphone mode and significant interaction between the period of hearing aid use and 

microphone mode. The performance with the cardioids/figure-eight mode degraded 

significantly over time. At both two weeks and two months post-fitting, performance was 

significantly worse with the two microphone mode mismatch conditions than with the 

two matched microphone mode conditions (cardioid/cardioid, and 

omnidirectional/omnidirectional). In the microphone mismatch conditions, a significant 

bias occurs away from the ear wearing the cardioid microphone, almost exclusively in the 

rear hemisphere (where cardioid configuration is least sensitive).  

In the F/B dimension, the two factors (microphone mode and time) and the interaction 

between them were significant. Localization performance improved over time with the 

cardioid/cardioid condition. At two weeks, the cardioid/omnidirectional condition yielded 

the best performance and, together with the cardioid/cardioid condition, both provided a 

significantly better performance than the other two conditions. So, a cardioid microphone 

on its own or in combination with an omnidirectional microphone reduced F/B 

confusions when listeners were given time to adjust to the signal processing. 

Keidser et al. (2009) tested the effect of multiband (frequency-dependent) microphone 

directionality on horizontal localization performance in hearing aid users. Four 

directional test schemes were implemented: 1) omnidirectional on all 4 channels; 2) 

omnidirectional on the lowest two channels and hyper-cardioid on the highest two 

channels (partial-1); 3) omnidirectional on the three lowest frequency channels and 

hypercardioid in the highest channel above ~2 kHz (partial-2); and 4) hypercardioid on 

all four channels (full directional). These schemes were synchronized between the two 

ears through the wireless bilateral coordination option. For the L/R dimension, there was 

a significant effect of microphone mode scheme, stimulus, and of the interaction between 

the two. The omnidirectional mode provided a significant improvement for a pink noise 

stimulus. The full directional scheme produced high L/R root mean square (RMS) errors 

for the pink noise stimulus. For the F/B dimension, there was a significant effect of 

microphone mode scheme, stimulus, and of the interaction between scheme and both 

stimulus and time. 
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After three weeks, participants made fewer F/B RMS errors with the partial-1 scheme 

than with other schemes. They also performed significantly better with the partial-2 than 

with the omni scheme. The partial-1 scheme significantly improved the F/B performance 

relative to omni scheme in the pink noise and cockatoo noise, and significantly improved 

the F/B localization relative to the full-directional scheme for the 3-kHz pulsed pink 

noise. The Speech, spatial, and quality questionnaire (SSQ) results revealed no strong 

preference for one scheme over the others. 

Additionally, the two partial schemes had the best performances in the F/B dimension, 

while the omni and full directionality schemes performed the worst. The improvement in 

performance after three weeks in the partial-1 scheme suggested that HI listeners utilize 

alterations in the spectral shape cues rather than overall level change for F/B localization. 

The main effect of microphone configuration in this experiment was the relatively poor 

L/R localization with the full directional microphone with high-frequency weighted 

stimuli. This did not occur with partial directionality. These findings differ from that of 

Keidser et al. (2006), in which microphone mismatch increased the L/R errors; however, 

the Keidser et al. (2009) results could be attributed to the difference in settings. The full 

directional scheme was bilateral hypercardioid directionality in all frequency channels, a 

scheme that was not tested in Keidser et al (2006) and the hypercardioid microphone 

reduces some sounds from the sides. Also, the stimuli used in both studies are different. 

Keidser et al. (2006) used only pink noise and Keidser et al. (2009) used five different 

stimuli. The L/R errors were more prominent with the pink noise and cockatoo noise, 

which are high frequency stimuli not used in the earlier Keidser et al. study. 

1.4.1.3 Effect of mismatched microphone mode on horizontal sound localization 

Keidser et al. (2006) also showed that the two mismatched microphone conditions caused 

a substantial shift of the ILDs across the rear hemifield. More negative than positive ILDs 

were measured, meaning that higher input levels were arriving at the right ear (the one 

with the omnidirectional or figure-eight polar plot). 

The two mismatched microphone conditions also caused a shift in ITDs in the rear 

hemisphere. The sound arrived later to the ear wearing the omnidirectional microphone, 
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and sooner to the ear wearing figure-eight microphone. So, for the cardioid/figure-eight 

condition, both the ILD and ITD distortion causes a bias in response towards the ear 

fitted with a figure-eight microphone, while for the cardioid/omnidirectional condition, 

the ITD and ILD distortions pulled the bias in opposite directions. For the 

cardioid/omnidirectional mode, the shift in the mean L/R error correlated with both shifts 

in ILD and ITD, while for the cardioid/figure-eight, L/R error correlated only with the 

shift in ILD. Based on these results, the authors suggested that ILD is the dominant cue 

for L/R discrimination. 

Keidser et al. (2006) concluded that the microphone mode mismatch significantly 

affected L/R discrimination. The sound direction was shifted toward the ear wearing 

either the omnidirectional or figure-eight microphone when each was paired with a 

cardioid microphone, mainly in the rear azimuth (where the cardioid microphone is least 

sensitive). The correlation analysis suggests that ILD is the main cue. This contradicts 

previous findings suggesting that ITD is the main cue for broadband stimuli that have low 

frequency components (Wightman & Kistler, 1992; Zurek, 1993). Macpherson and 

Middlebrooks (2002) quantified the relative weight of ITDs and ILDs for lateral angle 

localization using different stimuli, and found that listeners weighted the ITD cue 

strongly as a cue for lateral angle, while generally ignore ILDs at low frequencies. 

However, both cues were given substantial weight for wideband stimuli, with ITDs being 

the dominant cue for most listeners. 

Van den Bogaert et al. (2006) tested the frontal horizontal localization ability of NH 

participants and participants with bilateral symmetrical mild-to-moderate hearing loss 

who were experienced bilateral hearing aid users. HI listeners were tested unaided, with 

hearing aids using the omnidirectional microphone mode, and with hearing aids using the 

adaptive microphone mode. The broadband stimulus was tested both in quiet and in noise 

(multi-talker babble). Results in general were consistent with the literature, in that the 

average performance was better with the low frequency (200 ms, 500 Hz) narrow-band 

noise (NBN) stimulus (mainly ITD cues) than with the high frequency (200 ms, 3150 Hz) 

NBN stimulus (ILD cues). Performance improved with the broadband stimulus 

(telephone ring), possibly because of combining ITD and ILD cues, as well as the length 
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of the stimulus (1 s), which gives a chance for a slight head movement. Data analysis for 

the HI listeners revealed that, in general, performance was better in the unaided 

conditions than in all aided conditions. The omnidirectional and adaptive modes were not 

significantly different; however, the difference between them was close to significance 

(for a significance level of p=0.05, p was found to be 0.053). 

The only condition in which the omnidirectional mode was significantly better than the 

adaptive directional mode was with the broadband (telephone ringing) in multi-talker 

babble. L/R confusions for the extreme left and right angles (±90º) were prominent with 

the adaptive directional mode. In general, only small differences in the number of 

lateralization errors occurred in adaptive and omnidirectional modes for the 500 Hz 

stimulus condition, but large differences were evident for the 3150 Hz stimulus in 5 out 

of the 10 listeners. This suggests that for those listeners, the extra distortion caused by the 

adaptive directionality is mainly ILD distortion. The authors stated that their results 

should be taken with caution, because hearing aids are multiband processing devices. 

Different frequency bands may be processed in different ways, producing not only 

distorted interaural cues, but also interfering interaural cues in these different frequency 

bands, a factor that adds extra confusion and hence increases the localization errors. 

Another contributing factor may be the unique reaction of each participant’s auditory 

system to these interfering cues.  

1.4.1.4 Effect of digital noise reduction algorithms on horizontal sound 

localization 

One of the biggest problems that hearing aid users face is the interference produced by 

background noise, especially when listening to speech (Dillon, 2001). Source 

characteristics, distance, reverberation, and diffraction around objects contribute to noise 

usually having more intense low-frequency components than speech, which can 

significantly degrade speech because it masks the first formant of vowels and the upward 

spread of masking can also affect consonants. One of the solutions to this problem is to 

decrease the gain in low-frequency regions. One method of altering the gain in different 

frequency regions is through “Wiener filtering” (Dillon, 2001). A Wiener filter functions 
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by calculating the spectral power of the target (speech) plus noise signal, calculating the 

spectral power of the noise alone (when speech is absent), and then subtracting the noise 

alone from speech plus noise signal across frequency channels in order to reduce the gain 

in channels that have low SNR (Bentler & Chiou, 2006; Dillon, 2001). 

Another approach to noise reduction is spectral subtraction, in which the noise spectrum 

is estimated during the pauses in the speech signal or before the speech signal begins. 

This is then subtracted from the speech plus noise spectrum (Bentler & Chiou, 2006; 

Dillon, 2001). Still other noise-reduction schemes rely on co-modulation. They depend 

on harmonic structure as the main factor for determining the target signal (Bentler & 

Chiou, 2006). 

DNR algorithms can be described by three parameters: degree of gain reduction 

provided, time constants of the algorithm, and threshold of activation (Bentler & Chiou, 

2006). Activating the noise reduction algorithm in a hearing aid can cause distortion in 

the ILD cues (Keidser et al., 2006). If a noise source is positioned close to one ear, and 

the target source is on the other side of the head, gain will be reduced on the side closer to 

the noise, increasing the ILD. As the DNR is activated independently in different 

frequency bands, a different amount of gain may be applied across frequencies. 

Distortion is expected to occur in spectral cues as well. 

Keidser et al. (2006) tested the effect of digital noise reduction on localization 

performance. Two fitting schemes were compared, both using linear amplification with 

omnidirectional microphone, one with noise reduction off and one with maximum noise 

reduction. A loudspeaker at 80◦ azimuth was used to generate 65 dB SPL of constant 

noise. The stimulus level was 72 dB SPL. A significant effect of noise reduction in both 

the F/B and the L/R dimensions was observed, but the effect of time was insignificant. 

The effect was not the same for both dimensions; while the L/R performance was 

significantly worsened by the activation of noise reduction, the F/B performance was 

significantly improved. However, due to the small difference in RMS errors compared to 

the total errors in both dimensions, the authors concluded that the effect of noise 

reduction even when it is on the maximum is clinically unimportant. A significantly 
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greater shift of response to the left side occurred when maximum noise reduction was 

applied. The authors explained this shift by the higher ILD values measured at the 

Knowles Electronics Manikin for Acoustic Research (KEMAR)’s left ear during stimulus 

recording. 

From the above, we can summarize the effects of the different digital signal processing 

features discussed here on horizontal sound localization. WDRC tends to negatively 

affect localization only when applying short attack time and large CR. When inspecting 

the different microphone configurations in the studies reviewed here, we found a general 

trend that for the L/R localization, the matched microphone mode resulted in a better 

performance when compared to mismatched microphone modes. However, the presence 

of a directional microphone in one or both hearing aids would significantly improve the 

F/B localization performance. Digital noise reduction was found to worsen the L/R 

performance, and improve the F/B performance, however the differences in RMS errors 

were small, and the clinical effect of noise reduction on horizontal localization was 

clinically unimportant. 

1.4.2 Effect of hearing aid fitting on speech intelligibility in noise 

As discussed earlier in section 1.5.1, difficulty understanding speech in a background of 

noise is the most common complaint of the HI participants (Dillon, 2001). Hearing aids 

amplify both the speech signal and the background noise; hence the SNR is not increased, 

on the contrary, speech intelligibility decreases because of the upward spread of masking 

at high listening levels and the distortion caused by hearing aids (Launer & Moore, 

2003). Earlier research reported either a detrimental effect of hearing aids on speech 

understanding in noise, (Plomp & Mimpen, 1979; 1986), or no effect of hearing aids on 

speech understanding in noise, (Verschuure & van Benthem, 1992; Welz-Müller & 

Sattler, 1984). However, recently with the technological advancements, DSP features in 

hearing aids can improve speech intelligibility. Among the digital signal processing 

features, directional microphone is the feature that has been shown to improve speech 

intelligibility in noisy backgrounds. The following section will review the effects of 

different DSP features on speech intelligibility in noise. The effects of WDRC, 
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microphone configuration (directional microphones, multiband adaptive directionality, 

and mismatched microphone mode), and DNR, on speech intelligibility in noise will be 

discussed here. 

1.4.2.1 Effect of WDRC on speech intelligibility in noise 

Although WDRC is expected to enhance speech audibility, and hence improve speech 

intelligibility, research has failed to prove such an effect. The majority of studies revealed 

either no effect or even reduced speech intelligibility with WDRC (e.g., Souza et al., 

2006). The different parameters of WDRC, such as fast attack time and high compression 

ratio, can result in degraded speech intelligibility in background noise (Dillon, 1996; 

Moore et al., 1999; Souza et al., 2000). 

Souza et al. (2006) attempted to measure the acoustic effects of WDRC on speech 

intelligibility in noise. They used a phase inversion technique that allowed for separation 

of speech and noise. A comparison of the SNR after linear amplification, single channel 

WDRC, and multichannel WDRC revealed that while linear amplification did not change 

the output SNRs relative to the input SNRs, WDRC resulted in degradation in the output 

SNRs. Degradation was more prominent in less favorable SNRs than in more favorable 

SNRs and was also larger for the single channel WDRC than for the multichannel 

WDRC. The authors suggested that noise amplification during speech pauses could be 

the reason for the degraded SNRs with WDRC. Along with degradation in SNRs, the 

authors suggested that when WDRC is applied to speech in noise, the effective 

compression ratio is less than for speech in quiet, i.e., the amplitude envelope of speech is 

less affected by compression in noise when compared to speech in quiet, thus, the 

difference in amplitude of low-intensity sounds to high-intensity sounds in the speech 

signal remains high. 

1.4.2.2 Effect of Directional microphones on speech intelligibility in noise 

Directional microphones were first incorporated into hearing aids in 1971 in the U.S. 

markets. Some obstacles hindered the use of directional hearing aids and led to a decline 

in their use in the 1980’s, including the relatively large size of directional microphones 
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when the HA market was moving towards smaller-sized hearing aids, the paucity of 

instruments providing both omnidirectional and directional microphones, and the position 

of the hearing aid on the head which limited the directivity of the microphone (Ricketts, 

2005). 

Directional microphones in hearing aids can improve speech intelligibility in noise by 

attenuating sounds arriving from directions other than the front of the user, and the 

effectiveness of this attenuation is measured by the directivity index (DI). However, 

because everyday life situations vary greatly, it is not always the case that the signal of 

interest is at the front of the listeners and the unwanted signals are in the other directions.  

With this fact in mind, the use of hearing aids that have directional microphones 

(directional hearing aids) could be detrimental in certain situations. However, only 

directional microphones and frequency modulation (FM) technology have been proven to 

improve the SNR (Kim & Bryan, 2011). Valente and Mispagel (2008) reported a 

significant improvement in reception thresholds for sentences with the use of directional 

microphones compared to both unaided and omnidirectional performances, while there 

was no significant differences between the unaided and omnidirectional performances. 

Several studies demonstrated the effectiveness of directional hearing aids in improving 

speech understanding in noise, including Ricketts and Hornsby (2003), Boymans and 

Dreschler (2000), Quintino et al. (2010), and Tawfik et al. (2010). 

1.4.2.3 Effect of microphone mode mismatch on speech intelligibility in noise 

Typically, directional microphones are enabled in the “noise program” in the hearing 

aids, while the omnidirectional microphones are usually enabled in the “quiet program”. 

Usually, the default setting is “omnidirectional” and the hearing aid user must manually 

change the program to enable the directional microphone in noisy environments. Palmers 

et al. (2006) tested individuals with manually switchable hearing aids, and found that the 

noise program was used only 25% of time.  Desjardins and Doherty (2009) showed that 

approximately half listeners are unable to effectively use their noise program which 

enables the directional microphone when needed. Addressing these issues, and in order to 

get the most benefit from the directional microphone in everyday use of the hearing aid, 
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Kim and Bryan (2011) tested the difference in performance between four microphone 

settings: binaural omnidirectional, left asymmetric directional (left directional 

microphone and right omnidirectional microphone), right asymmetric directional, and 

binaural directional settings. They found that both the asymmetric directional and the 

binaural directional modes resulted in significantly better speech intelligibility in noise 

compared to the binaural omnidirectional mode, and the difference between the two 

asymmetric directional and the binaural directional modes was not statistically 

significant. These results confirm the benefits of directional microphones in improving 

speech understanding in noise and also suggest the use of the asymmetric directional 

microphone as a practical solution to improve speech understanding both in quiet and 

noisy environments without the need to manually switch between the two modes, and 

hence increase the gained benefits from the directional microphone.  

1.4.2.4 Effect of noise reduction on speech intelligibility in noise  

Different noise reduction algorithms have been discussed in section 1.5.1. Noise 

reduction algorithms in hearing aids function by detecting the different acoustic 

characteristics of speech signals and noise and then alter the gain in the frequencies 

where noise level is high. The studies that evaluated the benefits of noise reduction 

algorithms did not reveal consistent results. Some studies revealed no improvement in 

speech understanding in noise with the noise reduction algorithms, such as Alcántara et 

al. (2003), and other studies, such as Valente et al. (1998), and Berninger and Karlsson 

(1999), found that the improvement was limited only to self-assessment questionnaires 

and not measured speech intelligibility. However, Oliveira et al. (2010) found a 

significant improvement in speech perception with activation of the noise reduction 

algorithm. Zakis et al. (2009) also found a clinically significant improvement of 2 dB 

with activation of noise reduction algorithm. 

Tawfik et al. (2010) found a statistically significant benefit with the use of noise 

reduction algorithms when compared to unaided outcome in speech understanding in 

noise. When compared with the benefits provided by the directional microphone, the 

benefit provided by noise reduction algorithms was found to be much smaller than that 
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provided by the directional microphone and not statistically significant (Boymans & 

Dreschler, 2000).  

A few studies evaluated the effect of combining noise reduction algorithms with other 

digital signal processing features. Tawfik et al. (2010) found that combining directional 

microphones with noise reduction was significantly better with noise reduction algorithm 

only, while Boymans and Dreschler (2000) found adding the noise reduction to the 

directional microphone did not result in a noticeable difference in speech-in-noise 

performance. Peeters et al. (2009) found that both the directional microphone and noise 

reduction algorithms improved subjective and objective speech in noise performance 

measures (HINT scores and acceptable noise levels), however, combining noise reduction 

to directional microphone was most effective in improving SNR in noise. Similar results 

were reported by Prosser et al. (2009), where combining directional microphone and 

noise reduction algorithms improved SRT by 2-3 dB in the presence of diffuse noise 

sources.  

