172,228 research outputs found

    Contributions to the privacy provisioning for federated identity management platforms

    Get PDF
    Identity information, personal data and user’s profiles are key assets for organizations and companies by becoming the use of identity management (IdM) infrastructures a prerequisite for most companies, since IdM systems allow them to perform their business transactions by sharing information and customizing services for several purposes in more efficient and effective ways. Due to the importance of the identity management paradigm, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the umbrella of the IdM paradigm a person’s digital identity can be shared, linked and reused across different domains by allowing users simple session management, etc. In this way, users’ information is widely collected and distributed to offer new added value services and to enhance availability. Whereas these new services have a positive impact on users’ life, they also bring privacy problems. To manage users’ personal data, while protecting their privacy, IdM systems are the ideal target where to deploy privacy solutions, since they handle users’ attribute exchange. Nevertheless, current IdM models and specifications do not sufficiently address comprehensive privacy mechanisms or guidelines, which enable users to better control over the use, divulging and revocation of their online identities. These are essential aspects, specially in sensitive environments where incorrect and unsecured management of user’s data may lead to attacks, privacy breaches, identity misuse or frauds. Nowadays there are several approaches to IdM that have benefits and shortcomings, from the privacy perspective. In this thesis, the main goal is contributing to the privacy provisioning for federated identity management platforms. And for this purpose, we propose a generic architecture that extends current federation IdM systems. We have mainly focused our contributions on health care environments, given their particularly sensitive nature. The two main pillars of the proposed architecture, are the introduction of a selective privacy-enhanced user profile management model and flexibility in revocation consent by incorporating an event-based hybrid IdM approach, which enables to replace time constraints and explicit revocation by activating and deactivating authorization rights according to events. The combination of both models enables to deal with both online and offline scenarios, as well as to empower the user role, by letting her to bring together identity information from different sources. Regarding user’s consent revocation, we propose an implicit revocation consent mechanism based on events, that empowers a new concept, the sleepyhead credentials, which is issued only once and would be used any time. Moreover, we integrate this concept in IdM systems supporting a delegation protocol and we contribute with the definition of mathematical model to determine event arrivals to the IdM system and how they are managed to the corresponding entities, as well as its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to user profile management, we define a privacy-awareness user profile management model to provide efficient selective information disclosure. With this contribution a service provider would be able to accesses the specific personal information without being able to inspect any other details and keeping user control of her data by controlling who can access. The structure that we consider for the user profile storage is based on extensions of Merkle trees allowing for hash combining that would minimize the need of individual verification of elements along a path. An algorithm for sorting the tree as we envision frequently accessed attributes to be closer to the root (minimizing the access’ time) is also provided. Formal validation of the above mentioned ideas has been carried out through simulations and the development of prototypes. Besides, dissemination activities were performed in projects, journals and conferences.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: María Celeste Campo Vázquez.- Secretario: María Francisca Hinarejos Campos.- Vocal: Óscar Esparza Martí

    An active, ontology-driven network service for Internet collaboration

    No full text
    Web portals have emerged as an important means of collaboration on the WWW, and the integration of ontologies promises to make them more accurate in how they serve users’ collaboration and information location requirements. However, web portals are essentially a centralised architecture resulting in difficulties supporting seamless roaming between portals and collaboration between groups supported on different portals. This paper proposes an alternative approach to collaboration over the web using ontologies that is de-centralised and exploits content-based networking. We argue that this approach promises a user-centric, timely, secure and location-independent mechanism, which is potentially more scaleable and universal than existing centralised portals

    Mechanisms for AAA and QoS Interaction

    Get PDF
    Proceedings of Third IEEE Workshop on Applications and Services in Wireless Networks, ASWN 2003. Bern, Switzerland, July 2-4, 2003.The interaction between Authentication, Authorization and Accounting (AAA) systems and the Quality of Service (QoS) infrastructure is to become a must in the near future. This interaction will allow rich control and management of both users and networks. DIAMETER and DiffServ are likely to turn into the future standards in AAA and QoS systems, but they are not designed to interact with each other. To face this, we propose a new Diameter-Diffserv interaction model and describe the Application Specific Module (ASM) implemented to allow this interaction. The ASM has been implemented and tested in a complete AAA-QoS IPv6 scenario

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    A review of personal communications services

    Get PDF
    This article can be accessed from the link below - Copyright @ 2009 Nova Science Publishers, LtdPCS is an acronym for Personal Communications Service. PCS has two layers of meaning. At the low layer, from the technical perspective, PCS is a 2G mobile communication technology operating at the 1900 MHz frequency range. At the upper layer, PCS is often used as an umbrella term that includes various wireless access and personal mobility services with the ultimate goal of enabling users to freely communicate with anyone at anytime and anywhere according to their demand. Ubiquitous PCS can be implemented by integrating the wireless and wireline systems on the basis of intelligent network (IN), which provides network functions of terminal and personal mobility. In this chapter, we focus on various aspects of PCS except location management. First we describe the motivation and technological evolution for personal communications. Then we introduce three key issues related to PCS: spectrum allocation, mobility, and standardization efforts. Since PCS involves several different communication technologies, we introduce its heterogeneous and distributed system architecture. IN is also described in detail because it plays a critical role in the development of PCS. Finally, we introduce the application of PCS and its deployment status since the mid-term of 1990’s.This work was supported in part by the National Natural Science Foundation of China under Grant No. 60673159 and 70671020; the National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z214, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future
    • …
    corecore