From the above, we can conclude that the effect of the different digital signal processing 

features discussed here on speech intelligibility in noise is variable. WDRC had been 

shown to either degrade or have no effect on it. Reasons for this could be noise 

amplification during speech pauses, or decreased effective compression ratio when 

applied to speech in noise versus speech in quiet. Directional microphones are the only 

signal processing feature that can significantly improve speech in noise. Even when 

applied asymmetrically, they provide a significant benefit when compared to 

omnidirectional microphones. As for digital noise reduction, there were no consistent 

findings regarding its effect, however, it was found to be either of no effect or of minimal 

positive effect on speech understanding in noise. 

Recently, communication between a hearing aid pair, in order to apply the same signal 

processing algorithm in both aids is presented in order to preserve the binaural cues that 

listeners depend on for sound localization and speech intelligibility in noise.  

The study presented in Chapter Two investigated the effect of coordinated WDRC on 

sound localization and speech intelligibility in noise. 
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Chapter 2 

2. Evaluation of speech intelligibility and sound 

localization abilities with hearing aids using bilateral 

wireless coordination 

 

2.1 Introduction 

 

The purpose of the current study was to measure and evaluate the benefits of technology 

that enables wireless signal processing coordination between a pair of hearing aids. The 

goal was to generate evidence on the benefits of this relatively new feature in hearing 

aids. Two aspects of binaural hearing, speech intelligibility in noise and horizontal sound 

localization, were investigated in evaluating the benefits of the synchronized signal 

processing. 

2.2 Background 

In Chapter one, the performance of various digital signal processing features was 

reviewed. It was clear that most of these features, although meant to improve speech 

intelligibility in noise, either degrade or have no effect on the HI listeners’ speech 

performance. Only one feature, namely the directional microphone, was proved to result 

in a significant improvement in speech intelligibility in noise. Directional microphones 

were also the only feature that resulted in an improvement in the F/B aspect of horizontal 

localization. 

As discussed in Chapter one, binaural hearing enhances speech understanding in noise 

because of binaural redundancy, which refers to the role of the central auditory system in 

taking advantage of amplitude and timing differences of speech and noise arriving at each 

ear; and binaural squelch, which refers to the ability of the central auditory system to 

combine the signals arriving at the two ears (Dillon, 2001). There is evidence, at least in a 



37 

 

laboratory setting, that bilateral hearing aid users extract benefit from binaural hearing as 

well (Byrne, Noble, & LePage, 1992,  Boymans et al., 2009), with listeners with more 

severe hearing losses extracting more benefit (Day et al., 1988).   This documented 

binaural benefit accounts for the increasing rate of bilateral hearing aid fitting (Kochkin, 

2009). Together with advances in digital signal processing (DSP) features, such as 

adaptive directionality and digital noise reduction, bilateral amplification is expected to 

continue to contribute to hearing aid fitting success (Bretoli, Bodmer, & Probst, 2010). 

However, when two hearing aids each with its independently working circuits and DSP 

features are fitted, they may disrupt the naturally occurring cues for sound localization 

(Van den Bogaert et al., 2006). The disturbed localization abilities due to hearing loss 

might contribute to the problem of decreased speech intelligibility especially in noisy 

backgrounds because locating the person who is talking becomes more difficult (Byrne & 

Noble, 1998; Dillon, 2001).  Furthermore the distortion of ITD and ILD features may 

negate any potential benefit arising from binaural hearing.  

To give an example, In the case of non-synchronized processing, assuming that there is a 

sound source close to the right ear; sound will arrive earlier and at a higher intensity to 

the right ear when compared to the left. Compression will commence in the right hearing 

aid (because it is closer, and the sound signal is loud), but it will not commence in the left 

ear, because sound reaching it will be lower. The result would be a distortion of the ILDs.    

A review of the studies that have investigated the effect of hearing aid DSP features on 

sound localization and speech understanding in noise is available in Chapter one, and a 

summary of these effects is presented here.   

WDRC did not significantly degrade sound localization. However, applying short attack 

time and large CR tends to negatively affect horizontal localization abilities. When 

inspecting the different microphone configurations in the studies reviewed here, we found 

a general trend that for the L/R localization, the matched microphone mode resulted in a 

better performance when compared to mismatched microphone modes. However, the 

presence of a directional microphone in one or both hearing aids significantly improved 

the F/B localization performance, obviously due to amplifying sounds from the front 
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more. Digital noise reduction was found to worsen the L/R performance, and improve the 

F/B performance. However, the differences in RMS errors were small, and the effect of 

noise reduction on horizontal localization was found to be clinically unimportant. 

The effect of the different digital signal processing features on speech intelligibility in 

noise was variable (see Chapter One for a detailed review). WDRC, although expected to 

improve speech intelligibility in noise, either degraded or had no effect on it. Reasons for 

this could be noise amplification during speech pauses or decreased effective 

compression ratio when applied to speech in noise versus speech in quiet. Directional 

microphones were the only signal processing feature that significantly improved speech 

in noise. Even when applied asymmetrically, directional microphones provided a 

significant benefit when compared to omnidirectional microphones. As for digital noise 

reduction, there were no consistent findings regarding its benefits to speech intelligibility 

in noise. It was found to be either of no effect or of minimal positive effect at best. 

The factors that affect speech intelligibility in noise, in particular the spatial separation 

between the target and the number of competing noise sources have been discussed in 

detail in Chapter one. Because spatial separation between the signal of interest and the 

interfering signal(s) is important for speech understating in noise (Hawley et. al, 1999; 

Rychtarikova et al, 2011), restoring the binaural cues (mainly ILDs) through wireless 

synchrony of WDRC and volume control, as well as synchronized noise reduction 

algorithms, are expected to improve speech understanding in noise because the binaural 

cues that are maintained will facilitate locating the speaker (or source of interest) and 

decrease noise. 

With the aim of preserving naturally occurring binaural cues, bilateral HAs that 

coordinate and synchronize their processing through wireless communication were 

introduced to the market in 2004. They provide communication between the right and left 

hearing aids by means of electromagnetic transmission. The two hearing aids are 

continually sharing information about the environment and control settings. When this 

feature is enabled, acoustical information from both hearing aids is analyzed. Based on 

this analysis the signal is classified and decisions are made. Because inputs from both 
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hearing aids are used in the decision-making process, the probability that the correct 

decision is taken is increased. This technology assures that both hearing aids apply the 

same digital signal processing features at the same time (Powers & Burton, 2005). 

Wireless synchrony feature is expected to improve sound localization, because the signal 

processing features that affect localization cues will be adjusted in both aids 

simultaneously (Ricketts & Hornsby 2003). As discussed earlier, improved sound 

localization is assumed to improve speech understanding in noise, because it facilitates 

locating the speaker in a noisy atmosphere and facilitates perceived spatial separation 

between the source and the interfering noise(s). 

Kreisman et al. (2010) reported a significant improvement in the scores of two speech in 

noise tests (QuickSin and HINT) with the use of bilateral hearing aids that apply the 

binaural wireless synchrony (when all the adaptive features were activated), when 

compared to a pair of hearing aids that did not apply this technology. The participants 

were provided with a hearing aid acclimatization period before testing. Sockalingam et al. 

(2009), which is a white paper by Oticon, found that the listeners performed significantly 

better when they activated the bilateral coordination compared to the deactivated bilateral 

coordination. The activated coordination was also rated better than the deactivated 

coordination for certain listening conditions.  Smith et al. (2008) compared the 

performance of synchronized and non-synchronized bilateral Siemens HAs using the 

Speech, Spatial, and Qualities of Hearing scale. Results revealed a general trend in the 

preference for the synchronized HA condition on many survey items in the speech and 

spatial domain. 

In summary, there is a potential for the hearing aid’s adaptive signal processing 

algorithms in the left and right hearing aids to distort cues necessary for sound 

localization and speech understanding in noise, if they are allowed to operate 

independently.  Hearing aid manufacturers have now developed “binaural” hearing aids 

that co-ordinate their signal processing through wireless communication. There is very 

little independent evidence on how well this strategy works, and if there is any 

performance difference among the binaural wireless hearing aids offered by different 
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manufactures. The current study aimed to address this gap by examining the effect of 

wireless synchronization in bilateral HAs on two aspects of binaural hearing: sound 

localization and speech intelligibility in noise when multichannel WDRC is the only DSP 

feature active. The working hypothesis was that synchronized multi-channel WDRC will 

better preserve ILDs and therefore, enhance horizontal sound localization abilities. 

 

2.3 Materials & Method 

2.3.1 Participants 

Eight participants with normal hearing (NH), with a mean age 26 years (±3 years 

standard deviation) with hearing thresholds ≤ 25 dB HL at 0.25-8 kHz participated in the 

study as a control group. Twelve participants, with a mean age 69 years (±5 years 

standard deviation), with bilaterally symmetrical (difference between right and left ear 

thresholds is ≤ 10 dB at all measured frequencies) moderate-to-severe hearing loss 

participated in the hearing-impaired group. All had a minimum of one year experience 

with hearing aid use. Figure 2-1 shows the mean audiograms for the HI participants with 

details given in Appendix B. 
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Figure 2-1. Means and standard deviations of hearing thresholds of HI participants. 

 

2.3.2 Hearing aids 

Two pairs of hearing aids were used: Oticon Epoq XW and Siemens Motion 700. Both 

these hearing aids were programmed to fit the targets specified by the Desired Sensation 

Level (DSL v5.0) formula (Scollie et al., 2005) for each HI participant and verified using 

AudioScan Verifit. For the NH participants, the hearing aids were programmed to fit the 

DSL v 5.0 targets for a flat audiogram of 25 dB HL across all audiometric frequencies. 

The directional microphone, noise reduction, and feedback management features were 

disabled and the binaural wireless connection was used to synchronize the volume and 

the WDRC settings between the two HAs (Oticon 2007). Synchronizing the volume 

enables the user to adjust the volume in both hearing aids by pressing the volume button 

in one hearing aid. As discussed in Chapter one, directional microphones result in 

significantly better speech understanding in noise (Boymans & Dreschler 2000; Quintino 

et al. 2010; Rickets & Hornsby, 2003; Tawfik et al. 2010), and also will improve F/B 

localization (Keidser et al., 2006). Also, some studies revealed no improvement in speech 
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understanding in noise with the noise reduction algorithms, such as Alcántara et al. 

(2003), and other studies, such as Valente et al. (1998), and Berninger et al. (1999), found 

that the improvement was limited only to the self-assessment questionnaires. It was 

planned, therefore, to test wireless synchrony between WDRC in isolation without 

contamination from other features that are known to improve auditory performance. 

The way each HA applies WDRC is different. Oticon Epoq XW (ha#1) applies a mixture 

of two parallel compression systems: a slow 15-channel and a fast 4-channel system. The 

relative contribution of each is determined depending on the acoustic environment in 

order to provide both speech intelligibility (fast compression) and a high quality speech 

that minimizes listening fatigue (slow compression). Siemens Motion 700 (ha#2) applies 

a 16-channel dynamic range compression that aims at providing comfortable listening to 

various loudness levels. Microphone mode was set to “omnidirectional”, digital noise 

reduction and feedback cancellation were both disabled as well. Directional microphones 

result in significantly better speech understanding in noise (Boymans & Dreschler 2000; 

Quintino et al. 2010; Rickets & Hornsby, 2003; Tawfik et al. 2010) and also will improve 

F/B localization.  

Among the twelve HI participants, five also performed the localization test using their 

own hearing aids. Their own hearing aid performance compared to their new hearing aids 

performance is presented in section 2.4.2.  

 

2.3.3 Method 

The study was divided into 3 sessions. During the first session, participants signed the 

information letter and had their hearing assessed by otoscopy, immitance, and pure tone 

audiometry if their most recent assessment was more than six months old.  Ear 

impressions were taken to produce hard, unvented full-shell molds with regular #13 

tubing. Sessions two and three were performed in a hemi-anechoic chamber, where a  
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Figure 2-2 Speaker arrangement in the hemi-anechoic chamber used for testing 

speech intelligibility and localization. 

circular array of 16 Tannoy i5 AW speakers was used, as shown in Figure 2-2. The 

speakers received signals from the computer through an Echo AudioFire 12 sound card 

(for digital to analog conversion), Soundweb 9008 networked signal processor (for 

speaker equalization and level control), and QSC CX168 power amplifiers (for power 

amplification and impedance matching).  Participants stood in the middle of the speaker 

array on an adjustable stand.  This setup was utilized for both intelligibility and 

localization experiments, details of which are given below. To correct for individual 

loudspeaker characteristics, each target sound was equalized in the frequency domain by 

dividing by the appropriate loudspeaker transfer function measured with a reference 

microphone (Bruel & Kjaer 4189) placed at the center of the array in the absence of the 

listener’s head. The transfer functions were derived from measurements of the impulse 

response from each loudspeaker to the microphone using a 2047-point maximum-length 

sequence signal (Rife & Vanderkooy, 1989) presented at a sampling rate of 48828 Hz via 
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the Tucker Davis Technologies RX6 real time processor and QSC CX168 power 

amplifiers. Prior to computing the transfer functions, the impulse responses were 

windowed in post-processing to remove any residual reflections. 

2.3.3.1 Speech Intelligibility  

Speech intelligibility was assessed using the Hearing In Noise Test (HINT) (Nilsson et al. 

1994) procedure under three test conditions: (1) noise presented to the right of the 

participant (90° azimuth), (2) noise presented to the left of the participant (270° azimuth), 

and (3) noise presented simultaneously from 90° and 270° azimuths. Under all test 

conditions, the speech was presented from directly in front of the participant (0° 

azimuth). Twenty sentences were presented in each condition, and the participants were 

asked to repeat the sentences they heard. In the HINT procedure, the noise level remained 

stable (65 dBA), and the speech level changed according to the participant’s response. At 

the beginning of the test, speech level was varied in 4-dB steps until a correct response 

was obtained, then the speech level was varied in 2-dB steps in order to provide the 

Signal-to-Noise Ratio (SNR) at which 50% of the speech was intelligible. HINT was 

administered 5 times for each subject: unaided, plus four combinations of the hearing aid 

make and wireless synchrony mode.  The order of these device settings was randomized 

for each participant.  Custom software developed at the National Centre for Audiology 

was used to automate the HINT process, to visually monitor the test progress, and to store 

the test results. The target (speech sentences) and the noise were played through an Echo 

AudioFire 12 sound card. The noise used was a broadband stationary noise, and the noise 

presentation level was stable at 65 dBA. The speech level was varied according to the 

response of the participant, in order to provide the Signal-to-Noise Ratio (SNR) at which 

50% of the speech is intelligible. 

2.3.3.2 Localization test 

Localization abilities were tested using two different stimuli: a car horn of 450-ms 

duration in stereo traffic noise with +13 dB SNR and a 1/3-octave narrow-band noise 

centered around 3150 Hz with 200-ms duration and 76 dB SPL.  



45 

 

  

Figure 2-3. 1/3-octave spectrum of the car horn stimulus used in sound localization. 

 

 

Figure 2-4.  1/3-octave spectrum of the traffic noise used in sound localization. 
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The car horn in traffic noise was chosen to simulate common everyday situations where 

localization abilities play an important safety role. For this test condition, the stereo 

traffic noise was played from two fixed speaker locations at 90° and 270° azimuths, 

which were placed slightly below the speakers used for localization testing.  The car horn 

signal was a Datson 180B car horn, downloaded from the website:   

http://www.freesound.org/people/conny/sounds/2937/.   Figure 2-3 displays the 1/3-

octave spectrum for the car horn, which shows most energy in the 400 and 2500 Hz 

bands. The traffic noise was a 3:06 minute stereo recording of traffic noise, with a 

minimum intensity of 53.73 dB SPL, downloaded from the website: 

http://www.freesound.org/people/inchadney/sounds/21245/. Figure 2-4 displays the 

spectrum of the traffic noise used in the localization experiment. A 1/3-octave narrow 

band noise with a center frequency of 3150 Hz was chosen as a second stimulus to 

replicate the previous study by Van den Bogaert et al. (2006). Each stimulus was 

presented 48 times (3 times from each speaker, in a randomized order) at a presentation 

level of 76 dB SPL for the NBN stimulus, and 73 dB SPL for the car horn stimulus. 

Participants stood in the middle of the speaker array wearing a head tracker (Polhemus 

Fastrak) helmet with a light emitting diode (LED) and a response button box in hand. 

Upon hearing the stimulus, the participants turned their head to the perceived source 

speaker. A red light emitted from the LED on the helmet provided visual feedback as to 

the participant’s head position relative to the speaker. Participants then registered their 

response with a button press. Although stimuli were too brief to allow head movement 

while they were played, participants were free to move their heads and/or body to locate 

the stimulus. The next stimulus was presented 600 ms after a button press following the 

return of the head orientation towards the centre of the speaker array (0° azimuth). 

Similar to the intelligibility test, localization experiments were performed under 5 

conditions: with each hearing aid pair and the wireless feature on, with each hearing aid 

pair while wireless feature was off, and in the unaided condition. 

Prior to the actual testing, the localization task started with a practice session to 

familiarize the participant with the task.  Participants were asked to orient toward 0° 

azimuth at trial initiation and after stimulus onset they were free to move their heads to 

localize. Participants were not given instructions regarding head movements because it 

http://www.freesound.org/people/conny/sounds/2937/
http://www.freesound.org/people/inchadney/sounds/21245/
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was meant to measure the natural response as it would be in real life. Audibility of the 

stimuli, and the ability to understand and perform the localization task were assessed by 3 

practice stimuli; each played 10 times from a randomly-chosen different speaker. Practice 

stimuli were broad band noise bursts, gradually decreasing in duration: 3x500 ms, 5x300 

ms, and finally 3x300 ms. The traffic noise was played through an Echo AudioFire 12 

sound card, and the target (car horn) was played through the Tucker Davis Technologies 

RX6 real time processor. 

 

2.4 Results 

The data collected for both speech intelligibility and localization were averaged and the 

means were compared for statistical significance. Statistical significance was assessed 

using the repeated measures analysis of variance (ANOVA) procedure implemented in 

SPSS v16.0. The localization data were analyzed to obtain F/B error rates, lateral angle 

gain, bias, and scatter. 

2.4.1 Speech Intelligibility 

Due to technical difficulties, and difficulties in   rescheduling, two participants did not 

perform the HINT. Figure 2-5 displays the averaged HINT data for 6 out of the 8 

participants in the NH group. Scores from each experimental condition (hearing aid make 

+ wireless condition) depicted as a separated bar.  The error bars denote one standard 

deviation.  A 5x3 repeated measures ANOVA was performed, with 5 aided conditions: 

(unaided, ha#1 wireless/on, ha#1 wireless/off. ha#2 wireless/on, ha#2 wireless/off), and 3 

noise presentation angles (90⁰, 270⁰, both) as the independent variables. Results revealed 

a significant main effect of the angle of presentation (F (2, 4) = 19.53, p = 0.009). As 

expected, HINT scores were worse for the condition in which noise was presented from 

both 90° and 270° azimuths.  No other main effects or interactions were found to be 

significant. When comparing the average aided performance with the unaided 

performance using a paired-samples t-test, the difference was not significant: t (5) = -

0.538, p = 0.613. 
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Figure 2-5: HINT results for six of the NH participants. Here, ha1=hearing aid #1, 

ha2=hearing aid #2, Won = wireless connectivity activated, and Woff = wireless 

connectivity disabled. 

 

Figure 2-6 depicts the averaged HINT data collected from twelve HI participants, with 

the data displayed in a manner similar to Figure 2-5. The HI HINT data were analyzed in 

two different ways using ANOVA: (a) Similar to the NH HINT data, the HI HINT data 

were analyzed using a 5 x 3 repeated measures ANOVA: 5 aided conditions (unaided,  

ha#1 wireless/on, ha#1 wireless/off, ha#2 wireless/on, ha#2 wireless/off) X 3 angles 

(90⁰-270⁰-both). (b) Excluding the unaided condition, another 2 x 2 x 3 repeated 

measures ANOVA: 2 hearing aids X 2 wireless conditions X 3 angles. In both analyses, 

only the “angle” was statistically significant. (F (2, 9) = 18.56, p = 0.001), and (F (2, 9) = 

43.4, p<0.001), where the performance was significantly better with one noise source 

(90⁰ or 270⁰), compared to noise from both sides. The 2x2x3 ANOVA revealed also a 

significant interaction between the hearing aid and the noise presentation angle (F (2, 9) = 

4.81, p = 0.38); the performance with ha#1 was better than the performance with ha#2 at 

either 90 ⁰ and 270 ⁰ noise presentation angles, and the performance with ha#2 was better 

when the noise was presented from both 90⁰ and 270⁰ simultaneously. A significant 

interaction between the hearing aid, the wireless condition, and the noise presentation 
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angle was also noted (F (2, 9) = 4.78, p = 0.038), where performance with ha#1 in the 

wireless off condition was significantly better than all the other conditions when the noise 

was presented from 90⁰. No other main effects or interactions were found to be 

significant.  

A comparison of the average aided performance with the unaided performance using 

paired-samples t-test revealed that the aided performance was significantly better than the 

unaided performance: t (10) = -2.92, p = 0.015.  

Means and standard deviations of HINT scores for both NH and HI listeners are provided 

in Appendix C. 

 
Figure 2-6: HINT results for the HI participants. Here, ha1=hearing aid #1, ha2=hearing aid #2, 

Won = wireless connectivity activated, and Woff = wireless connectivity disabled. 

 

2.4.2 Sound Localization 

Figure 2-7 displays a sample output of one sound localization experiment for one of the 

HI participants. In Figure 2-7a, the x-axis represents the target azimuth, which is the 

angle of the speaker that emitted the car horn sound and the y-axis represents the 

response azimuth, which is the angle the listener reported that the sound came from. In 
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this plot, the grey boxes at the horizontal axis as well as the black boxes at the vertical 

axis contain the trials that represent F/B and B/F errors, respectively. 

Figure 2-7: Sample localization data from one of the HI participants for an experimental 

condition. (a) Localization data illustrating F/B confusions. (b) Lateralization data from which 

lateral angle gain, bias, and scatter parameters are calculated. The grey boxes at the horizontal 

axis as well as the black boxes at the vertical axis contain the trials that represent F/B and B/F 

errors, respectively 

 

To calculate the rate of F/B errors, the data set was reduced to those trials on which both 

target and response were within the ±67.5 and/or ±112.5 degree ranges. The number of 

target/response hemisphere mismatches was computed within this range and then divided 

by the total number of trials.  Figure 2-7b displays the lateralization response of the 

subject, where the F/B data within left and right hemispheres were collapsed. A linear fit 

to the lateralization data was used to compute three metrics: lateral angle gain – which is 

the slope of the linear fitting function; lateral angle bias – which represents the shift in 

lateral response either towards the left or right hemisphere; and lateral angle scatter – 

which represents the root-mean-square deviation of the response lateral angles from the 

values predicted by the regression. Figure 2-8 displays the F/B error rate for the NH 

participants.  A 2 x 2 x 2 repeated measures ANOVA with stimulus, HA, and the wireless 

condition was performed, and revealed no statistically significant main effect or 
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interaction. Comparing the average unaided to the averaged aided performance using 

paired-samples t-test revealed a significantly better unaided performance: t (7) = -3.14, 

p=0.016. 

 
Figure 2-8: F/B error rate for the NH participants for the two test stimuli is shown here. Note that 

ha1=hearing aid #1, ha2=hearing aid #2, Won = wireless connectivity activated, and Woff = 

wireless connectivity disabled. 

 

Figure 2-9 displays the F/B error rate for the HI group. Statistical analysis
 
using repeated 

measures 2 x 2 x 2 ANOVA  (HA, the wireless condition, and stimulus) revealed a 

significant main effect of the wireless condition (F (1, 11)=6.33, p=0.029) indicating that 

activating the wireless feature allowed for better discrimination in the F/B dimension. No 

other significant main effects or interactions were noted. 
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Figure 2-9: F/B error rate by HI participants for the two test stimuli. Note that ha1=hearing aid 

#1, ha2=hearing aid #2, Won = wireless connectivity activated, and Woff = wireless connectivity 

disabled. 

 

Among the twelve HI listeners, five performed the localization task with their own 

hearing aids. Their performance compared to the wireless on and wireless off collapsed 

across the two hearing aids under investigation is displayed in figure 2-10. No 

statistically significant effect of the stimulus nor the hearing aid type or wireless 

synchrony was observed. However, when investigating the performance in the car horn in 

traffic condition, the wireless on performance resulted in lower errors (20.61%) when 

compared to the wireless off (26.43%), but quite similar to the listeners’ own hearing aid 

(20.81%) performances. 
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Figure 2-10: F/B error rate for five HI participants comparing the localization performance in the 

two stimuli condition, with their own hearing aid “ownha”, with the wireless synchrony feature 

on collapsed across the two hearing aids “Won”, and with the wireless synchrony feature off 

collapsed across the two hearing aids “Woff”. 

 

Figure 2-11 shows the lateral angle gain for the NH participants’ localization data.  A 

value of 1 for the lateral gain parameter indicates no bias in response either to the left or 

right hemisphere, while a value of 0 indicates a bias towards the midline (undershoot).  

Repeated measures ANOVA on the NH data did not reveal any significant main effect or 

interaction, except for the interaction between the HA and wireless (F (1,7) = 6.867, p < 

0.05) which results from the greater difference between the wireless enabled and disabled 

conditions for ha#2. Figure 2-12 displays the lateral angle gain for the HI listeners.  There 

was a significant main effect of the stimulus (F (1,11) = 12.189, p < 0.05), with the high 

frequency NBN resulting in a lateral gain of significantly less than 1. No other main 

effect or interaction was observed.    

Figure 2-13 displays the lateral angle bias calculated from the data of the NH 

participants. Figure 2-14 displays the lateral angle bias for the HI listeners. There was a 

significant difference achieved by the wireless mode for the HI participants (F (1,11) = 

4.95, p < 0.05). Lower bias was achieved when the wireless synchrony was activated. 
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Figure 2-11: Lateral angle gain computed from the localization data obtained from NH 

participants for the two test stimuli.  Note that ha1=hearing aid #1, ha2=hearing aid #2, Won = 

wireless connectivity activated, and Woff = wireless connectivity disabled. 

 

 

Figure 2-12: Lateral angle gain computed from the localization data obtained from HI participants 

for the two test stimuli.  Note that ha1=hearing aid #1, ha2=hearing aid #2, Won = wireless 

connectivity activated, and Woff = wireless connectivity disabled. 
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Figure 2-13: Lateral angle bias computed from the localization data obtained from NH 

participants for the two test stimuli.  ha1=hearing aid #1, ha2=hearing aid #2, Won = wireless 

connectivity activated, and Woff = wireless connectivity disabled. 
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Figure 2-14: Lateral angle bias computed from the localization data obtained from HI participants 

for the two test stimuli.  ha1=hearing aid #1, ha2=hearing aid #2, Won = wireless connectivity 

activated, and Woff = wireless connectivity disabled. 

 

Figures 2-15 and 2-16 display the lateral angle scatter calculated from the data of the NH 

and HI listeners, respectively. Statistical analysis of the lateral angle scatter did not reveal 

statistically significant differences. Means and standard deviations for all the localization 

data for both the NH and the HI participants are provided in Appendix D. 
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Figure 2-15: Lateral angle scatter computed from the localization data obtained from NH 

participants for the two test stimuli.  ha1=hearing aid #1, ha2=hearing aid #2, Won = wireless 

connectivity activated, and Woff = wireless connectivity disabled. 

 

 

Figure 2-16: Lateral angle scatter computed from the localization data obtained from HI 

participants for the two test stimuli.  ha1=hearing aid #1, ha2=hearing aid #2, Won = 

wireless connectivity activated, and Woff = wireless connectivity disabled. 
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2.5 Discussion 

The study presented in this chapter was designed to evaluate the benefits gained by the 

hearing impaired listeners when both hearing aids are wirelessly communicating and 

coordinating the WDRC in order to restore the benefits of binaural hearing. Participants’ 

performances in horizontal sound localization and speech intelligibility in noise were 

evaluated. Two modern HAs with the wireless synchrony feature were tested with a 

group of eight normal and 12 HI listeners. The HINT in its standard format was used to 

evaluate the speech intelligibility in noise. For testing the localization abilities, two 

stimuli were used: a car horn in stereo traffic noise and a 1/3-octave narrowband noise 

centered around 3150 Hz. Results showed that activating the wireless feature did not 

result in a significant effect on the HINT scores, but did lower the localization error rate 

for the HI listeners in the F/B dimension for a broadband stimulus. These results are 

discussed in detail below. 

Results from sound localization experiments agree with previously published data on 

several fronts: (a) broadband stimuli are more accurately localized than high frequency 

narrowband stimuli (e.g., Keidser et al. 2009, 2011; Middlebrooks ,1992), (b) localization 

errors in the F/B dimension are greater than in the L/R dimension (e.g., Best et al., 2010; 

Noble et el, 1994; Vaillancourt et al., 2011 ), and (c) aided localization performance by 

HI listeners does not reach normative performance (e.g., Bogaert et al, 2011; Byrne & 

Noble, 1998). 

The sound localization experiments were carried out with two different stimuli in this 

study: a broadband car horn in the presence of traffic noise and a narrowband high 

frequency stimulus. The F/B error rate was lowest (24.17%) for the NH listeners when 

localizing the car horn stimulus in the unaided condition, and 41.65% when localizing the 

high frequency NBN also in the unaided condition. These listeners had access to a full 

range of natural spectral cues indicating the F/B location for the car horn stimulus, but 

not for the NBN stimulus, because it is a high frequency and a narrow band stimulus, and 

resolving the F/B confusions requires broadband high frequency stimuli, where the 

spectral shape of the stimulus changes according to the pinna shape.   
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The location of the hearing aid microphone outside the pinna in aided conditions 

prevented access to the natural spectral cues with a concomitant increase in errors. The 

high rate of F/B errors observed for the NBN stimulus for all listeners was expected 

because the NBN stimulus spectrum did not excite the broad range of high frequencies 

necessary to reveal the shape of the spectral cues produced by the source (Blauert 1969, 

Middlebrooks 1992). 

The most salient result from the sound localization experiments was the significant 

decrease in F/B confusions within the HI group for the broadband car horn stimulus with 

the activation of the wireless synchrony feature. This result is similar to the one reported 

by Sockalingam et al. (2009) in which HI participants exhibited lower errors in localizing 

a bird chirp in the presence of speech-shaped background noise when wearing 

synchronized bilateral HAs. In their study to re-examine the duplex theory for sound 

localization, Macpherson and Middlebrooks (2002) found that biased ILD cues result in 

more F/B confusions in wide-band stimuli, perhaps due to the mismatch between ITD 

and ILD cues at low frequencies. It seems that a match between ITD and ILD cues is 

necessary for listeners in order to properly use spectral cues to solve F/B confusions. 

Similar results were found in sound localization experiments conducted by Macpherson 

and Sabin (2007). More recently, Wiggins and Seeber (2012) reported that static ILD 

bias, which simulates the effect of non-synchronized compression, can affect the  spatial 

intelligibility of broadband signals. Therefore, results from the present study suggest that 

the synchronized WDRC reduces the bias in ILDs that would otherwise be present with 

independent bilateral WDRC, and this facilitates better F/B discrimination of broadband 

sounds. When compared to the NH listeners, the average aided performance was 34.63% 

for the car horn stimulus, and 45.54% for the high frequency NBN stimulus. However, it 

is worth mentioning that the aided performance of the HI listeners was generally better 

than the aided performance of the NH listeners. This could be a result of adaptation to the 

new cues provided by the hearing aids, and could be considered as evidence of auditory 

plasticity, which will be discussed in more detail in chapter three. 

Analysis of the localization performance of HI listeners in the L/R dimension revealed a 

significant main effect of stimulus. The lateral angle gain was around 1 for the car horn 
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stimulus and around 0.8 for the NBN stimulus which implies a bias towards the midline 

for the NBN. This result can be explained from examining the audibility of two test 

stimuli. Sabin et al. (2005) reported that the lateral angle gain is biased toward the 

midline (about 0.5) when stimuli are near threshold of sensation for the HI participants, 

and gradually increases to 1 as the sensation level increases. In the present study, the 

participants’ audiograms (Figure 2-1) show that the average hearing threshold for the 500 

Hz is ~45 dB HL, and for the 4 kHz is ~60 dB HL. Considering that there is a spectral 

peak in the car horn stimulus around 400 Hz, (see Figure 2-2), and that the NBN centre 

frequency is 3150 Hz, it can be inferred that the car horn stimulus was presented at a 

higher sensation level than the NBN stimulus. In addition, the frequency response of a 

typical hearing aid rolls off beyond 4000 Hz (e.g. Dillon, 2001) impacting the audibility 

of high frequency sounds. This is evident from Figure 2-17, where the verification of the 

programmed HA gain for one of the HI participants is shown. Inadequate high frequency 

gain and narrower HA bandwidth both contribute to the lower sensation level of high 

frequency sounds, leading to poorer lateralization. 

Unlike the F/B data, there was no effect of wireless synchronization on localization in the 

L/R dimension, even for the car horn stimulus. The lack of an effect of activating the 

wireless synchrony on the lateral angle gain with the car horn stimulus might be due to 

the availability of low frequencies. When available, ITD cues are weighted more heavily 

(~80%) than ILD cues (Macpherson & Middlebrooks 2002; Wightman & Kistler,1992). 

Lateral angle bias was significantly reduced with the activation of the wireless mode. 

The large standard deviation values in bias and scatter measurement reflect large 

variability in the participants’ performance, and were found to be greater with ha#2. The 

reason may be the different WDRC strategies used in ha#1 and ha#2. Ha#1 utilizes a 

parallel system that includes a fifteen channel slow-acting compressor and a four channel 

fast-acting compressor. Ha#2 on the other hand, incorporates a sixteen channel 

compressor with syllabic compression time constants. The unavailability of fast-acting 

compression in ha#2 could be the reason for the greater variability in the individual 

performances. 



61 

 

The HINT data obtained from NH listeners are similar to the published normative data 

(Nilsson et al., 1994). As expected, there was a significant difference between the HINT 

scores obtained from NH and HI participants across listening conditions. Furthermore, 

activation of the binaural wireless synchrony feature did not produce a significantly 

different result for either NH or HI participants, although it is purported to better preserve 

the binaural cues that facilitate improved speech intelligibility in noise. This result 

contradicts the findings from Kreisman et al. (2010) study where a significant 

improvement in speech understanding in noise by HI listeners was reported with HAs 

incorporating wireless synchrony. However, Kreisman et al. (2010) compared the 

performance of two different models of HAs in their study, namely the Oticon Epoq and 

Oticon Syncro. Epoq was a newer generation model than  Syncro; in addition to the 

wireless synchrony feature, Epoq also incorporated a newer DSP platform and wider 

bandwidth in comparison to Syncro. In contrast, the present study evaluated the 

performance of the wireless synchrony feature in isolation while keeping all other HA 

parameters constant. 

Several factors may have contributed to the lack of a significant difference in 

intelligibility scores between the two wireless settings. First, both brands of HA pairs 

were programmed to be in omnidirectional mode regardless of the wireless setting. Thus, 

the matched microphone directionality configurations preserved the ITD cues (Keidser et 

al., 2006; 2009) for both speech and noise stimuli even when the wireless synchrony was 

disabled. Finally, both NH and HI participants were tested without a period of 

acclimatization to either HAs, similar to an earlier study by Van den Bogaert et al. 

(2011). While there are conflicting reports on the effect of acclimatization on speech 

recognition in noise (Munro (2008) provides a review of this literature), there is evidence 

that HI listeners improve over time in their speech recognition abilities when using 

multichannel WDRC (e.g., Yund et al., 2006). Furthermore, Neher et al. (2009) 

commented that a lack of acclimatization may impact the degree of spatial benefit 

experienced by HI listeners in complex listening environments. 
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Figure 2-17: SpeechMap from AudioScan Verifit displaying the fit-to-targets for different 

levels of input speech. 

A final comment with regards to the head movement in the localization tasks is worth 

mentioning. The minimum latency of head movement in response to an auditory stimulus 

is approximately 200 ms (Brimijoin et al., 2010; Zambarbieri et al, 1997), thus the 200-

ms high-frequency stimuli were likely too short to allow head movement while they were 

played. The 450-ms car horn targets, however, might have been long enough to permit 

useful head movements before offset. By comparing the head positions measured at the 

onset and offset of the stimuli, head movement angles were calculated for the two stimuli 

in the study for all the participants and all the hearing aid conditions. The percentage of 

head movements that were greater than 10⁰, and therefore large enough to assist in F/B 

localization (Macpherson et al., 2011) were: 0.7% for the high-frequency noise, 28.4% 

for the car horn with wireless connectivity enabled, and 22.8% for the car horn with 

wireless connectivity disabled. It is noticeable that the longer the stimulus, the more the 

effective head movement, and hence the lower the F/B confusions. However, since the 

difference between the percentages of effective head movement with activation and with 
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deactivation of the wireless synchrony is insignificant, it is not likely that the head 

movement influenced the significant improvement with activating the wireless 

synchrony. 

 

2.6 Summary and Conclusions 

This chapter presented a study conducted to evaluated the benefit of wireless 

synchronization of WDRC in a bilateral hearing aid pair. Speech recognition in noise and 

localization abilities of NH and HI participants were measured with two different brands 

of bilateral wireless hearing aids. Speech recognition data showed no statistically 

significant preference for either “wireless on” or “wireless off” conditions. Localization 

results were analyzed for errors in the F/B and L/R dimensions. Activating the wireless 

synchronization significantly reduced the rate of F/B confusions among the HI group 

when the sound source was broadband. Localization results in the L/R dimensions were 

unaffected by the wireless setting. Together, these results suggest a benefit from wireless 

synchronization, at least in certain environments. Results are to be considered with 

caution, because participants were not acclimatized to the hearing aids and earmolds, and 

all advanced DSP (adaptive directionality, noise reduction, and feedback cancellation) 

were disabled. A subsequent study that investigate the effects of acclimatization, 

additional adaptive DSP, and complex listening environments (multiple sources in a 

reverberant setting) on the wireless synchronization of the signal processing features in 

the hearing aids will be presented in Chapter four. 
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Chapter 3 

3. Auditory Plasticity and Auditory Training 

 

3.1 Introduction 

 

This chapter provides a brief overview of neuroplasticity in mammals in general and in 

human beings in particular.  First, studies that suggest the presence of auditory plasticity 

in adult listeners are reviewed.  Second, this chapter reviews the literature on a related 

concept, auditory training, that can potentially lead to significant improvement in the 

auditory performance of HI listeners. Finally, it presents an auditory training program for 

horizontal sound localization with the purpose of improving auditory performance in 

sound localization and speech intelligibility in noise. 

 

3.2 Neuroplasticity 

The term “plasticity” in neuroscience is used to describe the brain’s capacity to adapt to 

external stimuli and, in the process, change its structure and function (Kolb & Whishaw, 

1998).  It refers to such phenomena as the recovery of function after brain injury, adult 

neurogenesis, synaptic changes associated with learning, and experience-dependent 

reorganization of sensory cortex maps (Parks et al., 2004).  There are several types of 

plasticity.  Developmental plasticity occurs during the first years of life.  The number of 

synapses per neuron increases rapidly during the second and third years of life to 15,000 

synapses per neuron compared to 2,500 at birth.  As a person becomes older, learning and 

experience strengthen some connections, while other connections not used when 

receiving or transmitting information are eliminated by a process called synaptic pruning.  

Numerous studies conducted during the past two decades suggest that the brain never 

stops changing and adjusting.  At least two types of modifications take place in the brain 

with learning: 1) an increase in the number of synapses between neurons, and 2) a change 
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in the internal structure of neurons, especially in the synapse area (Drubach, 2000).  

Newly acquired information is stored in the short-term memory, which enables a person 

to recall a few pieces of information.  Short-term memory depends upon the electrical 

and chemical changes in the neuronal connections as opposed to the anatomical and 

biochemical changes that occur in the long-term memory later on in the brain.  Another 

form of plasticity, injury-induced plasticity, has been studied extensively in rats.  Brain 

cells surrounding the damaged area of the rats’ brain undergo changes in their function 

and shape that allow them to take on the functions of the damaged area.  Similar, 

although not so pronounced, changes were observed in humans (Tortora & Grabowski, 

1996).  

In the past, there was a general consensus among scientists that no new neurons are 

generated after birth and that only the number of synapses can increase (synaptogenesis), 

however, the later studies of brain activities have discovered the formation of new 

neurons in adulthood (adult neurogenesis) (Eriksson et al., 1998).  Ponti, Peretto, and 

Bonfanti (2008) found evidence of neurogenesis in the cerebellum of adult rabbits.  The 

function of adult neurogenesis is not clear, but some researchers link hippocampal adult 

neurogenesis to certain types of learning and memory.  For example, Becker (2007) 

suggested that new neurons increase memory capacity, while Wiskott, Rasch, and 

Kempermann (2006) concluded that new neurons reduce interference between memories. 

Physical exercise like running promotes neurogenesis (Bjørnebekk, Mathé & Brené, 

2005) in rats, while stress and lack of sleep may reduce hippocampal neurogenesis due to 

increased levels of glucocorticoids (Mirescu et al., 2006).  

 

3.3 Auditory Plasticity 

Neurogenesis was discussed as an example of the brain’s ability to change its structure. 

Hair cells are the sensory receptors of the auditory and vestibular systems in all 

vertebrates.  They are similar to neurons in several ways, such as : a) they are derived 

from the otic placode, a neuroepithelium, that gives rise to the ganglion cells of the 

vestibulocochlear nerve; b) the cilia on the upper surface of hair cells function as 

http://en.wikipedia.org/wiki/Glucocorticoids
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mechanical transducers, while the inner surfaces of hair cells function as a chemical 

synapse, which is completed with a chemical transmitter (glutamate) and post-junctional 

receptors on the sensory nerve endings.  

According to Vlastarakos et al. (2008), cochlear hair cells appear to be a terminally-

differentiated cell population and have no capacity for spontaneous regeneration in 

mammals.  However, genetic manipulation of the genes that control the exit from the cell 

cycle, induction of new hair cells through gene modification therapy, and introduction of 

neural stem cells into damaged cochleae offer exciting new alternatives for treatment of 

SNHL (Vlastarakos et al. 2008). 

 

3.3.1 Binaural hearing and auditory plasticity 

As previously explained in Chapter 1, the term “binaural hearing” refers to human ability 

to exploit the temporal and spectral differences between acoustic signals. Binaural 

hearing enables listeners to localize sound sources and detect sounds in challenging 

acoustic conditions.  Binaural hearing also increases the range of hearing from 180° with 

one hearing aid to 360° with two hearing aids, and this increased range improves the 

sense of balance and sound quality (Kochkin, 2005), and makes listening more 

comfortable.  Chapter 1 presented extensive details about ITDs and ILDs, the main cues 

that play an important role in sound localization.  Both ITDs and ILDs vary with the 

angle of sound arrival, and their values depend on the size, shape, and separation of the 

two ears.  Therefore, each individual will have different ITDs and ILDs (Akeroyd, 2006). 

Like other perceptual skills, the neural circuits involved in spatial hearing are shaped 

during development by experience, and retain some capacity for plasticity later in life.  

Yet, the factors that enable and promote the plasticity of auditory localization in adults 

are still unknown (Kacelnik et al., 2006).  There is evidence that supports the existence of 

binaural plasticity (Colpton & Silverman, 1977; Moore & Irvine, 1981; Silverman & 

Colpton, 1977) induced in developing and mature animals and humans by unilateral and 

bilateral sensorineural or conductive hearing loss. Plasticity in humans has been observed 
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following unilateral sound amplification, and it is likely that some forms of neural 

plasticity underlie the natural responses to growth-related changes in head size and other 

natural or artificial changes in interaural cues (Parks et al., 2004). 

 

3.3.2 Central Nervous System (CNS) site for binaural plasticity 

Listeners, who have binaural asymmetries due to conductive or sensorineural hearing 

loss, have altered neural processing of the acoustic localization cues. Häusler et al. (1983) 

tested the minimum audible angle (MAA), an aspect of localization performance, and the 

minimum discriminable ILD and ITD in a large sample of individuals with NH and HI 

listeners.  They found that listeners with hearing loss more than 35 dB HL did poorly on 

most oral tests and there was a wide variation in individual performance.  Slattery and 

Middlebrooks (1994) had similar results in their studies; where three out of five 

participants with unilateral congenital hearing loss were able to judge the location of 

broadband sounds more accurately than control participants, who had worn earplugs for 

up to 24 hours.  

Wilmington et al. (1994) examined the effects of aural atresia (a severe form of 

congenital conductive hearing loss resulting from abnormalities in the external or middle 

ear) on localization performance. These researchers tested participants on various 

binaural tasks before and after surgery to restore sensitivity in the impaired ear to within 

10 dB of the normal range. They reported that four weeks after surgery participants 

showed noticeable improvement in performance of all binaural tasks, although with 

considerable variations among them. The improvement in performance did not correlate 

with age or pure-tone thresholds. 

Adaptation to disrupted localization cues can occur after a relatively short period. 

McPartland et al. (1997) found little adaptation to a unilateral ear plug worn constantly 

for a week.  Two listeners out of six produced a small (3 dB), statistically significant 

adaptation during plugging, but normal binaural hearing resumed immediately after plug 

withdrawal. 
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Feedback from other sensory modalities is important for the adaptation process.  In a 

study on the role of different areas in the auditory pathway in mediating plasticity, King 

et al. (2007) observed that reversible inactivation of the auditory cortex in ferrets resulted 

in a slower and incomplete adaptation than in a normal control group, whereas selective 

lesions of descending corticocollicular pathways prevented any improvement in 

localization performance.  King et al. (2007) concluded that the auditory cortex may be 

involved in rapid training-induced plasticity in adults and suggested that the descending 

cortical pathways are likely to mediate training-induced auditory localization plasticity. 

 

3.4 Auditory training and plasticity 

As discussed in the previous sections, because the brain has the capacity for plasticity, 

training can induce changes in auditory performance. Auditory training (AT) is a 

treatment program that uses repetitive listening exercises to improve a listener’s ability to 

perceive auditory events.  Exercises are conducted either with a listening partner at home 

or in weekly sessions with an audiologist (Tremblay, 2006). Auditory functions 

processed at a higher level (i.e., the auditory cortex and brainstem) can be improved with 

AT (Tremblay, 2003).  Recent studies in neuroscience suggest that training may improve 

auditory skills and even induce changes in the central auditory system (Hayes et al., 

2003).  Because auditory localization is processed at the brainstem, this function can be 

improved with training (Tremblay, 2003).  Subcortical structures, such as the brainstem, 

exhibit experience-related developmental plasticity (Johnson et al., 2008; Song et al., 

2008).  Because people with hearing loss usually complain of difficulties in speech 

discrimination and not of decreased localization abilities (Dillon, 2001), the AT so far has 

been developed for the speech domain.  Although AT can significantly improve auditory 

performance in HI listeners, only a small percentage (15.6%) of audiologists provided AT 

for their users (Sweetow & Sabes 2004).  Moreover, many HI listeners, who commence 

AT, fail to complete the assigned training protocol and drop out from the program 

(Bancroft et al., 2011; Schow et al., 1993; Sweetow and Sabes, 2010).  Bancroft et al. 

(2011) report two main reasons that motivate users to seek AT: a) to better understand the 
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spoken language during everyday interactions in the community or workplace, and b) to 

improve their abilities to understand the speech of a particular communication partner 

(PCP). 

Several AT software programs have been developed to enhance speech intelligibility in 

different contexts (e.g., in silence, or in noise). The Computer-Assisted Speech 

Intelligibility Testing and Training at the Sentence Level, or CASPERSent, was designed 

by Dr. Arthur Boothroyd to improve speech intelligibility.  Sentences are presented to 

listeners by lipreading only, hearing only, and a combination of the two.  Users are 

instructed to hear and/or see a spoken sentence, repeat it as many times as possible, view 

the text, and then click on the correctly identified words. The CASPERSent can be self-

administered or administered with the aid of another person (Boothroyd, 2006).  

A second AT program is the Computer Assisted Tracking Simulation (CATS).  

Developed at the Central Institute for the Deaf in St. Louis, U.S.A., and subsequently 

updated by Dr. Harry Levitt, this program allows the user and another person to interact 

and the user to repeat verbatim the sentence or phrase spoken by the speaker (Dempsy et 

al., 1992). 

A third AT program is called the Listening and Communication Enhancement (LACE).  

The users complete a series of short exercises with the aim of improving their auditory 

memory and speed of processing (Sweetow & Sabes, 2004). LACE can be used on any 

home computer, and performance results can be tabulated and shared with clinicians 

using the Internet.  A study by Martin (2007) found that using the LACE for 60 days by 

new hearing aid users lowered the return-for-credit rate of hearing aids by four times in 

comparison to those who did not use LACE, this finding demonstrates that providing AT 

could improve the successful hearing aid fitting rate. 

3.4.1 Improvement in localization with auditory training in NH 

individuals  

The findings of the studies on the effects of AT on localization performance in NH 

individuals demonstrate that a short period of AT can lead to a significant improvement 
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in localization performance.  Ohuchi et al. (2005) designed a virtual auditory display 

(VAD)-based game called “hoy-pippi”, that is responsive to a head movement. The 

characteristic feature of this game is touching sound. The player has to position his/her 

hand in the direction of sound source.  Ohuchi et al. (2005) tested NH participants who 

were blindfolded.  They divided them into two groups: a training group and a control 

group.  The training group played the game for 15 minutes every day for 10 days.  

Localization performance for both groups was tested before and after the training period.  

The authors observed that the localization error decreased in every azimuth in the training 

group, while there was an insignificant difference in the control group performance 

before and after the training period.  The data analysis revealed that a significant change 

occurred on the seventh day of training. 

 

Shinn-Cunningham et al. (1998) investigated the effect of AT on the adaptation to 

supernormal localization cues. The supernormal cues are localization cues that are not 

constrained by the physics laws which determine the normal localization cues; they span 

a larger range of just-noticeable differences than do normal cues, allowing listeners to 

improve their ability to resolve nearby spatial positions that were created by remapping 

the relationship between source position and normal Head-Related Transfer Functions 

(HRTFs). The results demonstrated that participants were able to learn remapping 

between acoustic cues and physical locations as they were able to reduce the bias with 

AT.  However, they did not completely overcome their systematic errors.  These findings 

are consistent with previous research on sensorimotor adaptation, in which Welch (1986) 

showed that adaptation usually does occur, but it is rarely complete, as systematic biases 

remain after performance is stabilized. 

 

Shin-Cunningham et al. (1998) attempted to develop a quantitative model of adaptation 

to altered (supernormal) localization cues. They found that following AT, the mean 

response was roughly proportional to the normal cue position of the acoustic stimuli.  

This suggests that participants cannot completely adapt to a nonlinear cue transformation, 

but they can adapt to a linear approximation of the applied nonlinear transformation, 

where the relation between the natural and the transformed cues are expressed by a linear 
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equation (simple scaling of the natural cue, not a complex function).  These findings 

suggest that the plasticity of human participants in interpreting the auditory localization 

cues has its limitations. 

 

Zahorik (2006) evaluated the efficacy of a sound localization training procedure that 

provided listeners with auditory, visual, and proprioceptive/vestibular feedback to correct 

sound source position. Zahorik had a training group and a control group.  Stimuli were 

presented via stereo headphones, using non-individualized HRTFs.  In the feedback-

training (closed loop) procedure, the correct source location was provided to the listener 

by a paired auditory/visual stimulus. The subject had to verify the combined 

proprioceptive and vestibular feedback. Testing and training spatial locations were 

distributed throughout the 360º of azimuth and over ± 40 º elevation.  Zahorik (2006) 

demonstrated that a brief perceptual training procedure of two 30-minute sessions, which 

provided auditory, visual, and proprioceptive/vestibular feedback for the true target 

location, could improve localization accuracy when spectral cues were manipulated.  The 

improvement was limited to the F/B dimension, lasted for at least four months after 

training, and generalized to an improved performance for the untrained spatial locations.  

Zahorik’s study illustrates the importance of providing feedback using different and 

combined methods in training programs.  

 

3.4.2 Improvement in localization with auditory training in HI 

individuals 

 

The studies reviewed in this section show that HI listeners can improve their localization 

abilities using appropriate training programs and procedures.  Most of these studies focus 

on horizontal localization because localization in the horizontal plane is more commonly 

encountered in everyday life.  

 

Providing new hearing aid technology, such as the bilateral coordination, as well as 

providing time for acclimatization to the new hearing aid and the new feature, are both 

considered passive ways of improving the auditory performance of HI listeners. 
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In a search for a more active way for HI listeners to improve their auditory performance, 

auditory training (AT) has been found to be an effective method of improving the 

auditory performance of HI listeners. This interest in AT is not new. Studies in the 1930s 

and 1940s demonstrated that providing training can result in an improvement not only in 

the human’s physical abilities, but also in the human’s sensory accuracy (Di Carlo, 1948; 

Pearce, 1937). 

 

AT is believed to capitalize on the plasticity of the auditory system, whereby changes in 

the neural activities that result from regular repeated exposure to auditory stimuli in 

certain contexts improve auditory performance. Auditory plasticity has been measured 

and assessed by several electrophysiological or imaging (hemodynamic) measures.  For 

example, Tremblay et al. (2001) reported an increase in N1-P2 wave amplitude after 10 

days of auditory training for NH individuals, in synchrony with improvement in 

discrimination between 10 and 20 ms voice-onset-time syllabi. Song et al. (2011) also 

provide evidence of the occurrence of significant changes in electrophysiological 

measures after four weeks of AT. They measured brainstem responses to the syllable /da/ 

in both a quiet and a multitalker noise condition. After providing AT using the computer 

based program “LACE” (Listening & Communication Enhancement, Neurotone, Inc., 

2005), significant training-related enhancements in the representation of pitch cues were 

recorded. These and similar studies confirm and demonstrate a physiologic basis for 

training induced plasticity in the auditory system that results in improved auditory 

performance. 

 

Dufour et al. (2005) developed an auditory localization training program for bilateral 

cochlear implant users (who also had impaired vision) with the purpose of maximizing 

their independence and safety in travel situations.  The training program consisted of 

graduated exercises based on the Auditory Localization Evaluation System (SELA) and 

was conducted for a period of one month during 12 sessions, each one hour long.  

Training and testing took place in a sound booth with 11 speakers 18º apart in a 

semicircular horizontal array.  Ecological sounds were used as stimuli during training 

sessions.  A bilateral cochlear implant user, who had a visual impairment, was trained 
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using SELA for two months.  After completing an auditory localization training program, 

the participant met the success criteria and became more confident in her localization 

skills.  The authors concluded that intensive AT can improve localization abilities in HI 

listeners. 

 

Several studies reviewed by Wright and Zang (2006) focused on adaptation to, as well as 

training, in a variety of manipulations of both horizontal and vertical localization cues 

that simulated the difficulties faced by HI listeners. Wright and Zhang concluded that 

humans can adapt to alterations in cues to sound source position. These scientists noted 

that the human ability to adapt to altered localization cues has been well-established, 

while learning with normal cues (i.e. trying to improve localization without altering the 

localization cues or their intelligibility) is relatively limited. Adaptation to altered cues 

was found to have several characteristics: a) it is partial in the horizontal plane, but rather 

complete in the vertical plane; b) it occurs rapidly within one to two hours of testing; c) it 

has small and short lived aftereffects if present; d) it has a limited duration, and e) it has a 

large variability among participants. 

 

The ability of human listeners to recalibrate the relationship between the localization cues 

and sound source positions provides evidence that localization training programs can be 

effective for individuals with impaired localization abilities and for those, who need 

accurate sound localization in their professions. 

 

3.5 Sound localization in hearing aid users 

 

As previously discussed, new hearing aid algorithms can implement binaural processing, 

where the input from both hearing aids (right and left) is evaluated, and decisions 

regarding implementing certain processing features is then implemented by the hearing 

aid circuit, with the aim of coordinating the response of the two hearing aids to preserve 

the benefits of binaural hearing as much as possible. The two hearing aids communicate 

wirelessly with the aim of maximizing the binaural cues, uses these cues to make global 
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processing decisions regarding all hearing aid features, such as microphone modes, DNR 

activation, as well as level and compression characteristics (Oticon, 2008; Siemens, 

2009).  Behrens (2008) used a simplified version of the SSQ to evaluate the advantage of 

binaural wireless communication and processing in Oticon Epoq hearing aids (Oticon 

2008).  He found that Epoq devices provided benefits across several dimensions of spatial 

hearing, such as locating a speaker around a table, and ignoring competing sounds, 

relative to conventional bilateral and unilateral fittings.  However, in studies conducted 

by Sockalingam et al. (2009), improvement in localization ability with binaural wireless 

communication was only ~2°.  Although this improvement is statistically significant, it 

may be too small to be of great value in real life.  Also, the relatively large standard 

deviations of the localization results’ averages (8° and 10°) in binaural wireless 

coordination when it is on and off decrease the significance of that improvement.  Using 

these spatial-cue preserving algorithms in hearing aids in combination with AT for 

localization will not only improve spatial localization performance, but also contribute to 

the enhancement of overall communication skills of HI listeners (Sweetow, 2008).  

 

3.6 AT Generalizability 

 

This section reviews studies that demonstrate how AT in one auditory task can lead to an 

improvement in another auditory task.  This process is referred to as the generalization of 

AT. Stecker et al. (2006) reported that training HA users for syllable identification in 

noise using nonsense syllable test lead to a significant improvement in performance that 

generalized to untrained voices.  Gil et al. (2010) tested the auditory performance of two 

groups of listeners with hearing impairment (a training and a non-training control group) 

before and after AT.  The training period lasted one month and consisted of eight one-

hour long sessions, during which different speech stimuli, frequency, and tonal patterns 

were used as training material. The training group showed a statistically significant 

improvement in performing various tasks, while the control group had no changes in 

performance. The training group also displayed a considerable improvement in other 

areas of auditory performance, including sound localization and speech-in-noise test.  In 
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contrast, the control group did not show any significant improvement in those areas.  

These results support the benefits of AT for HI listeners. Furthermore, they suggest that 

training HI adults in auditory tasks, like speech understanding and frequency pattern 

recognition, can lead to a significant improvement in other auditory tasks, like sound 

localization.  Montgomery et al. (1984) reported a substantial improvement after speech 

AT, where the talkers in the training sessions were different from the talkers in the test 

session. Walden et al. (1981) noted improved sentence recognition after syllable AT.  

These two studies point to AT generalization and suggest that AT in one aspect of 

auditory performance can have positive effects on the overall performance of HI 

listeners. However, Wright et al., (2010) reported that generalization of the benefits of 

AT to untrained stimuli lagged behind the improvement in performance for the trained 

stimuli, when they investigated the effect of AT on temporal-interval discrimination, and 

tested the generalization to untrained frequencies and temporal-intervals. 

 

3.7 Auditory training program to improve the sound 

localization performance of hearing aid users. 

 
Based on the current literature review, it can be concluded that AT can significantly 

improve the auditory performance of HI listeners, and some studies pointed out the 

generalizability of AT, where training in one auditory task can lead to an improvement in 

another auditory task. An AT program is proposed in this section. This program focuses 

on horizontal localization training with the aim of improving localization abilities of HI 

listeners.  It is expected to generalize to an improvement in their speech intelligibility in 

noise performance.  The objectives of this program are: 1) to improve localization 

abilities of hearing aid users, 2) to reduce front-back errors, as they are the most common 

localization errors, and 3) to test the generalizability of AT, by testing speech 

performance before and after sound localization training. The program will focus on 

horizontal localization as it is much more common in everyday life compared to vertical 

localization. The proposed AT program draws on the general design of SELA (Dufour et 

al., 2005) with changes made for hearing aid users, who have normal vision with or 

without eyeglasses.  It consisted of twelve 30-minute lessons that were conducted during 
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a one month period.  The AT covered the entire audible sound spectrum including 

broadband noise (BBN), low-pass noise filtered at 2 kHz (LPN), and high-pass noise 

filtered at 2 kHz (HPN).  Training sessions were administered in the Beltone Anechoic 

Chamber of the National Center for Audiology that has 16 speakers spanning 360°, with 

22.5° between speakers.  The distance between speakers is close to the central visual 

field, and the whole circle (compared to the half-circle used by Dufour et al. (2005) was 

used in order to test all directions in one session, instead of repositioning the subject to 

test different directions. An open-choice paradigm was applied, because it was used in 

the study discussed in Chapter two for HI listeners, and found to be within the 

participant’s abilities. The participants were required to turn their head or head and body, 

point at the source speaker by nose and then press a button to record the response.  

Because multimodal feedback was found to improve localization performance (Zahorik, 

2006), visual and auditory feedback was provided by the light emitting from the source 

speaker with replaying the auditory stimulus.  The participant was required to verify the 

feedback by the same procedure used to identify the source (proprioceptive and vestibular 

feedback). Each stimulus was played two times from each speaker (one time for testing, 

and the second time as a feedback with longer duration and the light emitted from the 

speaker), and the average was calculated for comparing the performance across the 

training period.  

 

The AT program that focuses on sound localization rather than speech intelligibility has 

the potential to be useful for HI listeners and, especially, non-native English speakers, 

who may find it difficult to follow English speech-based training protocols.  It can also 

give more insight into how training for certain auditory tasks, such as speech 

understanding or auditory sound localization, generalises to performance in another 

auditory task.  Furthermore, the proposed AT is expected to make currently used hearing 

aid fitting procedure more effective by providing an optimum subject-dependent hearing 

aid fitting process that includes programming, molds and venting (whenever applicable), 

and activation of DSP features, such as noise reduction, feedback cancellation, and an 

acclimatization period.  Finally, it provides an in-depth evaluation of binaural wireless 
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communication technology and how it contributes to the benefits of binaural hearing.  

Detailed description of the material and method is provided in Chapter 4. 

 

3.8 Summary and conclusions 

 

The review of the literature on auditory plasticity and AT demonstrated evidence that 

supports the plasticity of human binaural auditory system in the form of adaptation to 

different types of distorted localization cues that mimic the effect of hearing impairment 

and distorted cues that are provided by hearing aids (Butler, 1987; Byrne & Dirks, 1996).  

Research in neuroscience suggests that AT—a treatment program based on repetitive 

listening exercises to improve a user’s ability to perceive auditory events— may improve 

auditory skills and even induce changes in the central auditory system (Hayes et al., 

2003).  Specifically, AT in sound localization can be used to facilitate rehabilitation in 

users, whose intelligibility of the auditory space is compromised as a result of hearing 

loss (Hayes, 2003; Wright & Zhang, 2006).  Some studies (Dufour et al., 2005; Ohochi et 

al., 2005) investigated the effect of training on horizontal localization abilities in normal 

and HI listeners and established that in most participants significant improvements can 

occur within a few days to several weeks.  Different outcomes of the hearing aid fitting 

procedure for identical hearing loss configuration may be due to the individual 

differences in CNS plasticity.  The possibility that AT can improve performance of users 

not getting significant improvement and satisfaction with hearing aids should be 

considered.  A design for the training program to improve the localization abilities of 

hearing aid users, as well as their speech intelligibility in noise, has been proposed at the 

end of this chapter. 
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CHAPTER 4 

4. Evaluation of Sound Localization and Speech 

Discrimination with Hearing Aids that use Binaural Wireless 

Technology following Auditory Training 

 

4.1 Introduction 

This chapter presents a study that was performed in order to investigate the effects of 

several factors on the binaural hearing abilities of HI listeners. These factors include: 1) 

bilateral coordination of the hearing aids, 2) acclimatization, 3) AT, and 4) acoustic 

environment. 

 

As discussed in Chapter two, applying synchronized processing in the hearing aids results 

in an improvement in the localization abilities of the HI listeners, with no apparent 

positive or negative effects on their abilities to understand speech in noise.  However, no 

period of time for acclimatization to the new hearing aids was provided, nor was there an 

assessment of the synchronized processing of the DSP features apart from the wide range 

dynamic compression. Consequently, in the current study, a period for acclimatization 

was provided, and the auditory performance with and without the synchronization was 

tested afterwards. In Chapter three, the author explained how auditory training can result 

in a tangible improvement in auditory performance. Auditory training in one aspect of 

auditory performance can result in an improvement in that specific aspect, as well as in 

other aspects of auditory performance which were not included in the training procedure. 

However, improvement in the untrained tasks may lag behind the improvement in the 

trained task (Wright et al., 2010). Motivated by the results outlined in Chapter three, a 

training program for auditory localization was provided to some participants in the 

current study, and the auditory performance in both sound localization and speech 

intelligibility were tested. The results were compared with the results of the participants 

who had a period of acclimatization  but did not receive auditory training. 
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4.2 Background 

 

In attempts to restore the binaural benefits for HI listeners, and based on the 

understanding of the importance and benefits of listening to sounds with both ears, 

hearing aid companies launched the new feature of  bilateral coordination. The aim of 

this feature is to try to restore more of the auditory functions that NH individuals enjoy. 

Having two copies of the signal from the two ears, with different timing, intensity, and 

spectral profile parameters, helps the brain to analyze the signal and detect its location in 

space. This could also help differentiate auditory sources in the environment, and select 

the signals of interest to follow, while minimizing less important signals.  

 

In Chapter two, a study that aimed to evaluate the benefits of applying the binaural 

synchrony feature was presented, and it was found that the benefit gained from this 

feature was apparent for auditory localization, but not for speech understanding in noise. 

However, participants did not have any time to acclimatize to the new hearing aids.  

 

Gil et al. (2010) found evidence for the generalization of the effect of auditory training. 

The auditory performance of two groups of listeners with hearing impairment (a training 

and a non-training control group) were tested before and after training. The results 

suggest that generalization can occur with AT in that training the participants on some 

auditory tasks (speech understanding and frequency pattern recognition) can lead to a 

significant improvement in other auditory tasks such as sound localization. Montgomery 

et al (1984) reported significant improvement after speech AT by a different talker, and 

Walden et al (1981) reported improved sentence recognition after Syllable AT. These two 

studies suggest that some form of AT may improve other aspects of auditory 

performance.   

 

Given the aforementioned solid benefits of AT, Sweetow and Palmer (2005) suggest that 

the cost of AT may be the primary reason it is not a universal component of auditory 
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rehabilitation. Furthermore, they continue to suggest that computer based AT programs, 

such as LACE, could be the solution to this problem. Gil et al. (2010) suggest that the 

high cost of hearing aids could defer their acquisition by many HI participants and, they 

suggest that the AT component may enhance the confidence required by patients who are 

considering purchasing expensive hearing aids.  

 

Amongst other recommendations made by Sweetow and Palmer (2005) for future AT 

studies, they suggest investigating the generalizability of AT to other auditory tasks. The 

previously mentioned studies Gil et al. (2010), Montgomery et al. (1984), and Walden et 

al. (1981) indicate AT generalization to other aspects of auditory performance. 

    

Based on the evidence provided above, it could be inferred that an AT paradigm that 

focuses on sound localization, rather than speech intelligibility, and has the potential to 

be of great value, particularly for non-native English speakers who may have difficulty 

with English speech-based training protocols. Furthermore, an AT paradigm that focuses 

on sound localization is expected to provide more insight on the generalizability of AT to 

other aspects of auditory performance. Together with providing optimum subject-

dependent hearing aid fitting procedure (programs, molds, venting, and activation of  

DSP features, such as noise reduction, and feedback cancellation, and an acclimatization 

period), the proposed study will provide and evaluate the most favorable outcome from a 

modern hearing aid fitting. 

 

The current study aimed to provide an in-depth evaluation of binaural wireless 

communication technology and how it contributes to the benefits of binaural hearing. It 

also aims to test the effect of auditory training on one aspect of auditory performance 

which, in turn, improves other aspects of auditory performance. 

The study objectives were to provide: 

 

• State-of-the-art conditions for testing the auditory performance with hearing aids 

that implement binaural wireless synchrony. This was achieved by providing 

BTE with Receivers In The Ear (RITE). When initially introduced, RITE hearing 
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aids were successful only for individuals with mild high frequency hearing loss 

because of feedback problems. However, with improvements in digital feedback 

suppression technology, individuals with mild to severe hearing loss can now 

benefit from the advantages of open fitting, such as natural sound quality, better 

physical comfort, and eliminated occlusion effect (Schum, 2012). 

• An effective yet appropriate period for hearing aid acclimatization in 

participants’ real environments. Given that the maximum benefit from hearing 

aid acclimatization can be achieved after 30 days (as previously mentioned), a 

period ranging between 30-45 days (4-6 weeks) was provided for hearing aid 

acclimatization.   

• An effective yet appropriate period for Auditory Training. This is expected to 

improve performance in auditory tasks. Given that the benefit of AT is observed 

within the first month, a period of 1 month was provided for AT. 

• More insight about the generalizability of AT, by providing auditory training in 

one aspect of auditory performance (sound localization) and testing the auditory 

performance in two aspects (sound localization and speech intelligibility). 

 

4.3 Material & Method 

 

4.3.1 Participants 

 

Nine participants joined this study; they were divided into two groups, a training and 

control group. Five participants joined the training group, three females and two males, 

with a mean age (57.8 years ± 22.29), and four participants joined the control group, one 

female and three males, with a mean age (66 years ± 5.1). All participants had bilaterally 

symmetrical (difference between right and left ear thresholds is ≤ 10 dB at all measured 

frequencies) moderate to severe hearing loss and a minimum of three months experience 

with hearing aid use. Figure 4-1 shows the mean audiograms for the participants with 

details given in Appendices C and D. 
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Figure 4-1: Means and standard deviations of pure tone thresholds of the participants. 

 

 

4.3.2 Hearing aids 

 

The hearing aids used for conducting this study were Oticon Agil pro RITE (Receiver In 

The Ear). Each participant received a pair of the hearing aids at the beginning of the 

study and used them regularly during the period of the study with a minimum of 8 

hours/day. The data logging feature was enabled in order to check the average use/day for 

each participant, and all the participants were found to use the hearing aid with an 

average of 8-12 hours/day. The hearing aids were programmed to fit the targets specified 

by the Desired Sensation Level (DSL v5.0) formula (Scollie et al., 2005) for each 

participant and verified on the participants using Audioscan VeriFit.  Participants’ real 

ear to coupler differences (RECD) were obtained and entered into VeriFit in order to 

convert their thresholds from dB HL to dB SPL. The participant was then positioned 

directly in front of, and facing, the front sound-field speaker of the VeriFit at a distance 

of about 60 cm from the center of the head. With the participant wearing the hearing aids, 

gain was adjusted to fit the DSL v 5.0 targets   Probe tubes were inserted in the 
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participant’s ears and positioned based on otoscopic examination to an insertion depth of 

28 mm and 30 mm for females and males, respectively. Stimuli used for verification were 

speech inputs of 55, 65 and 75 dB SPL. All DSP features were enabled. The 

directionality was set to Auto (Tri-mode), which is a fully automatic directionality 

system. This system can alternate directionality between three modes: 1) an omni mode 

which is the default mode in soft to moderate level noise environment with low 

background levels, in strong wind situations, and when the dominant talker is determined 

to be behind the client, 2) a split directionality mode, in which the omni mode is applied 

in the low frequency band and the upper three bands are in full directional mode; this is 

the default mode in moderately noisy listening environment and in medium wind 

situations, 3) a fully directional mode in which directionality is applied in the four bands; 

this mode is the default for difficult listening environments with intense background 

noise or multiple noise sources (Oticon, 2012). 

 

Noise management and ‘My voice’ features were enabled as well. The noise management 

applies the suitable attenuation strategy across 15 channels to achieve optimum output 

depending on whether speech is present or not: 1) if speech only is present, the noise 

management ensures optimum speech understanding, 2) if speech in noise is present, the 

noise management limits the degree of noise reduction to maintain speech understanding, 

and 3) if only noise is present, maximum attenuation is provided. The ‘My voice’ feature 

ensures maintaining the same level of noise reduction even when the user is speaking 

(where SNR will increase, and the noise reduction system may hence decrease the level 

of noise reduction). 

 

The binaural broadband option was enabled during the whole study period. However, 

testing the auditory performance by disabling the binaural broadband option occurred 

both after the acclimatization period and after the training (or no training) period (Figure 

4-2). The receiver tube length and the domes were supplied and adjusted to each 

participant’s needs. Apart from one participant, who asked to decrease the gain one week 

after hearing aid fitting, all the other participants were satisfied with the hearing aid 

fitting provided. Two other participants requested a different size of the dome and were 
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provided with the requested dome size within the first week after the hearing aid fitting.  

The Agil Pro applies three levels of binaural interactions: 1) Binaural Processing: which 

is a fast communication that allows each DSP processor to use signal input from both 

instruments, and thereby, coordinate DSP processing between the instruments;  2) 

Binaural Synchronization which allows for synchronization of the action of the Multi-

Band Adaptive Directionality and TriState Noise Management features, where the 

acoustic environment is constantly evaluated and the system selects the optimum 

response; and 3) Binaural Coordination  which allows the user interactions to be 

coordinated between the instruments (Oticon, 2012). 

 

 

Figure 4-2: Timeline of the study. 

 

4.3.3 Procedures 

 

Each participant completed the study over a period of 7 to 9 weeks. The study period was 

divided into two parts: the acclimatization period and the training or no-training (control) 

period. The participants were divided into two groups: training and a control group based 

on their availability to join each group. During the acclimatization period, both groups 

received similar treatments: all participants received the hearing aid pairs, adjusted to 

their hearing loss profiles according to the DSL v5.0 targets, and were asked to use the 
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hearing aids in their everyday life for a minimum of 8 hours/day. Hearing aid batteries to 

cover the study period were supplied.  

Testing the auditory performance of the participants took place three times throughout the 

study period: at the beginning (immediately after fitting the new hearing aids, which will 

be referred to later in the chapter as the baseline), after the acclimatization period, and at 

the end of the training/no-training period.  

 

Participants were tested for their speech intelligibility in noise and horizontal sound 

localization abilities.  

 

During the first session of the study, hearing tests were performed. Hearing thresholds, 

tympanometry, and RECDs were measured, the participants were informed about the 

study, decided   whether they would join the training or the control group, and signed the 

information letter. 

 

4.3.3.1 Speech intelligibility 

 

Participants’ speech intelligibility in noise was tested using the standard form of the 

Hearing In Noise Test (HINT) (Nilsson et al., 1994). Two test conditions were used. In 

the first,  noise was presented from a single source (at 90°), and in the second, noise was 

presented from multiple sources (at 0°, 90°, 180°, and 270°). Speech was always 

presented from the front (0°). The noise used was a broadband stationary noise, and the 

noise presentation level was stable at 65 dBA. The speech level was varied according to 

the response of the participant; in order to detect the Signal-to-Noise Ratio (SNR) at 

which 50% of the speech is intelligible. Ten different sentences were presented with each 

noise scenario. 24 lists of 10 sentences each were randomly used for each participant, and 

no list was used twice for any participant. Testing for the HINT took place in two test 

rooms: 1) a semi-anechoic chamber, details of which are provided under the horizontal 

sound localization section below, and 2) a reverberation chamber. The reverberation 

chamber has a reverberation time (RT60) of 1.5 seconds.  The  RT60 was decreased 

using sound absorbing curtains, measured using SpectraPlus v 5.0 software and found to 
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be 667 ms. This RT60 (667 ms) represents average RT for common everyday acoustic 

environments, such as lobbies and conference halls (Nishiura & Fukumori, 2011). 

Participants were seated in the center of the room, surrounded by a circle of 16 speakers, 

with 22.5° between each two adjacent speakers. An FM system (PhonicEar Solaris PE 

571T & PE 572R) was used to listen to the participants’ responses, and the author 

reported their answers as either correct or incorrect to the HINT software.   

 

4.3.3.2 Sound localization 

 

The participants’ horizontal sound localization ability was tested in a semi-anechoic 

chamber, where a circular array of 16 Tannoy i5 AW speakers was used. The speakers 

received signals from a computer through an Echo AudioFire 12 sound card (for digital to 

analog conversion), Soundweb 9008 networked signal processor (for speaker equalization 

and level control), QSC CX168 power amplifiers (for power amplification and 

impedance matching), and the target signals were played through the Tucker Davis 

Technologies RX6 real time processor. Participants stood in the middle of the speaker 

array on an adjustable stand.  This setup was utilized for both the speech intelligibility 

(HINT) and sound localization experiments. Four different stimuli were used: 1) a car 

horn of 450 ms duration in stereo traffic noise, at +20 dB SNR. This is the same stimulus 

used in the first study discussed in Chapter two, 2) a broadband noise burst of 250 ms 

duration, 3) a 2 kHz high-pass noise of 250 ms duration, and 4) a 2 kHz low-pass noise of 

250 ms duration. Although stimuli were too short to allow for head movement while they 

were played (except for the car horn stimulus), participants were free to move their heads 

and/or body to locate the stimulus.  

 

The car horn in traffic noise was chosen to simulate common everyday situations where 

localization abilities play an important safety role. For this test condition, the stereo 

traffic noise was played from two fixed speaker locations (at +90°/-90° azimuths), which 

were placed below the speakers used for localization testing.  
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The remaining three stimuli were chosen to test the separate effects of ITD cues (the low-

pass noise), the ILD cues (the high-pass noise), and the joint effect of both cues (the 

broadband noise). 

 

 Each stimulus was presented 32 times (2 times from each speaker, in a randomized 

order) at a presentation level of 67 dB SPL. Participants stood in the middle of the 

speaker array wearing a head tracker (Polhemus Fastrak) helmet with an LED and a 

control button in hand. Upon hearing the stimulus, the participants turned their head to 

the perceived source speaker. The red light of the LED provided visual feedback as to the 

participant’s head position relative to the speaker. Participants then registered their 

response with a button press.  The next stimulus was presented 600 ms after a button 

press following return to the center of the speaker array. Similar to the intelligibility test, 

localization experiments were performed under two conditions: with the wireless feature 

on, and with the wireless feature off. 

Prior to the actual testing, the localization task was demonstrated to the participants to 

familiarize the participant with the task. Participants were asked to orient toward 0° 

azimuth at trial initiation, and after stimulus onset they were free to move their heads to 

localize. Participants were not given instructions regarding head movements because it 

was meant to measure the natural response as it would be in real life. Custom MATLAB 

was used to control the localization tests.  

 

4.3.3.3 Auditory training procedures 

 

The participants in the training group completed nine training sessions of 30 minutes 

each. Three stimuli were used for training:  broadband noise, 2 kHz low-pass, and 2 kHz 

high-pass noises 250 ms each. The 2 kHz low- and high- pass noise were chosen to 

investigate the differences in in the relative plasticity of processing ITDs and ILDs 

(Wright & Fitzgerald, 2001). Each stimulus was played 2 times from each speaker, one 

time as a test and the second time as a feedback. Audio-visual feedback was provided in 

which the stimulus was repeated and an LED fixed on the speaker that produced the test 

stimulus was illuminated. Sound and light were played continuously until the participant 
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turned his/her head to the target speaker and pressed the control button in their hands. 

The next stimulus was played 600 ms after the participant returned to the center. Training 

sessions were scheduled at the participants’ convenience, and were separated by 2-5 days. 

 

4.4 Results 

Two strategies for data analysis were applied. First, a group-level results analysis was 

performed. Second, individual participants’ results were analyzed using a modified two 

standard deviation band technique (Portney and Watkins, 2000).  

 

4.4.1. Group level analysis 

 

4.4.1.1 Speech Intelligibility 

 

4.4.1.1.1 Anechoic environment 

 

Figure 4-3 displays the average HINT results in the anechoic environment across the 

study period for both the training and control groups. The error bars represent the 

standard deviations. HINT was measured three times across the study: immediately after 

fitting the new hearing aids, after the acclimatization period, and after the training/control 

period. Participants’ performances after the acclimatization and after the training/control 

period was measured with activation/deactivation of the bilateral coordination. Repeated 

-measures ANOVA was performed on the anechoic HINT scores with one between-

participants factor (whether the participant belonged to the training (1) or the control (2) 

group), and four within-subject variables (noise angle, coordination condition, acoustic 

environment, and time period (after acclimatization or after training).  

 

The results revealed a main significant effect of the angle: F (1,7) = 15.52, p = 0.006, 

where the performance with a single noise source was significantly better than the 

performance with a diffuse noise source. There was also a significant interaction between 

the time period, and the between-subject factor (training vs. control group): F (1,7) = 
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21.32, p = 0.002, where the performance of the training group was significantly better 

than the performance of the control group after the training/control period. There was 

also a significant four-way interaction between the effects of the angle, the coordination, 

the time period, and the between-subject factor (training vs. control group): F (1,7) = 

8.214, P = 0.024. In order to further investigate this four-way interaction, figures 4-5 and 

4-6 illustrate the HINT results for both the training and the control groups at time 1 (after 

the acclimatization period), and time 2 (after the training/control period). In the anechoic 

environment, the performance of the training group in the diffuse noise source was 

significantly better than the performance of the control group with deactivation of the 

bilateral coordination. Post-hoc analysis for the training group performance using 

Bonferroni correction did not reveal a statistically significant difference between the 

training group performance in the anechoic chamber for the diffuse noise source between 

the post-acclimatization and the post-training performances: t(18) = 1.2504, p > 0.05.  

 

4.4.1.1.2 Reverberant environment 

 

Repeating the same analysis for the reverberant HINT scores revealed a significant main 

effect of angle: F (1,7) = 19.8, p = 0.003, where the performance with a single noise 

source was significantly better than the performance with a diffuse noise source. There 

was also a significant interaction between the angle and the between-subject factor 

(training vs. control group): F (1,7) = 7.32, p = 0.03, where the training group 

performance was significantly better than the performance of the control group in the 

diffuse noise source.  
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Figure 4-3 a & b: HINT results in the anechoic environment for the single (a) and diffuse (b) noise sources. 
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Figure 4-4 a & b: HINT results in the reverberant environment for the single (a) and diffuse (b) noise 

sources. 

 

Figure 4-5: HINT results for the training group after acclimatization (Time 1), and after training 

(Time 2). 
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Figure 4-6: HINT results for the control group after acclimatization (Time 1), and after 

training (Time 2). 
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data set was reduced to those trials on which both target and response were within the 

±67.5 and/or ±112.5 degree ranges. The number of target/response hemisphere 

mismatches was computed within this range and then divided by the total number of 

trials.  Figure 4-7 displays the F/B error percentages for both the training and the control 

groups immediately after fitting the new hearing aids (Oticon Agil-Pro). Figures 4-8 and 

4-9 display the F/B error percentages for the control and the training groups, respectively 

following the acclimatization period, and the training/control period. Repeated-measures 

ANOVA was performed with one between-subjects factor (whether the participant 
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(stimulus, coordination condition, and time period (after acclimatization or after training). 

Results revealed a significant main effect of time: F (1, 7) = 8.032, p = 0.025, where the 

error rates decreased significantly after the training/control period. There was also a 

significant main effect of stimulus: F (3, 21) = 5.35, p = 0.022, where the car horn 
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p = 0.021, where the error rates decreased significantly by the end of the study for both 

the BBN and LPN stimuli. 

 

 

Figure 4-7: F/B error percentages for both the training and the control groups immediately after fitting the 

new hearing aids (Oticon Agil-Pro). Dark columns represent the training group, and the light columns 

represent the control group performances. 

 

 
 

Figure 4-8: F/B error percentages for the control group after Time 1 (the acclimatization period, light 

columns) and after Time 2 (the control period, dark columns). 
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Figure 4-9: F/B error percentages for the training group after Time 1 (the acclimatization period, light 

columns) and after Time 2 (the training period, dark columns). 
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STDEV = 1.96 x (100 x (√ (A/100 x (1-A/100))/B)) 

 

Confidence intervals were calculated at 0.95 for each participant, where the STDEV 

value calculated for each start point (participant’s performance immediately after HA 

fitting) from the above equation, then multiplied by 2, to find the ± 2STDEV band that 

represent the 0.95 confidence interval, beyond which values are significantly different 

from that start point. 

 

4.4.2.1 Training group individual results 

 

Participant 1: Figure 4-10 displays the performance of training participant # 1 for the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. This participant’s results did not reveal any 

significant improvement immediately after the acclimatization period. However, these 

results revealed a significant improvement in the localization performance in the three 

AT stimuli (broadband, 2 kHz low-pass, and 2 kHz high-pass noises). This improvement 

was obvious during both activation and deactivation of the bilateral coordination. For the 

car horn in traffic noise stimulus, there was a significant improvement only with 

deactivation of the bilateral coordination. 
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Figure 4-10: The performance of training participant # 1 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after training) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

training) with deactivation of the bilateral coordination. 

 

 

 

 

 

 

 

 

Participant 2: Figure 4-11 displays the performance of training participant # 2 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. This participant’s results revealed a significant 

improvement in the localization performance after the acclimatization period in two 

specific conditions: the car horn in traffic noise, and the low-pass noise, both with 

deactivation of the bilateral coordination. After AT, a significant improvement was 

recorded in the broadband noise only with deactivated coordination, in the low-pass and 
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the high-pass noise for both activated and deactivated coordination, and for the car horn 

only with activated coordination.  

 

 

 

 
 

Figure 4-11: The performance of training participant # 2 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after training) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

training) with deactivation of the bilateral coordination. 

 

 

 

 

Participant 3: Figure 4-12 displays the performance of training participant # 3 in the four 

localization stimuli across the study period. Data points that represent significant 
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improved localization performance after the acclimatization period. After AT, a 
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for both activated and deactivated coordination. The car horn localization did not 

improve after AT. 

 

 

 

 

 

Figure 4-12: The performance of training participant # 3 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after training) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

training) with deactivation of the bilateral coordination. 
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Participant 4: Figure 4-13 displays the performance of training participant # 4 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. After the acclimatization period, only one 

condition: the car horn stimulus with deactivated coordination, revealed a significant 

improvement. After AT, there was a significant improvement in the low-pass noise 

localization performance only, both with activated and deactivated coordination.  

 

 

 

 

 

 
 

Figure 4-13: The performance of training participant # 4 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after training) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

training) with deactivation of the bilateral coordination. 

 

 

 

Participant 5: Figure 4-14 displays the performance of training participant # 5 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. The results of this participant after acclimatization 
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revealed no significant improvement. After AT, a significant improvement in both the 

low-pass and the high-pass noise, both with activated and deactivated coordination was 

recorded. 

 

 

 

 
 

Figure 4-14: The performance of training participant # 5 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after training) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

training) with deactivation of the bilateral coordination. 
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4.4.2.2 Control group individual results 

 

Participant 1: Figure 4-15 displays the performance of control participant # 1 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. The only significantly improved performance for 

this participant was recorded for the broadband noise, after the control period, with 

deactivated coordination.  

 

 

 

Figure 4-15: The performance of control participant # 1 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after control) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

control) with deactivation of the bilateral coordination. 
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Participant 2: Figure 4-16 displays the performance of control participant # 2 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. After acclimatization, this participant’s results 

revealed a significant improvement in the car horn stimulus, with both activated and 

deactivated coordination, in the broadband noise with deactivated coordination, and in 

the high-pass noise with activated coordination. After the control period, a significant 

improvement with both activated and deactivated coordination was recorded for both the 

car horn, and the broadband noise. 

 

 

 
 

Figure 4-16: The performance of control participant # 2 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after control) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

control) with deactivation of the bilateral coordination. 
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Participant 3: Figure 4-17 displays the performance of control participant # 3 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. The results of this participant did not reveal any 

significant improvement  after acclimatization or the control period. 

 

 

 

 

 
 

Figure 4-17: The performance of control participant # 3 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after control) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

control) with deactivation of the bilateral coordination. 
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Participant 4: Figure 4-18 displays the performance of control participant # 4 in the four 

localization stimuli across the study period. Data points that represent significant 

improvements are presented in black. After the acclimatization period, this participant’s 

results revealed a significant improvement in the broadband, low-pass, and high-pass 

noises, with deactivated coordination. After the control period, the participant’s 

performance in all these three stimuli revealed a significant improvement, both with 

activated and deactivated coordination. These results suggest an ongoing improvement 

due to acclimatization. 

 

 

 

Figure 4-18: The performance of control participant # 4 in the four localization stimuli across the 

study period. “Baseline” represents the performance immediately after fitting ± 2 standard 

deviations. “T1-on” is the performance after time-1 (after acclimatization) with activation of the 

bilateral coordination. “T1-off” is the performance after time-1 (after acclimatization) with 

deactivation of the bilateral coordination. “T2-on” is the performance after time-2 (after control) 

with activation of the bilateral coordination. “T2-off” is the performance after time-2 (after 

control) with deactivation of the bilateral coordination. 
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4.5 Discussion 

 

The purpose of this study was to examine the interaction between the bilateral 

coordination between a pair of hearing aids, providing a period for acclimatization, and 

providing AT for HI listeners. Two auditory tasks were used to evaluate the participants’ 

performances: speech intelligibility in noise using the HINT and a sound localization 

task. Participants were divided into two groups: training, and a control group, where both 

groups received a pair of hearing aids that apply bilateral coordination, and were 

provided one month period to acclimatize to the hearing aids. Following acclimatization, 

the training group received nine 30-minute sessions of AT for sound localization over a 

period of one month, while the control group continued to use their hearing aid pairs in 

their everyday life and did not receive any AT sessions. Two approaches for analysis of 

the results were used. First, a group level analysis was performed, and revealed a 

significant improvement in the speech intelligibility in certain acoustic environments with 

different settings of the bilateral coordination. The localization performance was 

analyzed using two approaches, ANOVA, and an individual level analysis. ANOVA 

results revealed a significant effect of time, where the F/B performance improved 

significantly after the training/control period compared to the performance after the 

acclimatization period. The car horn stimulus resulted in lower F/B error percent 

compared to the other three noise burst stimuli. A possible reason for this could be the 

relatively longer duration of the car horn stimulus (450 ms) compared to the other noise 

stimuli (250 ms). This longer duration allowed for head movement during the stimulus, 

thus improving the localization performance in the F/B dimension (Brimijoin et al., 2010; 

Perrett & Noble, 1997; Wallach, 1939; Zambarbieri et al, 1997). Using the individual 

level analysis for the localization task, it was apparent that most of the training group 

experienced a significant improvement especially in the stimuli they were trained for, 

after AT sessions. The control group results revealed scattered occasional significant 

improvements in the localization task. The improvement in the AT group performances 

was not restricted to a particular setting of the bilateral coordination of the hearing aid 

pair. 
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The variability in individual performance in both the training and the control groups is in 

accord with the literature. Not all the individuals receiving AT improve at the same pace 

or amount and acclimatization might reveal a significant improvement over time with 

some individuals (Chang et al., 2010; Sweetow and Palmer, 2005). Reasons for this 

individual variability could be the differences in the auditory system plasticity among 

different individuals, as well as other factors such as age and cognitive abilities (Sweetow 

and Palmer, 2005). 

 

Gil et al. (2010) tested the generalizability of AT. The current study also suggests a form 

of generalizability of AT, whereby AT for sound localization led to a significant 

improvement in particular settings for speech intelligibility in noise.  The possible 

correlation between localization and the ability to understand speech in noise has been 

investigated since the early 1950s (Hirsh, 1950). Hirsh hypothesized that the binaural 

system utilizes the interaural differences between the two ears to locate sound sources 

and separate signals based on locations. The ability to detect signals may be mediated by 

localization-based signal segregation Cherry (1953). More recent studies support the idea 

that localization could be one of the attributes needed to separate multiple auditory 

sources and help segregate competing speech sounds (Bregman, 1990; Drennan, 

Gatehouse, & Lever, 2003). Although the difference in performance between the training 

and the control groups after the training/control period is relatively small (1.75 dB SNR), 

and the improvement in the training group after training compared to after 

acclimatization period is about 0.8 dB, these values could be clinically significant, 

because an improvement of 1 dB SNR accounts for 8-10% improvement in speech 

intelligibility scores (Ross, 2004). 

 

Further work is needed in this area of research, in order to establish a solid body of 

evidence suggesting the generalizability of AT, the different factors that might affect the 

auditory plasticity-and hence the expected amount of improvement after AT, and 

designing AT programs that use simple auditory tasks (e.g. sound localization), as a 
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means for improving other more complex domains of auditory performance (e.g. speech 

intelligibility). 

 

Deactivation of the bilateral coordination did not seem to affect either the localization or 

the speech intelligibility results. This finding is consistent with the results of the study 

presented in Chapter 2 with regards to the speech intelligibility results, where activation 

of the bilateral coordination did not positively or negatively affect the SNR scores of the 

participants. However, the results of the first study revealed a significant improvement in 

localization for one stimulus (the car horn). Several reasons could have contributed to the 

difference in the results between the first and the second studies. One reason could be the 

activation of the DSP features in the second study. As mentioned, directional 

microphones significantly improve sound localization performance. It could be concluded 

that the benefit derived from activation of the directional microphone in the second study 

outweighed the benefit derived from the activation of the bilateral coordination between 

the two hearing aids that was tested in the first study. Hence, when the directional 

microphones were activated in the second study, the performance improved considerably 

in both conditions, so the significant difference between activation and deactivation of 

the bilateral coordination became no longer significant. The F/B error percentages 

support this explanation. In the first study, the error percentage for the car horn stimulus 

ranged from 34.6% to 41.35%, while in the second study, the F/B error percentage for the 

car horn stimulus ranged from 21.1% to 23.2%. Another reason that could have 

accounted for the different results of the activation of bilateral coordination is the 

relatively lower number of participants in the second study. It is possible that having a 

larger number of participants in the second study could lead to greater power to identify a 

significant improvement with the activation of the bilateral coordination. Further research 

work in this area is required, in order to quantify the benefits gained from activation of 

the bilateral coordination under different acoustic conditions, and the relative 

contribution of activating the bilateral coordination compared to the benefits gained by 

the other DSP features. 
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Further investigation of the localization results of the training group, it was found that the 

improvement in localization performance after AT was greatest for both the BBN (15.6% 

decrease in F/B error percentage) and the LPN (16% decrease in the F/B error 

percentage), compared to the HPN (8.2% decrease in the F/B error percentage). The HPN 

stimulus resulted in the highest F/B error percentage both before and after training. 

Wright and Fitzgerald (2001) found that improvements in ILD-learning occur at a slower 

rate compared to ITD- learning. This finding is consistent with the results of the second 

study, where the improvements in BBN and LPN localization performance were more 

prominent compared to the improvements in HPN localization performance. As discussed 

in Chapter 1, fair correlation exists between the localization performance in the 

horizontal plane and HTL, where good low frequency hearing sensitivity was associated 

with better frontal horizontal plane localization, and good low and mid-to-high 

frequencies hearing sensitivity was associated with better localization in the lateral 

horizontal plane (Noble et al., 1994). The findings of Noble et al. can explain these 

results. Given that the HI listeners had better HTL at low frequencies, the localization 

performance was generally better when the stimulus had low-frequency components 

(BBN and LPN), compared to the HPN, where low-frequency components were not 

available. Other factors could have contributed to the degradation in HPN performance, 

such as reduced frequency selectivity, reduced intensity and temporal resolution 

(Arsenault & Punch, 1999; Bronkhorst & Plomp, 1989). 

 

  

4.6 Summary and Conclusion 

 

The current study investigated the interaction between providing the most recent hearing 

aid technologies and providing AT for the HI listeners. The results revealed a significant 

improvement following the administration of AT sessions for most participants who 

received AT, and a few significant improvements in the control group.  
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The AT group revealed a significant improvement in certain settings for the speech 

intelligibility task, suggesting a form of generalizability of AT, where administering AT 

for certain auditory task can result in an improvement in another auditory task for which 

AT was not provided. 

 

Although AT training for localization seemed to generalize to an improved speech 

intelligibility in noise, it did not generalize to an improvement in the localization of the 

car horn in traffic noise. The reason for this could be that there is no room for further 

improvement in the car horn localization performance, because the normal hearing 

individuals performance in the first study (24.17%) is very close to the average 

performance of both the training and control groups (20.9%) in the second study.  

 

The current study also investigated the effect of activating/deactivating the bilateral 

wireless coordination between a pair of hearing aids. Although the first study presented in 

Chapter 2 reported a significant improvement in localization performance in one stimulus 

with activation of the bilateral coordination, the current study did not duplicate this 

finding. The reasons for this discrepancy in the results between the two studies can be 

attributed to the differences in the study designs. While only WDRC was activated in the 

hearing aids used in the first study, all the DSP features; such as directional microphone, 

noise cancelling, were activated in the current study in addition to the WDRC. Activating 

the directional microphone could have considerably improved the F/B localization 

performance; hence the improvement provided by activating the bilateral coordination 

became no longer statistically significant. Another reason for this discrepancy could be 

the relatively lower number of participants who joined the second study compared to the 

first study. 

These results generally agree with the literature in the following points: 

 AT can result in a significant improvement in the particular task for which the listener 

received AT (Sweetow & Palmers, 2005). 

 A period as short as 30 minutes, 2-3 times per week for four weeks of AT can result 

in a significant improvement in the auditory performance. 

 Not all the listeners will improve with AT, and they will not improve with the same 

pace or amount (Saunders, 2012). 
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 Acclimatization alone can result in a significant improvement in some individuals 

(Keidser et al., 2006), and this improvement can continue over a period of eight 

weeks. 

 AT in one aspect of auditory performance (sound localization) can be generalized to 

an improvement in another aspect of auditory performance (speech intelligibility in 

noise) (Gil et al., 2010). However, for the current study, that was limited to certain 

settings of the speech intelligibility in noise. 

 Directional microphones could provide a significant improvement in the localization 

performance, because they help resolve the F/B confusion (Boymans & Dreschler, 

2000, Quintino et al., 2010, Ricketts & Hornsby, 2003, Tawfik et al. 2010, and 

Valente & Mispagel, 2008). 

 The presence of low-frequency components in an auditory signal improves the 

localization performance for this particular signal (Noble et al., 1994). 

 Auditory signals that are long enough to allow for useful head movements (such as 

the car horn in the current study, 450 ms), can be localized with less F/B confusion 

(Brimijoin et al., 2010; Zambarbieri et al., 1997). 
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Chapter 5 

5. General Discussion 

The purpose of this dissertation was to gain better understanding of the effects of modern 

amplification on the binaural processing, and to investigate the effects of auditory 

training on some auditory tasks that require binaural processing. The specific goals of the 

two studies presented in Chapter 2 and Chapter 4 were: 1) to inspect the performance of 

HI listeners in some auditory tasks that reflect the process of binaural hearing, 2) to 

measure and evaluate the benefits of a hearing aid feature that enables two (right and left) 

hearing aids to communicate together in order to synchronize the signal processing 

features for the aim of preserving the benefits of binaural hearing, 3) to measure and 

evaluate the benefits of providing a period for acclimatization and auditory training 

together with the bilateral wireless coordination feature, 4) and to inspect and evaluate 

the possibility of improvement in one aspect of auditory performance (speech 

intelligibility in noise) after receiving auditory training in another aspect (horizontal 

sound localization). 

This chapter summarizes the key findings of the two studies presented in Chapter 2 and 

Chapter 4. The chapter also provides the overall contribution of these two studies to the 

current literature that looks into the effects of different hearing aid features on the 

auditory performance of HI listeners, and the effects of auditory training on the auditory 

performance of HI listeners. 

 

5.1 Overview and main results 

The benefits of binaural hearing are well-documented in literature. Amongst the benefits 

of binaural hearing is improving the ability to localize sounds, and follow conversations 

in noisy background or among multiple talkers (Devore et al., 2009; Keidser et al., 2006).  
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SNHL negatively affects horizontal sound localization abilities in the hearing impaired 

individuals. This degradation is not completely attributable to decreased audibility; other 

factors contribute to this degradation, such as reduced frequency selectivity, reduced 

intensity and temporal resolution. HI listeners also have worse speech intelligibility in 

noise during binaural listening mainly due to their inability to take full advantage of the 

ILD cue (Arsenault & Punch, 1999; Bronkhorst & Plomp, 1989). 

Several studies investigated the effect of different DSP features in the hearing aids on 

horizontal sound localization. WDRC did not significantly degrade localization. 

However, when applying short attack time and large compression ratio (CR), this tends to 

negatively affect the horizontal localization abilities (Keidser et al., 2006; Musa-Shufani 

et al., 2006). When inspecting the different microphone configurations, it was found that 

for the L/R localization, the matched microphone mode resulted in a better performance 

when compared to mismatched microphone modes. However, the presence of a 

directional microphone in one or both hearing aids would significantly improve the F/B 

localization performance, obviously due to amplifying sounds from the front more 

(Keidser et al. 2006 & 2009). Digital noise reduction was found to worsen the L/R 

performance, and improve the F/B performance, however the differences in RMS errors 

were small, and the clinical effect of noise reduction on horizontal localization was 

clinically unimportant (Bentler & Chiou, 2006; Dillon, 2001; Keidser et al., 2006). 

The effect of the different DSP features on speech intelligibility in noise was also 

documented in the literature. WDRC was expected to improve speech intelligibility in 

noise, but had been shown to either degrade or have no effect on it. Reasons for this 

could be noise amplification during speech pauses, or decreased effective compression 

ratio when applied to speech in noise versus speech in quiet (Souza et al., 2000 &2006). 

Directional microphones are the only signal processing feature shown to significantly 

improve speech intelligibility in noise. Even when applied asymmetrically, it provides a 

significant benefit when compared to omnidirectional microphones (Boymans & 

Dreschler, 2000; Quintino et al., 2010; Rickets and Hornsby, 2003; and Tawfik et al., 

2010). As for digital noise reduction, there were no consistent findings regarding its 
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effect, however, it was found to be either of no effect or of minimal positive effect on 

speech understanding in noise (Boymans & Dreschler, 2000; Tawfik et al., 2010). 

The study presented in Chapter 2 focused on testing the improvement in the auditory 

performance of HI listeners, when the signal processing was coordinated between two 

hearing aids in a bilateral fitting. The main objective of coordinating the DSP response 

between the two hearing aids was to preserve the benefits of binaural hearing. Two 

auditory tasks that reflect the benefits of binaural hearing were tested; horizontal sound 

localization, and speech intelligibility in noise. These two tasks were tested while 

enabling the bilateral coordination and while disabling it. Two different hearing aid 

models that apply bilateral coordination were tested. Testing took place in a hemi-

anechoic chamber (Beltone anechoic chamber) at the National Centre for Audiology. The 

HINT (Hearing In Noise Test) was used to test the speech intelligibility in noise 

performance, and custom-designed Matlab software was used to test sound localization. 

Results for sound localization revealed a significant improvement with the activation of 

the bilateral coordination option with one stimulus (car horn in traffic noise), and an 

insignificant improvement with another stimulus (the high frequency NBN). Results for 

speech intelligibility in noise neither improved nor degraded with the activation of the 

bilateral coordination option. From the results of this study, we concluded that the 

activation of the bilateral coordination of WDRC between the right and left hearing aids   

can lead to a significant improvement in sound localization that is limited to certain 

listening conditions. Some limitations should be considered when interpreting the results 

of this study. First, the participants were not given time for acclimatization to the new 

hearing aids. Second, apart from the WDRC, all the DSP features that are normally 

enabled in the hearing aids, such as directional microphone, noise reduction, and 

feedback cancellation were disabled. The reason for disabling these features was to avoid 

contamination of the results by other features. However, all the DSP features were 

enabled in the second study in order to investigate the effect of coordinating all the 

features as opposed to independently-working features in the right and left ears, and also 

to provide a comfortable hearing aid fitting for the participants who were required to use 

the hearing aids in their everyday life for two months. Taking into consideration the 

limitation of the first study, the second study (presented in Chapter 4) was designed. Four 
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weeks were provided for acclimatization with the new hearing aids, after which, a group 

of participants joined an AT program while the other group did not receive AT. The 

designed AT program was a localization program, where three (NBN, 2-kHz LPN, and 2-

kHz HPN) of the four stimuli used for testing the localization performance were used. 

Training took place at the same anechoic chamber where testing took place. The AT 

session lasted for a maximum of 30 min. during the session, each stimulus was played 

two times from each speaker, first time as a test, followed by a second time as a feedback. 

The feedback stimulus was played continuously until the participant identified it; with a 

visual feedback (through an LED on the speaker). Each participant received nine training 

sessions over a period of four weeks. Performance with and without the bilateral 

coordination was tested before and after acclimatization, and before and after AT. 

Participants were tested for sound localization, using the three stimuli used for AT, and a 

fourth stimulus (car horn in traffic noise), in the anechoic chamber. Participants were also 

tested for speech intelligibility in noise using the HINT, in both the anechoic chamber 

and a reverberant chamber. The general results revealed a significant improvement in the 

localization performance for most participants who received AT, and either a slight 

improvement or no change in their speech performance. The participants who did not 

receive AT had either slight improvement or no change in their localization performance, 

and their speech performance either did not change or exhibited a slight degradation. 

Deactivation of the bilateral coordination did not seem to affect either the localization, or 

the speech intelligibility results. This finding is consistent with the results of the study 

presented in Chapter 2 with regards to the speech intelligibility results, where activation 

of the bilateral coordination did not positively or negatively affect the SRT of the 

participants. However, the results of the first study revealed a significant improvement in 

localization for one stimulus (the car horn). Several reasons could have contributed to the 

difference in the results between the first and the second studies. One reason could be the 

activation of the DSP features in the second study. As mentioned above, directional 

microphones significantly improve the sound localization performance. It could be 

concluded that the benefit derived from activation of the directional microphone 

activation in the second study outweighed the benefit derived from the activation of the 

bilateral coordination between the two hearing aids that was tested in the first study. 



129 

 

Hence, when the directional microphones were activated in the second study, the 

performance improved considerably in both conditions, so the significant difference 

between activation and deactivation of the bilateral coordination became no longer 

significant. The F/B error percentages support this explanation. Another reason could 

have accounted for the different results of the activation of bilateral coordination is the 

relatively lower number of participants in the second study. While twelve participants 

joined the first study, only nine participants joined the second study. It is possible that 

having a larger number of participants in the second study could lead to a significant 

improvement with activation of the bilateral coordination. 

In addition to investigating the effects of activating the bilateral coordination between a 

pair of hearing aids, and the effects of a designed sound localization AT on the auditory 

performance in both localization and speech intelligibility in noise, several other findings 

were reported in both studies, which replicate previous findings in the literature. 

First, it was reported in both studies that the localization performance, expressed by 

resolving the F/B confusion, for the car horn in traffic noise was generally better than the 

localization performance for the noise-burst stimuli. This finding cannot be attributed to 

the frequency component alone, because in the second study, a broad-band noise stimulus 

was present, and the F/B error for this stimulus was higher than the F/B error for the car 

horn stimulus. The reason is most probably the relatively longer duration of the car horn 

stimulus (450 ms) compared to the NBN stimulus in the first study (200 ms), or the three 

noise-bursts stimuli (BBN, LPN, and HPN) in the second study (250 ms). This longer 

duration allowed for useful head movement that helped resolving the F/B confusion 

(Brimijoin et al., 2010; Zambarbieri et al, 1997).  

Another finding in the second study was that the localization performance for the BBN 

and the LPN was better, compared to the HPN localization performance. The 

improvement in localization performance after AT for these two stimuli, was greater than 

the improvement in the HPN stimulus. This finding can be explained by the correlation 

between the HTL and the localization performance (Noble et al., 1994). Since the HI 
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participants generally had better HTL at the low frequencies, localizing stimuli that had 

low-frequency component was more convenient for the HI participants.  

 

5.2 Contribution to literature and future research  

The studies presented in this dissertation are among the first studies that investigated the 

benefits of bilateral coordination of the right and left hearing aids DSP features. The first 

study reported a significant improvement in sound localization for one of the two stimuli 

used, where the second study did not report a significant change in localization 

performance, perhaps due to activation of the DSP features that were disabled in the first 

study. These findings help both the audiologist and the hearing aid user better understand 

that the benefits of the bilateral coordination between the hearing aids pair is limited to 

sound localization, with no significant effect on speech intelligibility in noise. Further 

research work where different stimuli/hearing aids settings are tested is needed in order to 

have clearer insight on the benefits of coordinating the DSP features in a pair of hearing 

aids. 

The second study is conducted to investigate the effect of AT on the auditory 

performance, and the first study to test the generalizability of AT for sound localization 

to an improvement in speech intelligibility. A significant improvement in the localization 

performance after receiving the localization AT, and a significant improvement in speech 

intelligibility in noise that was limited to the anechoic environment were reported. These 

findings replicated and supported previous findings (e.g. Gil et al., 2010) and highlighted 

the importance of AT as a useful tool to improve the auditory performance of the HI 

listeners. 

Chapter Three highlighted both the benefits of providing AT to the HI listeners who plan 

on purchasing hearing aids, and the lack of studies that investigate the benefits of AT. 

Chapter Three also explained that only a small percentage of audiologists provide AT for 

the HI listeners due to several factors such as the limited clinical time and the subject 

compliance. Several speech training programs are available, however they require a 
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clinical setting where an audiologist or another person helps the listener. Providing an 

evidence for improvement in speech intelligibility in noise after AT for sound 

localization, provides a basis for creating AT software that can be administered at home 

without the need of an audiologist or another person to help the HI listener administer the 

training session. Such AT software will depend on virtual auditory space (VAS) 

technique to simulate sounds perceived from different locations in the environment. 

Providing an AT software that focuses on sound localization rather than the speech would 

have several advantages: 1) it would be useful and suitable for non-native English 

speakers, who may find it difficult to follow English speech-based training protocols. 2) 

Because the task of locating sounds is easier and less stressful than understanding speech, 

it is very probable that the participants’ compliance will increase, and hence their 

auditory skills and performances will improve. 

 

5.3 Strengths and limitations  

5.3.1 Strengths 

The strength in the first study is testing more than one hearing aid model that applies the 

bilateral coordination of the signal processing features. This helped confirm the results 

and compare the performance with these two hearing aids. Disabling the DSP features in 

the first study, as well as providing blocked earmolds ensured that the benefits gained by 

activating the wireless synchrony were not contaminated by other factors. Testing speech 

intelligibility in noise using the standard HINT setting, where the speech is always 

presented from the front, simulates the most commonly encountered everyday-life 

situations.  

The second study investigated several theories. Alongside comparing the auditory 

performance with and without activating the bilateral coordination of the two hearing 

aids, the effects of auditory acclimatization and the effects of providing AT were 

investigated. The effect of the acoustic environment on speech intelligibility was also 

investigated. The participants were provided a suitable period for acclimatization and for 
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training/control. The study was conducted over a period of eight weeks, four weeks of 

acclimatization, and four weeks of training/control period. Testing for localization using 

several (four) stimuli, with different frequency components and durations provided 

clearer information on the relations between localization, HTL, and the head movement. 

Testing for speech intelligibility in noise was conducted in two different acoustic 

environments: anechoic and reverberant, to better represent the different acoustic 

environments encountered in everyday-life situations. 

 

5.3.2. Limitations 

In interpreting the results of the two studies presented in this dissertation, several 

limitations should be considered. For the first study, and in order to limit any localization 

benefit to the bilateral coordination, several DSP features in the hearing aid were 

disabled, such as the directional microphone, feedback cancellation, and noise reduction. 

Completely blocked earmolds were used to ensure that the benefit gained was not due to 

the pinna spectral shape cues. In a regular fitting, usually most of DSP features would be 

enabled, and vented molds would be provided. The use of closed molds can negatively 

affect localization performance because it blocks the access to the natural undistorted 

ITD cues, and hence the listener depends on the amplified ITDs, which could be affected 

by the hearing aids’ signal processing features (Noble et al. 1998). Also, the HINT setting 

used in the study is the standard HINT configuration, where speech comes always from 

the front. This setting did not allow for testing the hearing aid performance when speech 

is coming from different locations.  

For the second study, individual performances were tracked and compared to find the 

amount of improvement/degradation in performance. The relatively low number of 

participants is a potential reason for not extracting significant differences between the 

different hearing aid settings (activation/deactivation of the bilateral coordination), and 

between the training and control groups.  



133 

 

The results of both studies are confined to the specific situations, stimuli, and settings 

tested.  

5.4 Conclusions 

The results of the two studies presented in this dissertation provide guidance to 

audiologists and hearing aid users on the expected benefits from applying bilateral 

coordination of the DSP between a pair of hearing aids with regards to horizontal sound 

localization and speech intelligibility in noise. 

It is recommended that the audiologists clarify to the hearing impaired listeners that the 

expected improvement with activation of the bilateral synchronization is limited. There is 

no statistically significant difference in HINT performance, which represent speech 

intelligibility in noise performance, in the two studies presented in this dissertation. The 

benefit derived from activating the bilateral coordination in horizontal localization is 

limited to one stimulus (the car horn) in the first study. It could be concluded that the 

benefit derived from directional microphones outweighed the benefit derived from 

activating the bilateral coordination. 

It is also important to highlight the benefit derived from the AT. Receiving AT for a 

relatively short duration can result in a significant improvement in the localization 

performance, and can generalize to an improvement in speech intelligibility in noise 

under certain conditions. It is recommended that the audiologists provide information 

regarding the different AT options available to the hearing impaired listeners. 

The results also provide longitudinal tracking of the auditory performance for two months 

following amplification in horizontal sound localization and speech intelligibility in 

noise. The results demonstrate the potential improvement in auditory performance 

following a relatively short period of AT, and the potential generalizability of AT in one 

aspect to other aspects of auditory training. In accord with previous literature, HI listeners 

had fewer F/B errors when low-frequency components were available. Fewer F/B errors 

were also reported for localization stimuli with duration long enough to allow for useful 

head movement. 
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Appendix B 

Pure Tone thresholds for the HI participants- chapter 2(Left & Right ears).  

 

subject/freque

ncy (kHz) 

Left Right 

.25 .5 1 2 4 8 .25 .5 1 2 4 8 

1 40 55 60 60 65 NR 40 55 60 60 95 95 

2 45 50 60 60 55 65 50 60 65 65 60 80 

3 35 35 45 60 50 55 25 25 40 55 60 55 

4 30 45 55 60 60 70 35 45 55 60 60 65 

5 30 30 35 45 60 60 35 40 40 55 65 65 

6 10 15 30 35 50 65 15 20 35 30 55 70 

7 55 60 65 70 70 80 65 60 60 65 70 75 

8 10 15 30 35 50 65 15 20 35 30 55 70 

9 55 60 65 70 70 80 65 60 60 65 70 75 

10 25 35 50 55 55 NA 25 35 45 50 60 NA 

11 40 50 55 55 55 NA 45 50 55 55 50 NA 

12 55 55 60 70 60 NA 60 70 55 65 70 NA 
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Appendix C 
 HINT scores (in dB SNR) for NH and HI listeners – chapter 2  

HINT scores (in dB SNR) for NH individuals – chapter 2 

 

 

condition 
         angle 

90°-mean 90°-s.d. 270°-mean 270°-s.d. Both-mean Both-s.d. 

unaided -1.69 6.75 -2.62 6.26 -2.14 4.9 

Ha1-on -6.42 2.70 -5.91 3.42 -3.02 2.63 

Ha1-off -8.19 2.95 -6.29 3.40 -3.75  2.79 

Ha2-on -6.69 3.29 -5.41 3.46 -5.18 3.53 

Ha2-off -5.96 3.65 -5.70 4.07 -4 3.98 

 

HINT scores (in dB SNR) for HI individuals – chapter 2 

  

   

 

 

 

 

  

    

  

  

 

condition 
         angle 

90-mean 90-s.d. 270-mean 270-s.d. Both-mean Both-s.d. 

unaided -11.54  1.45 -11.79 0.92 -9.13 1.99 

Ha1-on -11.36 3.32 -12.66 3.38 -8.78 2.69 

Ha1-off -12.23 2.32 -13.32 3.42 -8.60 1.75 

Ha2-on -10.78 3.21 -11.43 2.91 -7.41 4.14 

Ha2-off -10.60 1.81 -11.42 2.51 -6.14 5.81 

condition 
         angle 

90-mean 90-s.d. 270-mean 270-s.d. Both-mean Both-s.d. 

unaided -11.54  1.45 -11.79 0.92 -9.13 1.99 

Ha1-on -11.36 3.32 -12.66 3.38 -8.78 2.69 

Ha1-off -12.23 2.32 -13.32 3.42 -8.60 1.75 

Ha2-on -10.78 3.21 -11.43 2.91 -7.41 4.14 

Ha2-off -10.60 1.81 -11.42 2.51 -6.14 5.81 

condition 
         angle 

90-mean 90-s.d. 270-mean 270-s.d. Both-mean Both-s.d. 

unaided -11.54  1.45 -11.79 0.92 -9.13 1.99 

Ha1-on -11.36 3.32 -12.66 3.38 -8.78 2.69 

condition 
         angle 

90°-mean 90°-s.d. 270°-
mean 

270°-s.d. Both-mean Both-s.d. 
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Appendix D 

Means and standard deviations of the localization data for NH listeners – chapter 2  

Condition 
stimulus 

Traffic-
mean 

s.d. highfrequency-
mean 

s.d. 

unaided 12.5 4.9 17.70875 7.7 

ha1w.on 17.44875 5.6 22.65625 5 

ha2w.on 20.8325 4.9 22.1375 4 

ha1w.off 21.095 7.9 21.615 8.1 

ha2w.off 21.355 6 22.91625 6.3 

F/B error percentages – NH listeners 

Condition 
stimulus 

Traffic-
mean 

s.d. High 
Frequency-

mean 

s.d. 

unaided 1 0.06 1.02 0.06 

HA#1-on 0.95 0.11 0.95 0.15 

HA#1-off 0.92 0.12 0.99 0.09 

HA#2-on 0.94 0.12 0.87 0.17 

HA#2-off 0.88 0.15 0.93 0.2 

Lateral angle gain – NH listeners.  The values represent a ratio (slope of linear fit) between target and 

response in degree azimuth. A value of 1 represents perfect performance; a value less than 1 represents a 

response compressed towards the midline; and a value more than one represents a response further than 

midline compared to the target (overshooting). 

Condition 
stimulus 

Traffic-
mean 

s.d. High 
Frequency-

mean 

s.d. 

unaided -0.56 2.91 -1.3 3.38 

HA#1-on 0.06 8.04 -0.34 3.32 

HA#1-off 0.79 9.2 2 5.01 

HA#2-on -0.3 10.36 -1.02 6.04 

HA#2-off -3.78 12.43 -1.74 5.01 

Lateral angle bias- NH listeners. Bias represents the shift (in degree azimuth) in lateral response either 
towards the left (negative values) or right (positive values) hemisphere. 
 

Condition 
stimulus 

Traffic s.d. High 
Frequency 

s.d. 

unaided 13.67 2.25 17.55 6.17 

HA#1-on 13.69 1.99 16.06 4.33 

HA#1-off 12.56 2.9 15.39 7.46 

HA#2-on 15.91 3.5 17.5 5 

HA#2-off 14.46 1.41 16.11 5.54 

Lateral angle scatter – NH listeners.  Scatter represents the root-mean-square deviation (in degree 
azimuth) of the response lateral angles from the values predicted by the regression 
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Appendix E 

Means and standard deviations of the localization data for HI listeners –chapter 2  

Condition 
stimulus 

Traffic-
mean 

s.d. highfrequency-
mean 

s.d. 

ha1w.on 34.63 9.8 45.54 8.46 

ha2w.on 39.41 10.59 45.77 4.93 

ha1w.off 41.35 13.1 50.11 5.59 

ha2w.off 41.35 8.35 45.93 4.77 

F/B error percentages – HI listeners 

Condition 
stimulus 

Traffic-
mean 

s.d. High 
Frequency-

mean 

s.d. 

HA#1-on 1.04 0.06 0.88 0.19 

HA#1-off 1.01 0.09 0.89 0.22 

HA#2-on 0.98 0.14 0.81 0.22 

HA#2-off 1 0.13 0.77 0.19 

Lateral angle gain – HI listeners. The values represent a ratio (slope of linear fit) between target and 

response in degree azimuth. A value of 1 represents perfect performance; a value less than 1 represents a 

response compressed towards the midline; and a value more than one represents a response further than 

midline compared to the target (overshooting). 

Condition 
stimulus 

Traffic-
mean 

s.d. High 
Frequency-

mean 

s.d. 

HA#1-on -0.23 9.88 2.89 11.58 

HA#1-off -0.43 10.94 -1.29 9.74 

HA#2-on -1.89 14.11 -1.79 11.6 

HA#2-off -4.22 7.42 -2.78 10.95 

Lateral angle bias- HI listeners. Bias represents the shift (in degree azimuth) in lateral response either 

towards the left (negative values) or right (positive values) hemisphere. 

Condition 
stimulus 

Traffic s.d. High 
Frequency 

s.d. 

HA#1-on 21.46 6.35 21.2 5.73 

HA#1-off 20.07 3.81 21.08 4.19 

HA#2-on 22 5.75 18.97 3.84 

HA#2-off 20.64 7.1 19.17 5.56 

Lateral angle scatter- HI listeners. Scatter represents the root-mean-square deviation (in degree azimuth) 

of the response lateral angles from the values predicted by the regression. 
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APPENDIX F 

Pure Tone thresholds (in dB HL) for the training group- chapter 4 (Right & Left ears). 

Right ear .25 kHz .5 kHz 1 kHz 2 kHz 3 kHz 4 kHz 6 kHz 8 kHz 

participant          

1 35 40 40 35 35 40 60 95 

2 20 25 30 45 55 65 75 75 

3 15 20 20 45 50 60 60 60 

4 15 20 30 55 70 70 75 80 

5 20 25 20 25 50 50 60 45 

 

Left ear .25 kHz .5 kHz 1 kHz 2 kHz 3 kHz 4 kHz 6 kHz 8 kHz 

participant          

1 40 35 45 50 55 50 75 95 

2 20 25 30 55 60 70 75 75 

3 15 15 15 35 45 50 55 55 

4 20 30 25 65 65 60 70 75 

5 10 20 25 25 40 55 65 65 
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Appendix G 

Pure Tone thresholds (in dB HL) for the control group-chapter 4 (Left & Right ears). 

Right ear .25 kHz .5 kHz 1 kHz 2 kHz 3 kHz 4 kHz 6 kHz 8 kHz 

participant          

1 25 40 40 35 35 45 70 70 

2 10 10 10 30 70 65 50 65 

3 25 35 50 55 55 55 55 60 

4 20 20 35 50 60 65 60 75 

 

Left ear .25 kHz .5 kHz 1 kHz 2 kHz 3 kHz 4 kHz 6 kHz 8 kHz 

participant          

1 25 35 35 25 25 40 70 75 

2 10 15 10 55 70 65 55 65 

3 25 35 45 45 50 55 60 70 

4 15 20 40 45 65 60 70 75 
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Appendix H 

Anechoic HINT scores (in dBSNR) for the training and control groups, respectively-

chapter 4 

participant 

90°-un 

diffuse-

un  

90°-

new-

ON 

diffuse-

new-ON 

90°-

acc-ON 

diffuse-

acc-ON 

90°-

acc-off 

diffuse-

acc-off 

90°-

train-

on 

diffuse-

trian-on 

90°-

train-

off 

diffuse-

train-off  

1 
-5.14 -4.75 -6.29 -6.29 -4.5 -4 -7.43 -8 -5.71 -5.71 -7.43 -8 

2 

-3.43 -4.57 -9.14 -7.43 -9.14 -5.14 -8.57 -6.29 -10.29 -5.71 -11.43 -6.29 

3 

-9.14 -6.29 -10.29 -4.57 -14.86 -6.29 -8.57 -4.57 -12.57 -6.29 -10.29 -6.29 

4 

-14.29 -8 -13.14 -9.14 -11.43 -8 -8.57 -8.57 -11.43 -8 -11.43 -12 

5 

-4.57 -7.43 -10.86 -7.43 -11.43 -5.14 -12.57 -7.43 -10.86 -7.43 -12.57 -7.43 
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participant 

90°-

un 

diffuse-

un  

90°-

new-

ON 

diffuse-

new-

ON 

90°-

acc-

ON 

diffuse-

acc-ON 

90°-

acc-

off 

diffuse-

acc-off 

90°-

train-

on 

diffuse-

trian-on 

90°-

train-

off 

diffuse-

train-off  

1 -9.71 -8.57 -9.14 -9.14 -10.29 -6.29 -8.57 -7.43 -8 -5.71 -4.57 -5.14 

2 -10.29 -5.14 -8.57 -5.71 -13.14 -10.29 -12.57 -6.86 -11.43 -7.43 -10.86 -6.86 

3 -6.86 -7.43 -8 -4.57 -8.57 -8.57 -8 -9.14 -10.29 -7.43 -6.86 -5.71 

4 -10.29 -5.14 -10.86 -8 -6.86 -6.29 -7.43 -4 -9.14 -6.86 -5.71 -1.71 
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Appendix I 

F/B error percentage for the training and the control groups, respectively- chapter 4 

Subject 

N-on-

car 

N-on-

BBN 

N-on-

HPN 

N-on-

LPN 

AC-

on-car 

AC-

on-

BBN 

AC-

on-

HPN 

AC-

on-

LPN 

AC-

of-car 

AC-

of-

BBN 

AC-

of-

HPN 

AC-

of-

LPN 

TR-

on-car 

TR-

on-

BBN 

TR-

on-

HPN 

TR-

on-

LPN 

TR-

of-car 

TR-

of-

BBN 

TR-

of-

HPN 

TR-

of-

LPN 

1 28.125 34.375 40.625 31.25 28.125 40.625 40.625 34.375 25 37.5 43.75 31.25 25 18.75 25 18.75 15.625 0 28.125 25 

2 18.75 37.5 42.424242 37.5 15.625 15.625 43.75 37.5 9.375 34.375 43.75 31.25 12.5 18.75 34.375 15.625 21.875 12.5 28.125 28.125 

3 34.375 37.5 43.75 34.375 40.625 40.625 43.75 31.25 34.375 40.625 43.75 34.375 37.5 15.625 31.25 9.375 43.75 9.375 28.125 6.25 

4 12.5 40.625 50 34.375 9.375 31.25 43.75 34.375 0 37.5 43.75 34.375 18.75 40.625 50 25 15.625 37.5 56.25 12.5 

5 18.75 34.375 37.5 34.375 28.125 43.75 37.5 37.5 31.25 43.75 34.375 40.625 15.625 18.75 15.625 25 15.625 28.125 31.25 25 

 

Subject 

N-on-

car 

N-on-

BBN 

N-on-

HPN 

N-on-

LPN 

AC-

on-

car 

AC-

on-

BBN 

AC-

on-

HPN 

AC-

on-

LPN 

AC-

of-car 

AC-

of-

BBN 

AC-

of-

HPN 

AC-

of-

LPN 

TR-

on-car 

TR-

on-

BBN 

TR-

on-

HPN 

TR-on-

LPN 

TR-

of-car 

TR-of-

BBN 

TR-of-

HPN 

TR-of-

LPN 

1 31.25 40.62

5 

40.625 34.375 31.25 43.75 40.625 34.375 28.125 40.625 43.75 43.75 25 40.625 43.75 37.5 28.12

5 

34.375 40.625 37.5 

2 12.5 43.75 31.25 31.25 6.25 40.625 9.375 31.25 9.375 37.5 28.125 37.5 6.25 37.5 28.125 31.25 6.25 37.5 34.375 37.5 

3 25 12.5 37.5 18.75 31.25 43.75 43.75 43.75 28.125 43.75 43.75 37.5 28.125 40.625 40.625 43.75 21.87

5 

43.75 43.75 37.5 

4 18.75 40.62

5 

43.75 40.625 18.75 43.75 40.625 40.625 25 21.875 18.75 18.75 25 12.5 21.875 15.625 31.25 15.625 28.125 12.5 
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